The Mediterranean archive of isotopic data, a dataset to explore lifeways from the Neolithic to the Iron Age

. 2023 Dec 20 ; 10 (1) : 917. [epub] 20231220

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38123570

Grantová podpora
885137 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
885137 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
885137 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
885137 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)

Odkazy

PubMed 38123570
PubMed Central PMC10733384
DOI 10.1038/s41597-023-02783-y
PII: 10.1038/s41597-023-02783-y
Knihovny.cz E-zdroje

We present the open-access Mediterranean Archive of Isotopic dAta (MAIA) dataset, which includes over 48,000 isotopic measurements from prehistoric human, animal and plant samples from archaeological sites in the Mediterranean basin dating from the Neolithic to the Iron Age (ca. 6000 - 600 BCE). MAIA collates isotopic measurements (δ13C, δ15N, δ34S, δ18O and 87Sr/86Sr) alongside supporting information (e.g. chronology, location and bibliographic reference). MAIA can be used to explore past human and animal diets and mobility, reconstruct paleo-ecological and -climatic phenomena and investigate human-environment interaction throughout later prehistory in the Mediterranean. MAIA has multiple research applications and here we show how it can be used to evaluate sample preservation and identify data gaps to be addressed in future research. MAIA is available in an open-access format and can be employed in archaeological, anthropological, and paleo-ecological research.

Zobrazit více v PubMed

Vogel JC, Van Der Merwe NJ. Isotopic evidence for early maize cultivation in New York State. Am. Antiq. 1977;42:238–242. doi: 10.2307/278984. DOI

DeNiro MJ, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta. 1978;42:495–506. doi: 10.1016/0016-7037(78)90199-0. DOI

Nehlich O. The application of sulphur isotope analyses in archaeological research: a review. Earth-Sci. Rev. 2015;142:1–17. doi: 10.1016/j.earscirev.2014.12.002. DOI

Roberts P, et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass Spectrom. 2018;32:361–372. doi: 10.1002/rcm.8044. PubMed DOI PMC

Guiry E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Front. Ecol. Evol. 2019;7:313. doi: 10.3389/fevo.2019.00313. DOI

Hedges REM, Clement JG, Thomas CDL, O’connell TC. Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. Am. J. Phys. Anthropol. 2007;133:808–816. doi: 10.1002/ajpa.20598. PubMed DOI

AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: The London atlas of human tooth development and eruption. Am. J. Phys. Anthropol. 2010;142:481–490. doi: 10.1002/ajpa.21258. PubMed DOI

Pederzani S, Britton K. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Sci. Rev. 2019;188:77–107. doi: 10.1016/j.earscirev.2018.11.005. DOI

Leng MJ, Lewis JP. Oxygen isotopes in molluscan shell: Applications in environmental archaeology. Environ. Archaeol. 2016;21:295–306. doi: 10.1179/1749631414Y.0000000048. DOI

Barbour MM. Stable oxygen isotope composition of plant tissue: a review. Funct. Plant Biol. 2007;34:83–94. doi: 10.1071/FP06228. PubMed DOI

Alexander Bentley R. Strontium isotopes from the earth to the archaeological skeleton: a review. J. Archaeol. Method Theory. 2006;13:135–187. doi: 10.1007/s10816-006-9009-x. DOI

Makarewicz CA, Sealy J. Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: Expanding the prospects of stable isotope research in archaeology. J. Archaeol. Sci. 2015;56:146–158. doi: 10.1016/j.jas.2015.02.035. DOI

Grimstead DN, Nugent S, Whipple J. Why a standardization of strontium isotope baseline environmental data is needed and recommendations for methodology. Adv. Archaeol. 2017;5:184–195. doi: 10.1017/aap.2017.6. DOI

Araus JL, Buxó R. Changes in carbon isotope discrimination in grain cereals from the north-western Mediterranean Basin during the past seven millennia. Funct. Plant Biol. 1993;20:117–128. doi: 10.1071/PP9930117. DOI

Lightfoot E, Liu X, Jones MK. Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia. World Archaeol. 2013;45:574–623. doi: 10.1080/00438243.2013.852070. DOI

Jay M. Breastfeeding and weaning behaviour in archaeological populations: evidence from the isotopic analysis of skeletal materials. Child. Past. 2009;2:163–178. doi: 10.1179/cip.2009.2.1.163. DOI

Fulminante F. Infant feeding practices in Europe and the Mediterranean from prehistory to the Middle Ages: a comparison between the historical sources and bioarchaeology. Child. Past. 2015;8:24–47. doi: 10.1179/1758571615Z.00000000026. DOI

Dong G, Yang Y, Han J, Wang H, Chen F. Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption. Sci. China Earth Sci. 2017;60:1110–1123. doi: 10.1007/s11430-016-9037-x. DOI

Sehrawat JS, Kaur J. Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review. Anthropol. Rev. 2017;80:243–258. doi: 10.1515/anre-2017-0017. DOI

Tafuri MA, Craig OE, Canci A. Stable isotope evidence for the consumption of millet and other plants in Bronze Age Italy. Am. J. Phys. Anthropol. 2009;139:146–153. doi: 10.1002/ajpa.20955. PubMed DOI

Murray, M. L. & Schoeninger, M. J. Diet, status, and complex social structure in Iron Age Central Europe: Some contributions of bone chemistry. in Tribe and Polity in Late Prehistoric Europe: Demography, Production, and Exchange in the Evolution of Complex Social Systems (eds. Gibson, D. B. & Geselowitz, M. N.) 155–176 (Springer US, 1988).

