Economic Diversification Supported the Growth of Mongolia's Nomadic Empires
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32127564
PubMed Central
PMC7054399
DOI
10.1038/s41598-020-60194-0
PII: 10.1038/s41598-020-60194-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Populations in Mongolia from the late second millennium B.C.E. through the Mongol Empire are traditionally assumed, by archaeologists and historians, to have maintained a highly specialized horse-facilitated form of mobile pastoralism. Until recently, a dearth of direct evidence for prehistoric human diet and subsistence economies in Mongolia has rendered systematic testing of this view impossible. Here, we present stable carbon and nitrogen isotope measurements of human bone collagen, and stable carbon isotope analysis of human enamel bioapatite, from 137 well-dated ancient Mongolian individuals spanning the period c. 4400 B.C.E. to 1300 C.E. Our results demonstrate an increase in consumption of C4 plants beginning at c. 800 B.C.E., almost certainly indicative of millet consumption, an interpretation supported by archaeological evidence. The escalating scale of millet consumption on the eastern Eurasian steppe over time, and an expansion of isotopic niche widths, indicate that historic Mongolian empires were supported by a diversification of economic strategies rather than uniform, specialized pastoralism.
Department of Anthropology and Archaeology University of Calgary Calgary Alberta Canada
Faculty of Arts Masaryk University Brno Czech Republic
Max Planck Institute for the Science of Human History Department of Archaeogenetics Jena Germany
Max Planck Institute for the Science of Human History Department of Archaeology Jena Germany
National University of Mongolia Ulaanbaatar Mongolia
School of Archaeology University of Oxford Oxford UK
School of Social Science The University of Queensland Brisbane Australia
University of Colorado Department of Anthropology Museum of Natural History Boulder CO USA
University of Michigan Department of Anthropology Ann Arbor Michigan USA
Zobrazit více v PubMed
Myadar, O. Imaginary nomads: Deconstructing the representation of Mongolia as a land of nomads. Inner Asia 335–362 (2011).
Golden, P. B. Central Asia in World History. Oxford: Oxford University Press. (2011).
Liu, X. The Silk Road in World History. Oxford: Oxford University Press. (2010).
Beckwith, C. I. Empires of the Silk Road: A History of Central Eurasia from the Bronze Age to the Present. Princeton: Princeton University Press. (2009).
Di Cosmo, N. Ancient China and its Enemies: The Rise of Nomadic Power in East Asian History. Cambridge: Cambridge University Press. (2002).
Barfield TJ. The shadow empires: Imperial state formation along the Chinese-nomad frontier. Empires: perspectives from archaeology and history. 2001;122:10.
Honeychurch W. Alternative Complexities: The Archaeology of Pastoral Nomadic States. J Archaeol. Res. 2014;22:277–326. doi: 10.1007/s10814-014-9073-9. DOI
Sinopoli CM. The Archaeology of Empires. Annu. Rev. Anthropol. 1994;23:159–180. doi: 10.1146/annurev.an.23.100194.001111. DOI
Pomper P. The History and Theory of Empires. Hist. Theory. 2005;44:1–27. doi: 10.1111/j.1468-2303.2005.00340.x. DOI
Morris, I. & Scheidel, W. The Dynamics of Ancient Empires: State Power from Assyria to Byzantium. Oxford University Press. (2009).
Hastorf CA, Johannessen S. Pre-Hispanic political change and the role of maize in the Central Andes of Peru. Am. Anthropol. 1993;95:115–138. doi: 10.1525/aa.1993.95.1.02a00060. DOI
Rösch M, Fischer E, Märkle T. Human diet and land use in the time of the Khans—Archaeobotanical research in the capital of the Mongolian Empire, Qara Qorum, Mongolia. Veg. Hist. Archaeobot. 2005;14:485–492. doi: 10.1007/s00334-005-0074-y. DOI
Kim H, 金浩東 The Unity of the Mongol Empire and Continental Exchanges over Eurasia. Journal of Central Eurasian Studies. 2009;1:15–42.
Honeychurch W, Makarewicz CA. The Archaeology of Pastoral Nomadism. Annu. Rev. Anthropol. 2016;45:341–359. doi: 10.1146/annurev-anthro-102215-095827. DOI
Hunt HV, et al. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg. Hist. Archaeobot. 2008;17:5–18. doi: 10.1007/s00334-008-0187-1. PubMed DOI PMC
Hunt HV, et al. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol. Ecol. 2011;20:4756–4771. doi: 10.1111/j.1365-294X.2011.05318.x. PubMed DOI PMC
Lightfoot E, Liu X, Jones MK. Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia. World. Archaeology. 2013;45:574–623.
