Population co-divergence in common cuttlefish (Sepia officinalis) and its dicyemid parasite in the Mediterranean Sea
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31586090
PubMed Central
PMC6778094
DOI
10.1038/s41598-019-50555-9
PII: 10.1038/s41598-019-50555-9
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- paraziti klasifikace MeSH
- populační genetika * MeSH
- Sepia klasifikace parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středozemní moře MeSH
Population structure and biogeography of marine organisms are formed by different drivers than in terrestrial organisms. Yet, very little information is available even for common marine organisms and even less for their associated parasites. Here we report the first analysis of population structure of both a cephalopod host (Sepia officinalis) and its dicyemid parasite, based on a homologous molecular marker (cytochrome oxidase I). We show that the population of common cuttlefish in the Mediterranean area is fragmented into subpopulations, with some areas featuring restricted level of gene flow. Amongst the studied areas, Sardinia was genetically the most diverse and Cyprus the most isolated. At a larger scale, across the Mediterranean, the population structure of the parasite shows co-diversification pattern with its host, but a slower rate of diversification. Differences between the two counterparts are more obvious at a finer scale, where parasite populations show increased level of fragmentation and lower local diversities. This discrepancy can be caused by local extinctions and replacements taking place more frequently in the dicyemid populations, due to their parasitic lifestyle.
Biology Centre CAS v v i České Budějovice Czech Republic
Faculty of Science Masaryk University Brno Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Palumbi S. Genetic-divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 1994;25:547–572. doi: 10.1146/annurev.ecolsys.25.1.547. DOI
Palumbi S. Marine speciation on a small planet. Trends Ecol. Evol. 1992;7:114–118. doi: 10.1016/0169-5347(92)90144-Z. PubMed DOI
Winkelmann I, et al. Mitochondrial genome diversity and population structure of the giant squid Architeuthis: genetics sheds new light on one of the most enigmatic marine species. Proc. R. Soc. Lond., B, Biol. Sci. 2013;280:1759. doi: 10.1098/rspb.2013.0273. PubMed DOI PMC
Watson H, McKeown N, Coscia I, Wootton E, Ironside J. Population genetic structure of the European lobster (Homarus gammarus) in the Irish Sea and implications for the effectiveness of the first British marine protected area. Fish. Res. 2016;183:287–293. doi: 10.1016/j.fishres.2016.06.015. DOI
Laconcha U, et al. New nuclear SNP markers unravel the genetic structure and effective population size of albacore tuna (Thunnus alalunga) PLoS ONE. 2015;10:e0128247. doi: 10.1371/journal.pone.0128247. PubMed DOI PMC
Casabianca S, et al. Population genetic structure and connectivity of the harmful dinoflagellate Alexandrium minutum in the Mediterranean Sea. Proc. R. Soc. Lond., B, Biol. Sci. 2012;279:129–138. doi: 10.1098/rspb.2011.0708. PubMed DOI PMC
Zheng X, et al. Genetic diversity and population structure of the golden cuttlefish, Sepia esculenta (Cephalopoda: Sepiidae) indicated by microsatellite DNA variations. Mar. Ecol.-Evol. Persp. 2009;30:448–454. doi: 10.1111/j.1439-0485.2009.00294.x. DOI
Hauser L, Carvalho G. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 2008;9:333–362. doi: 10.1111/j.1467-2979.2008.00299.x. DOI
Robinson A.R., Leslie W.G., Theocharis A., Lascaratos A. Encyclopedia of Ocean Sciences. 2001. Mediterranean Sea Circulation; pp. 1689–1705.
Ayata S, et al. Regionalisation of the Mediterranean basin, a MERMEX synthesis. Prog. Oceanogr. 2018;163:7–20. doi: 10.1016/j.pocean.2017.09.016. DOI
Dalongeville A, Andrello M, Mouillot D, Albouy C, Manel S. Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes. J. Biogeogr. 2016;43:845–857. doi: 10.1111/jbi.12669. DOI
Pascual M, Rives B, Schunter C, Macpherson E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE. 2017;12:e0176419. doi: 10.1371/journal.pone.0176419. PubMed DOI PMC
Levin II, Parker PG. Comparative host-parasite population genetic structures: obligate fly ectoparasites on Galapagos seabirds. Parasitology. 2013;140(9):1061–1069. doi: 10.1017/S0031182013000437. PubMed DOI
Martinů J, Hypša V, Štefka J. Host specificity driving genetic structure and diversity in ectoparasite populations: Coevolutionary patterns in Apodemus mice and their lice. Ecology and Evolution. 2018;8:10008–10022. doi: 10.1002/ece3.4424. PubMed DOI PMC
Valdivia I, Criscione C, Cardenas L, Duran C, Oliva M. Does a facultative precocious life cycle predispose the marine trematode Proctoeces cf. lintoni to inbreeding and genetic differentiation among host species? Int. J. Parasitol. 2014;44:183–188. doi: 10.1016/j.ijpara.2013.10.008. PubMed DOI
Lane, H., Jones, B. & Poulin, R. Comparative population genetic study of an important marine parasite from New Zealand flat oysters. Mar. Biol. 165; 10.1007/s00227-017-3260-4 (2018).