Le Huray JD, Schutkowski H. Diet and social status during the La Tène period in Bohemia: Carbon and nitrogen stable isotope analysis of bone collagen from Kutná Hora-Karlov and Radovesice. J. Anthropol. Archaeol. 2005;24:135–147. doi: 10.1016/j.jaa.2004.09.002. DOI

Magny M. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat. Int. 2004;113:65–79. doi: 10.1016/S1040-6182(03)00080-6. DOI

Williams AN, Ulm S, Smith M, Reid J. AustArch: a database of 14C and non-14C ages from archaeological sites in Australia: composition, compilation and review. Internet Archaeol. 2014;36:1–12.

Salesse K, et al. IsoArcH.eu: An open-access and collaborative isotope database for bioarchaeological samples from the Graeco-Roman world and its margins. J. Archaeol. Sci. Rep. 2018;19:1050–1055.

Etu-Sihvola H, et al. The dIANA database – Resource for isotopic paleodietary research in the Baltic Sea. area. J. Archaeol. Sci. Rep. 2019;24:1003–1013.

Cocozza, C. & Fernandes, R. Amalthea: A database of isotopic measurements on archaeological and forensic tooth dentine increments. J. Open Archaeol. Data9, (2021).

Fernandes, R. et al. The ARCHIPELAGO archaeological isotope database for the Japanese islands. J. Open Archaeol. Data9, (2021).

Cocozza C, Cirelli E, Groß M, Teegen WR, Fernandes R. Presenting the Compendium Isotoporum Medii Aevi, a multi-isotope database for Medieval Europe. Sci. Data. 2022;9:354. doi: 10.1038/s41597-022-01462-8. PubMed DOI PMC

Ambrose SH, DeNiro MJ. The isotopic ecology of East African mammals. Oecologia. 1986;69:395–406. doi: 10.1007/BF00377062. PubMed DOI

Hedges REM, Stevens RE, Richards MP. Bone as a stable isotope archive for local climatic information. Quat. Sci. Rev. 2004;23:959–965. doi: 10.1016/j.quascirev.2003.06.022. DOI

Fernández-Jalvo Y, et al. Early bone diagenesis in temperate environments: Part I: Surface features and histology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010;288:62–81. doi: 10.1016/j.palaeo.2009.12.016. DOI

Deniro MJ, Schoeninger MJ, Hastorf CA. Effect of heating on the stable carbon and nitrogen isotope ratios of bone collagen. J. Archaeol. Sci. 1985;12:1–7. doi: 10.1016/0305-4403(85)90011-1. DOI

Behrensmeyer AK. Taphonomic and ecologic information from bone weathering. Paleobiology. 1978;4:150–162. doi: 10.1017/S0094837300005820. DOI

White EM, Hannus LA. Chemical weathering of bone in archaeological soils. Am. Antiq. 1983;48:316–322. doi: 10.2307/280453. DOI

Kohn MJ, Schoeninger MJ, Barker WW. Altered states: effects of diagenesis on fossil tooth chemistry. Geochim. Cosmochim. Acta. 1999;63:2737–2747. doi: 10.1016/S0016-7037(99)00208-2. DOI

DeNiro MJ, Hastorf CA. Alteration of 15N14N and 13C12C ratios of plant matter during the initial stages of diagenesis: Studies utilizing archaeological specimens from Peru. Geochim. Cosmochim. Acta. 1985;49:97–115. doi: 10.1016/0016-7037(85)90194-2. DOI

Fogel ML, Tuross N. Transformation of plant biochemicals to geological macromolecules during early diagenesis. Oecologia. 1999;120:336–346. doi: 10.1007/s004420050867. PubMed DOI

DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317:806–809. doi: 10.1038/317806a0. DOI

Nielsen-Marsh CM, et al. Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. J. Archaeol. Sci. 2007;34:1523–1531. doi: 10.1016/j.jas.2006.11.012. DOI

Grupe G, Piepenbrink H. Processing of prehistoric bones for isotopic analysis and the meaning of collagen C/N ratios in the assessment of diagenetic effects. Hum. Evol. 1987;2:511–515. doi: 10.1007/BF02437425. DOI

Balasse M, Bocherens H, Mariotti A. Intra-bone variability of collagen and apatite isotopic composition used as evidence of a change of diet. J. Archaeol. Sci. 1999;26:593–598. doi: 10.1006/jasc.1998.0376. DOI

Passey BH, Cerling TE. Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. Geochim. Cosmochim. Acta. 2002;66:3225–3234. doi: 10.1016/S0016-7037(02)00933-X. DOI