Spengler RN. Agriculture in the Central Asian Bronze Age. J. World Prehist. 2015;28:215–253. doi: 10.1007/s10963-015-9087-3. DOI
Wang Tingting, Wei Dong, Chang Xien, Yu Zhiyong, Zhang Xinyu, Wang Changsui, Hu Yaowu, Fuller Benjamin T. Tianshanbeilu and the Isotopic Millet Road: reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe. National Science Review. 2017;6(5):1024–1039. doi: 10.1093/nsr/nwx015. PubMed DOI PMC
Svyatko, S. V., Schulting, R. J., Mallory, J. & Murphy, E. M. Stable isotope dietary analysis of prehistoric populations from the Minusinsk Basin, Southern Siberia, Russia: a new chronological framework for the introduction of millet to the eastern Eurasian steppe. J. of Arch. Sci. (2013).
Yang Y., Ren L., Dong G., Cui Y., Liu R., Chen G., Wang H., Wilkin S., Chen F. Economic Change in the Prehistoric Hexi Corridor (4800-2200bp), North-West China. Archaeometry. 2019;61(4):957–976. doi: 10.1111/arcm.12464. DOI
Motuzaite Matuzeviciute G, et al. The extent of cereal cultivation among the Bronze Age to Turkic period societies of Kazakhstan determined using stable isotope analysis of bone collagen. J. Archaeol. Sci. 2015;59:23–34. doi: 10.1016/j.jas.2015.03.029. DOI
Ventresca Miller, A. R. & Makarewicz, C. A. Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe. Scientific Reports 9, (2019). PubMed PMC
Spengler, R. N. Fruit from the Sands: Artifacts of the Silk Road on Your Dinner Table. University of California Press. (2019).
Di Cosmo N. Ancient Inner Asian Nomads: Their Economic Basis and Its Significance in Chinese History. J. Asian Stud. 1994;53:1092–1126. doi: 10.2307/2059235. DOI
Spengler RN, Ryabogina N, Tarasov PE, Wagner M. The spread of agriculture into northern Central Asia: Timing, pathways, and environmental feedbacks. Holocene. 2016;26:1527–1540. doi: 10.1177/0959683616641739. DOI
Korolyuk EA, Polosmak NV. Plant remains from Noin Ula Burial Mounds 20 and 31 (Northern Mongolia) Archaeology, Ethnology and Anthropology of Eurasia. 2010;38:57–63. doi: 10.1016/j.aeae.2010.08.008. DOI
Hermes, T. R. et al. Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia’s Silk Roads. Scientific Reports vol. 8 (2018). PubMed PMC
Murphy EM, et al. Iron Age pastoral nomadism and agriculture in the eastern Eurasian steppe: implications from dental palaeopathology and stable carbon and nitrogen isotopes. J. Archaeol. Sci. 2013;40:2547–2560. doi: 10.1016/j.jas.2012.09.038. DOI
Machicek, M. L. Reconstructing Diet, Health and Activity Patterns in Early Nomadic Pastoralist Communities of Inner Asia. University of Sheffield. (2011).
Ventresca Miller A, et al. Subsistence and social change in central Eurasia: stable isotope analysis of populations spanning the Bronze Age transition. J. Archaeol. Sci. 2014;42:525–538. doi: 10.1016/j.jas.2013.11.012. DOI
van der Merwe NJ, Vogel JC. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature. 1978;276:815–816. doi: 10.1038/276815a0. PubMed DOI
Ambrose, S. H. & Norr, L. Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate. Prehistoric Human Bone 1–37 (1993).
Schoeninger MJ, DeNiro MJ. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta. 1984;48:625–639. doi: 10.1016/0016-7037(84)90091-7. DOI
Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 1990;17:431–451. doi: 10.1016/0305-4403(90)90007-R. DOI
van Klinken GJ. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. J. Archaeol. Sci. 1999;26:687–695. doi: 10.1006/jasc.1998.0385. DOI
An C-B, Chen F-H, Barton L. Holocene environmental changes in Mongolia: A review. Glob. Planet. Change. 2008;63:283–289. doi: 10.1016/j.gloplacha.2008.03.007. DOI
Schwanghart W, Schütt B, Walther M. Holocene climate evolution of the Ugii Nuur basin, Mongolia. Adv. Atmos. Sci. 2008;25:986–998. doi: 10.1007/s00376-008-0986-4. DOI
Stacy, E. M. Stable Isotopic Analysis of Equid (Horse) Teeth from Mongolia. University of Pittsburgh, (2009).
Toderich, K. et al. C3/C4 plants in the vegetation of Central Asia, geographical distribution and environmental adaptation in relation to climate. Climate Change and Terrestrial Carbon Sequestration in Central Asia 33–63 (2007).
