• This record comes from PubMed

Stable isotope evidence for dietary diversification in the pre-Columbian Amazon

. 2020 Oct 06 ; 10 (1) : 16560. [epub] 20201006

Language English Country Great Britain, England Media electronic

Document type Historical Article, Journal Article, Research Support, Non-U.S. Gov't

Grant support
817911 European Research Council - International
273734 Marie Curie - United Kingdom

Links

PubMed 33024191
PubMed Central PMC7539003
DOI 10.1038/s41598-020-73540-z
PII: 10.1038/s41598-020-73540-z
Knihovny.cz E-resources

Archaeological research is radically transforming the view that the Amazon basin and surrounding areas witnessed limited societal development before European contact. Nevertheless, uncertainty remains on the nature of the subsistence systems and the role that aquatic resources, terrestrial mammalian game, and plants had in supporting population growth, geographic dispersal, cultural adaptations and political complexity during the later stages of the pre-Columbian era. This is exacerbated by the general paucity of archaeological human remains enabling individual dietary reconstructions. Here we use stable carbon and nitrogen isotope analysis of bone collagen to reconstruct the diets of human individuals from São Luís Island (Brazilian Amazon coast) dated between ca. 1800 and 1000 cal BP and associated with distinct ceramic traditions. We expanded our analysis to include previously published data from Maracá and Marajó Island, in the eastern Amazon. Quantitative estimates of the caloric contributions from food groups and their relative nutrients using a Bayesian Mixing Model revealed distinct subsistence strategies, consisting predominantly of plants and terrestrial mammals and variably complemented with aquatic resources. This study offers novel quantitative information on the extent distinct food categories of polyculture agroforestry systems fulfilled the caloric and protein requirements of Late Holocene pre-Columbian populations in the Amazon basin.

See more in PubMed

Clement CR, et al. The domestication of Amazonia before European conquest. Proc. Biol. Sci. 2015;282:20150813. PubMed PMC

Neves, E. G. Was agriculture a key productive activity in pre-colonial Amazonia? The stable productive basis for social equality in the Central Amazon. In Human-Environment Interactions: Current and Future Directions (eds. Brondízio, E. S. & Moran, E. F.) 371–388 (Springer, Netherlands, 2013).

McMichael CH, et al. Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. Biol. Sci. 2014;281:20132475. PubMed PMC

Levis C, et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science. 2017;355:925–931. doi: 10.1126/science.aal0157. PubMed DOI

McKey D, et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl. Acad. Sci. USA. 2010;107:7823–7828. doi: 10.1073/pnas.0908925107. PubMed DOI PMC

Watling J, et al. Impact of pre-Columbian ‘geoglyph’ builders on Amazonian forests. Proc. Natl. Acad. Sci. 2017;114:1868–1873. doi: 10.1073/pnas.1614359114. PubMed DOI PMC

Blatrix R, et al. The unique functioning of a pre-Columbian Amazonian floodplain fishery. Sci. Rep. 2018;8:5998. doi: 10.1038/s41598-018-24454-4. PubMed DOI PMC

Heckenberger M, Neves EG. Amazonian archaeology. Annu. Rev. Anthropol. 2009;38:251–266. doi: 10.1146/annurev-anthro-091908-164310. DOI

de Souza JG, et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 2019;3:1007–1017. doi: 10.1038/s41559-019-0924-0. PubMed DOI

Iriarte J, et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl. Acad. Sci. USA. 2012;109:6473–6478. doi: 10.1073/pnas.1201461109. PubMed DOI PMC

Schaan, D. P. The nonagricultural Chiefdoms of Marajó Island. In The Handbook of South American Archaeology (eds. Silverman, H. & Isbell, W. H.) 339–357 (Springer, New York, 2008).

Roosevelt AC. Moundbuilders of the Amazon: Geophysical Archaeology on Marajo Island, Brazil. San Diego: Academic Press; 1991.