Blasco-Costa I, Poulin R. Host traits explain the genetic structure of parasites: a meta-analysis. Parasitology. 2013;140:1316–1322. doi: 10.1017/S0031182013000784. PubMed DOI
Maze-Guilmo E, Blanchet S, McCoy K, Loot G. Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecol. Lett. 2016;19:336–347. doi: 10.1111/ele.12564. PubMed DOI
Keeney D, King T, Rowe D, Poulin R. Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites. Mol. Ecol. 2009;18:4591–4603. doi: 10.1111/j.1365-294X.2009.04388.x. PubMed DOI
Perez-Losada M, Guerra A, Sanjuan A. Allozyme differentiation in the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) from the NE Atlantic and Mediterranean. Heredity. 1999;83:280–289. doi: 10.1038/sj.hdy.6885520. PubMed DOI
Perez-Losada M, Guerra A, Carvalho G, Sanjuan A, Shaw P. Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. Heredity. 2002;89:417–424. doi: 10.1038/sj.hdy.6800160. PubMed DOI
Perez-Losada M, Nolte M, Crandall K, Shaw P. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol. Ecol. 2007;16:2667–2679. doi: 10.1111/j.1365-294X.2007.03333.x. PubMed DOI
Zamborsky D, Nishiguchi M. Phylogeographical patterns among Mediterranean sepiolid squids and their Vibrio symbionts: Environment drives specificity among sympatric species. Appl. Environ. Microbiol. 2011;77:642–649. doi: 10.1128/AEM.02105-10. PubMed DOI PMC
Lapan EA, Morowitz HJ. The dicyemid Mesozoa as an integrated system for morphogenetic studies. J Exp Zool. 1975;193:147–160. doi: 10.1002/jez.1401930204. PubMed DOI
Furuya H, Tsuneki K. Biology of dicyemid mesozoans. Zoological Science. 2003;20(5):519–532. doi: 10.2108/zsj.20.519. PubMed DOI
Catalano SR, Whittington ID, Donnellan SC, Gillanders BM. Using the giant Australian cuttlefish (Sepia apama) mass breeding aggregation to explore the life cycle of dicyemid parasites. Acta Parasitol. 2013;58:599–602. doi: 10.2478/s11686-013-0186-y. PubMed DOI
Catalano S. A review of the families, genera and species of Dicyemida Van Beneden, 1876. Zootaxa. 2012;3646:1–32. doi: 10.11646/zootaxa.3646.1.11. DOI
Eshragh R, Leander B. Molecular contributions to species boundaries in dicyemid parasites from eastern Pacific cephalopods. Mar. Biol. Res. 2015;11:414–422. doi: 10.1080/17451000.2014.943241. DOI
Souidenne Dhikra, Florent Isabelle, Dellinger Marc, Romdhane Mohamed Salah, Grellier Philippe, Furuya Hidetaka. Redescription of Dicyemennea eledones (Wagener, 1857) (Phylum Dicyemida) from Eledone cirrhosa (Lamarck, 1798) (Mollusca: Cephalopoda: Octopoda) Systematic Parasitology. 2016;93(9):905–915. doi: 10.1007/s11230-016-9659-3. PubMed DOI
Catalano SR, Whittington ID, Donnellan SC, Gillanders BM. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 2014;3:220–226. doi: 10.1016/j.ijppaw.2013.11.001. PubMed DOI PMC
Catalano S. First descriptions of dicyemid mesozoans (Dicyemida: Dicyemidae) from Australian octopus (Octopodidae) and cuttlefish (Sepiidae), including a new record of Dicyemennea in Australian waters. Folia Parasitol. 2013;60:306–320. doi: 10.14411/fp.2013.032. PubMed DOI
Pascual S, Gestal C, Abollo E, Arias C. A method for the collection and preparation of Dicyemid Mesozoans. Res. Rev. Parasitol. 1997;57:135–138.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 1994;3:294–299. PubMed
Hafner M, et al. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science. 1994;265:1087–1090. doi: 10.1126/science.8066445. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Trifinopoulos J, Nguyen L, von Haeseler A, Minh B. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Kalyaanamoorthy S, Minh B, Wong T, von Haeseler A, Jermiin L. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/NMETH.4285. PubMed DOI PMC
Hoang D, Chernomor O, von Haeseler A, Minh B, Vinh L. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Leigh JW, Bryant D. PopART: full‐feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Bandelt H, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281. doi: 10.7717/peerj.281. PubMed DOI PMC
Nei, M. Molecular Evolutionary Genetics. (Columbia Univ. Press, New York, 1987).
Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989;123:597–601. PubMed PMC
Fu Y-X, Li W-H. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709. PubMed PMC
Fu Y-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–925. PubMed PMC
Rogers AR, Harpeding H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992;9:552–569. PubMed
Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 2002;19:2092–2100. doi: 10.1093/oxfordjournals.molbev.a004034. PubMed DOI
Rozas J, Sanchez-DelBarrio J, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–2497. doi: 10.1093/bioinformatics/btg359. PubMed DOI
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online, https://www.R-project.org/. (2017).
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Nei M. Analysis of gene diversity in subdivided populations. Proc.Natl. Acad. Sci. USA. 1973;70:3321–3323. doi: 10.1073/pnas.70.12.3321. PubMed DOI PMC
Biswas S, Akey J. Genomic insights into positive selection. Trends Genet. 2006;22:437–446. doi: 10.1016/j.tig.2006.06.005. PubMed DOI
Patarnello T, Volckaert F, Castilho R. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol. Ecol. 2007;16:4426–4444. doi: 10.1111/j.1365-294X.2007.03477.x. PubMed DOI
Melis R, et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia. 2018;807:277–296. doi: 10.1007/s10750-017-3399-5. DOI
Andrello M, et al. Low connectivity between Mediterranean marine protected areas: A biophysical modeling approach for the dusky grouper Epinephelus marginatus. PLoS ONE. 2013;8:e68564. doi: 10.1371/journal.pone.0068564. PubMed DOI PMC
Teske PR, et al. Mitochondrial DNA is unsuitable to test for isolation by distance. Scientific Reports. 2018;8:8448. doi: 10.1038/s41598-018-25138-9. PubMed DOI PMC