Ventresca Miller AR, et al. Pastoralist Mobility in Bronze Age Landscapes of Northern Kazakhstan: 87Sr/86Sr and δ18O Analyses of Human Dentition from Bestamak and Lisakovsk. Environ. Archaeol. 2018;23:352–366. doi: 10.1080/14614103.2017.1390031. DOI
Wang C, et al. Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. J. Plant Ecol. 2016;9:576–585. doi: 10.1093/jpe/rtw006. DOI
Auerswald K, Max HO, Tungalag R, Bai Y, Schnyder H. Sheep Wool δ13C Reveals No Effect of Grazing on the C3/C4 Ratio of Vegetation in the Inner Mongolia–Mongolia Border Region Grasslands. PLoS One. 2012;7:e45552. doi: 10.1371/journal.pone.0045552. PubMed DOI PMC
Makarewicz CA. Winter is coming: seasonality of ancient pastoral nomadic practices revealed in the carbon (δ13C) and nitrogen (δ15N) isotopic record of Xiongnu caprines. Archaeol. Anthropol. Sci. 2017;9:405–418. doi: 10.1007/s12520-015-0289-5. DOI
Burnik Šturm M, Ganbaatar O, Voigt CC, Kaczensky P. Sequential stable isotope analysis reveals differences in multi-year dietary history of three sympatric equid species in SW Mongolia. J. Appl. Ecol. 2017;54:1110–1119. doi: 10.1111/1365-2664.12825. PubMed DOI PMC
Pyankov VI, Gunin PD, Tsoog S, Black CC. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia. 2000;123:15–31. doi: 10.1007/s004420050985. PubMed DOI
Davie H, Murdoch JD, Lini A, Ankhbayar L, Batdorj S. Carbon and Nitrogen Stable Isotope Values for Plants and Mammals in a Semi-Desert Region of Mongolia. Mong. J. Biol. Sci. 2014;12:33–43. doi: 10.22353/mjbs.2014.12.04. DOI
Makarewicz C, Tuross N. Foddering by Mongolian pastoralists is recorded in the stable carbon (δ13C) and nitrogen (δ15N) isotopes of caprine dentinal collagen. J. Archaeol. Sci. 2006;33:862–870. doi: 10.1016/j.jas.2005.10.016. DOI
Lee-Thorp JA, Sealy JC, van der Merwe NJ. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 1989;16:585–599. doi: 10.1016/0305-4403(89)90024-1. DOI
Fernandes R, Nadeau M-J, Grootes PM. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 2012;4:291–301. doi: 10.1007/s12520-012-0102-7. DOI
Fenner JN, Tumen D, Khatanbaatar D. Food fit for a Khan: stable isotope analysis of the elite Mongol Empire cemetery at Tavan Tolgoi, Mongolia. J. Archaeol. Sci. 2014;46:231–244. doi: 10.1016/j.jas.2014.03.017. DOI
de Rachewiltz I. The Secret History of the Mongols. The Mongolia Society Bulletin. 1970;9:55–69.
(of Rubruck.), W. The Mission of Friar William of Rubruck: His Journey to the Court of the Great Khan Mongke, 1253–1255. (Hakluyt Society, 1990).
Ban, G. Han shu. vol. 5 (Ding wen shu ju, 1962).
Sima, Q. Shiji (Records of the grand historian). Qin Dynasty Volume (transl. Wtson, B.)(Columbia University Press, New York, 1961) (1959).
Song, L. & Others. Yuanshi [History of the Yuan Dynasty]. Beijing: Zhong Hua Book Company (1976).
Bemmann J, Höllmann TO, Ahrens B, Kaiser T, Müller S. A Stone Quarry in the Hinterland of Karakorum, Mongolia, with Evidence of Chinese Stonemasons. Journal of Inner Asian Art and Archaeology. 2011;6:101–136. doi: 10.1484/J.JIAAA.5.107589. DOI
Jeong C, et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl. Acad. Sci. USA. 2018;115:E11248–E11255. doi: 10.1073/pnas.1813608115. PubMed DOI PMC
Spengler Robert N., de Nigris Ilaria, Cerasetti Barbara, Carra Marialetizia, Rouse Lynne M. The breadth of dietary economy in Bronze Age Central Asia: Case study from Adji Kui 1 in the Murghab region of Turkmenistan. Journal of Archaeological Science: Reports. 2018;22:372–381. doi: 10.1016/j.jasrep.2016.03.029. DOI
Amartüvshin, N. Tariany khar budaag (panicum miliaceum L.) Mongol orond nutagshuulsan tüükhees. in Syan’bi, Zhuzhany üeiin tüükh, soyolyn sudalgaa (ed. Ts Odbaatar And Ts) 152–158 (2018).
Wright J, Honeychurch W, Amartuvshin C. The Xiongnu settlements of Egiin Gol, Mongolia. Antiquity. 2009;83:372–387. doi: 10.1017/S0003598X00098495. DOI
Wright J, Honeychurch W, Amartuvshin C. Initial findings of the Baga Gazaryn Chuluu archaeological survey (2003–2006) Antiquity. 2007;81:313.