Abou Neel EA, et al. Demineralization–remineralization dynamics in teeth and bone. Int. J. Nanomedicine. 2016;11:4743–4763. doi: 10.2147/IJN.S107624. PubMed DOI PMC

van Klinken GJ. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 1999;26:687–695. doi: 10.1006/jasc.1998.0385. DOI

Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 1990;17:431–451. doi: 10.1016/0305-4403(90)90007-R. DOI

Nehlich O, Richards MP. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 2009;1:59–75. doi: 10.1007/s12520-009-0003-6. DOI

Bocherens H, Drucker DG, Taubald H. Preservation of bone collagen sulphur isotopic compositions in an early Holocene river-bank archaeological site. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011;310:32–38. doi: 10.1016/j.palaeo.2011.05.016. DOI

Metcalfe JZ, Mead JI. Do uncharred plants preserve original carbon and nitrogen isotope compositions? J. Archaeol. Method Theory. 2019;26:844–872. doi: 10.1007/s10816-018-9390-2. DOI

Szpak P, Chiou KL. A comparison of nitrogen isotope compositions of charred and desiccated botanical remains from northern Peru. Veg. Hist. Archaeobot. 2020;29:527–538. doi: 10.1007/s00334-019-00761-2. DOI

Horden, P. & Purcell, N. The Corrupting Sea: a Study of Mediterranean History (Wiley-Blackwell, 2000).

Farese M, Soncin S, Robb J, Fernandes R, Tafuri MA. 2023. Mediterranean Archive of Isotopic dAta (MAIA) Pandora. PubMed DOI PMC

Buikstra, J. E. & Ubelaker, D. H. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History (Arkansas Archeological Survey, 1994).

Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun. Mass Spectrom. 2012;26:309–319. doi: 10.1002/rcm.5331. PubMed DOI

Pollard, A. M., Batt, C. M., Stern, B., Young, S. M. & Young, S. Analytical Chemistry in Archaeology (Cambridge University Press, 2007).

Pollard AM, Pellegrini M, Lee-Thorp JA. Technical note: Some observations on the conversion of dental enamel δ18op values to δ18ow to determine human mobility. Am. J. Phys. Anthropol. 2011;145:499–504. doi: 10.1002/ajpa.21524. PubMed DOI

Budd P, Montgomery J, Barreiro B, Thomas RG. Differential diagenesis of strontium in archaeological human dental tissues. Appl. Geochem. 2000;15:687–694. doi: 10.1016/S0883-2927(99)00069-4. DOI

Balasse M, Ambrose SH, Smith AB, Price TD. The seasonal mobility model for prehistoric herders in the south-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. J. Archaeol. Sci. 2002;29:917–932. doi: 10.1006/jasc.2001.0787. DOI

Hoppe KA, Koch PL, Furutani TT. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. Int. J. Osteoarchaeol. 2003;13:20–28. doi: 10.1002/oa.663. DOI

Montgomery J, Evans JA. & Neighbour, T. Sr isotope evidence for population movement within the Hebridean Norse community of NW Scotland. J. Geol. Soc. 2003;160:649–653. doi: 10.1144/0016-764903-037. DOI

Trickett MA, Budd P, Montgomery J, Evans J. An assessment of solubility profiling as a decontamination procedure for the 87Sr/86Sr analysis of archaeological human skeletal tissue. Appl. Geochem. 2003;18:653–658. doi: 10.1016/S0883-2927(02)00181-6. DOI

Nelson BK, Deniro MJ, Schoeninger MJ, De Paolo DJ, Hare PE. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim. Cosmochim. Acta. 1986;50:1941–1949. doi: 10.1016/0016-7037(86)90250-4. DOI

Price, T. D. Multi-element studies of diagenesis in prehistoric bone. in The Chemistry of Prehistoric Human Bone (ed. Price, T. D.) 126–154 (Cambridge University Press, 1989).

Tuross N, Behrensmeyer AK, Eanes ED. Strontium increases and crystallinity changes in taphonomic and archaeological bone. J. Archaeol. Sci. 1989;16:661–672. doi: 10.1016/0305-4403(89)90030-7. DOI

Nielsen-Marsh CM, Hedges REM. Patterns of diagenesis in bone I: the effects of site environments. J. Archaeol. Sci. 2000;27:1139–1150. doi: 10.1006/jasc.1999.0537. DOI

Hedges REM. Bone diagenesis: an overview of processes. Archaeometry. 2002;44:319–328. doi: 10.1111/1475-4754.00064. DOI

Bintliff, J. The Complete Archaeology of Greece: From Hunter-Gatherers to the 20th Century A.D. (John Wiley & Sons, 2012).

Drake BL. The influence of climatic change on the Late Bronze Age collapse and the Greek Dark Ages. J. Archaeol. Sci. 2012;39:1862–1870. doi: 10.1016/j.jas.2012.01.029. DOI

Martín-Puertas C, et al. Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. The Holocene. 2008;18:907–921. doi: 10.1177/0959683608093533. DOI

Brisset E, Revelles J, Expósito I, Bernabeu Aubán J, Burjachs F. Socio-ecological contingencies with climate changes over the prehistory in the Mediterranean Iberia. Quaternary. 2020;3:19. doi: 10.3390/quat3030019. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...