Davydova, A. Ivolginskii arkheologicheskii kompleks: Ivolginskoe gorodishche. Saint Petersburg: AziatlKA (1995).
Pousaz, N., et al. L’Habitat Xiongnu de Boroo Gol. Gollion (2013).
Alcock, S. E., John H D’Arms Collegiate Professor of Classical Archaeology and Classics and Arthur F Thurnau Professor Susan E Alcock, D’Altroy, T. N., Morrison, K. D. & Sinopoli, C. M. Empires: Perspectives from Archaeology and History. Cambridge: Cambridge University Press. (2001).
Chase-Dunn, C. A. T. D. H. Cross-World-System Comparisons: Similarities and Differences. in World-Systems and Civilizations (ed. Sanderson, S.) (1996).
Khazanov, A. M. & Wink, A. Nomads in the sedentary world. London: Routledge. (2001).
Grousset, R. The Empire of the Steppes: A History of Central Asia. (Rutgers University Press, 1970).
Yu, Y. Nomads and Han China. Expanding Empires: Cultural Interactions and Exchange in World Societies from Ancient to Early Modern Times. Wilmington, DE: A Scholarly Resource Inc 133–141 (2002).
Bocquet-Appel J-P. The Neolithic demographic transition, population pressure and cultural change. Comparative Civilizations Review. 2008;58:6.
Zhao Z. New Archaeobotanic Data for the Study of the Origins of Agriculture in China. Curr. Anthropol. 2011;52:S295–S306. doi: 10.1086/659308. DOI
Barton L, et al. Agricultural origins and the isotopic identity of domestication in northern China. Proc. Natl. Acad. Sci. USA. 2009;106:5523–5528. doi: 10.1073/pnas.0809960106. PubMed DOI PMC
Hosner D, Wagner M, Tarasov PE, Chen X, Leipe C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze. Age: An overview. The Holocene. 2016;26:1576–1593.
Boserup, E. Agricultural Growth and Population Change. In The World of Economics (eds. Eatwell, J., Milgate, M. & Newman, P.) p. 1–14 Palgrave Macmillan UK. (1991).
Spengler RN, Miller NF, Neef R, Tourtellotte PA, Chang C. Linking agriculture and exchange to social developments of the Central Asian Iron Age. Journal of Anthropological Archaeology. 2017;48:295–308. doi: 10.1016/j.jaa.2017.09.002. DOI
Boserup Ester. The Impact of Population Growth on Agricultural Output. The Quarterly Journal of Economics. 1975;89(2):257. doi: 10.2307/1884430. DOI
Kradin NN. Nomadism, Evolution and World-Systems: Pastoral Societies in Theories of Historical Development. Journal of World-Systems Research. 2002;8:368–388. doi: 10.5195/JWSR.2002.266. DOI
Johnson, J. A. & Hanks, B. Society, demography and community: reassessing Bronze Age Sintashta populations in the southern Urals, Russia (2100–1700 BC). in Beyond Elites: Alternatives to Hierarchical Systems in Modelling Social Formations vol. 215 355–367 Teil 2. Aus dem Institut für Archäologische Wissenschaften der Universität. (2012).
Hanks B. Archaeology of the Eurasian Steppes and Mongolia. Annu. Rev. Anthropol. 2010;39:469–486. doi: 10.1146/annurev.anthro.012809.105110. DOI
Hedges REM, Clement JG, Thomas CDL, O’Connell TC. Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology. 2007;133:808–816. doi: 10.1002/ajpa.20598. PubMed DOI
Hillson, S. Dental Anthropology. Cambridge: Cambridge University Press. (1996).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/ (2013).
Groß M. Modeling body height in prehistory using a spatio-temporal Bayesian errors-in variables model. AStA Adv. Stat. Anal. 2016;100:289–311. doi: 10.1007/s10182-015-0260-x. DOI
Rosenstock, E. et al. Human Stature in the Near East and Europe ca. 10 000 – 1000 BC: its spatio-temporal development in a Bayesian errors-in-variables model. Archaeol. Anthropol. Sci. (2019).
Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS One. 2014;9:e87436. doi: 10.1371/journal.pone.0087436. PubMed DOI PMC
Fernandes, R. et al. IsoMemo: a Big isotopic Data initiative for archaeology, ecology, and environmental & life sciences. IsoMemo, http://www.isomemo.com (2019).
Taylor, W. et al. Radiocarbon dating and cultural dynamics across the early pastoral transition in eastern Eurasia. PLoS One (2019). PubMed PMC
Brock F, Higham T, Ditchfield P, Ramsey CB. Current Pretreatment Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon Accelerator Unit (Orau) Radiocarbon. 2010;52:103–112. doi: 10.1017/S0033822200045069. DOI
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019).