Pugliese, F. A., Augusto Zimpel Neto, C. & Neves, E. G. What do Amazonian shellmounds tell us about the long-term indigenous history of South America? In Encyclopedia of Global Archaeology 1–25 (Springer, Berlin 2018).

van der Merwe NJ, Roosevelt AC, Vogel JC. Isotopic evidence for prehistoric subsistence change at Parmana Venezuela. Nature. 1981;292:536. doi: 10.1038/292536a0. DOI

Hermenegildo T, O’Connell TC, Guapindaia VLC, Neves EG. New evidence for subsistence strategies of late pre-colonial societies of the mouth of the Amazon based on carbon and nitrogen isotopic data. Quat. Int. 2017;448:139–149. doi: 10.1016/j.quaint.2017.03.003. DOI

Roosevelt A. Resource management in Amazonia before the conquest: Beyond ethnographic projection. Adv. Econ. Bot. 1989;7:30–62.

Roosevelt, A. C. The Lower Amazon: A Dynamic Human Habitat. In Imperfect Balance: Landscape Transformations in the Precolumbian Americas (ed. Lentz, D. L.) 455–491 (2000).

Prestes-Carneiro, G., Béarez, P., Bailon, S., Rapp Py-Daniel, A. & Neves, E. G. Subsistence fishery at Hatahara (750–1230 CE), a pre-Columbian central Amazonian village. J. Archaeol. Sci.: Rep.8, 454–462 (2016).

Erickson CL. An artificial landscape-scale fishery in the Bolivian Amazon. Nature. 2000;408:190–193. doi: 10.1038/35041555. PubMed DOI

Schaan, D. P. The Camutins chiefdom: rise and development of social complexity on Marajó Island, Brazilian Amazon. (University of Pittsburgh, 2004).

Garson AG. Comment upon the economic potential of fish utilization in riverine environments and potential archaeological biases. Am. Antiq. 1980;45:562–567. doi: 10.2307/279874. DOI

Prestes-Carneiro G, Béarez P, Shock MP, Prümers H, Jaimes Betancourt C. Pre-hispanic fishing practices in interfluvial Amazonia: Zooarchaeological evidence from managed landscapes on the Llanos de Mojos savanna. PLoS ONE. 2019;14:e0214638. doi: 10.1371/journal.pone.0214638. PubMed DOI PMC

Gross DR. Protein capture and cultural development in the amazon basin. Am. Anthropol. 1975;77:526–549. doi: 10.1525/aa.1975.77.3.02a00040. DOI

Lathrap, D. W. The ‘Hunting’ Economics of the Tropical Forest Zone of South America: An Attempt at Historical Perspective (1968).

Beckerman S. The abundance of protein in Amazonia: a reply to gross. Am. Anthropol. 1979;81:533–560. doi: 10.1525/aa.1979.81.3.02a00020. DOI

Gragson TL. Fishing the waters of Amazonia: native subsistence economies in a tropical rain forest. Am. Anthropol. 1992;94:428–440. doi: 10.1525/aa.1992.94.2.02a00100. DOI

Ambrose, S. H. & Norr, L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, In Prehistoric Human Bone - Archaeology at the Molecular Level 1–37 (Springer, Berlin 1993).

Jim S, Jones V, Ambrose SH, Evershed RP. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br. J. Nutr. 2006;95:1055–1062. doi: 10.1079/BJN20051685. PubMed DOI

Webb, E. C. et al. The influence of varying proportions of terrestrial and marine dietary protein on the stable carbon-isotope compositions of pig tissues from a controlled feeding experiment. STAR: Sci. Technol. Archaeol. Res.3, 36–52 (2017).

Colonese AC, et al. Long-term resilience of late holocene coastal subsistence system in Southeastern South america. PLoS ONE. 2014;9:e93854. doi: 10.1371/journal.pone.0093854. PubMed DOI PMC

Pezo-Lanfranco L, et al. Middle Holocene plant cultivation on the Atlantic Forest coast of Brazil? R. Soc. Open Sci. 2018;5:180432. doi: 10.1098/rsos.180432. PubMed DOI PMC

Tafuri MA, et al. Dietary resilience among hunter-gatherers of Tierra del Fuego: isotopic evidence in a diachronic perspective. PLoS ONE. 2017;12:e0175594. doi: 10.1371/journal.pone.0175594. PubMed DOI PMC

O’Leary MH. Carbon isotopes in photosynthesis. Bioscience. 1988;38:328–336. doi: 10.2307/1310735. DOI

Martinelli, L. A. et al. The use of carbon and nitrogen stable isotopes to track effects of land‐use changes in the Brazilian Amazon Region. In Terrestrial Ecology vol. 1, 301–318 (Elsevier, 2007).

Silva, M. H. L. et al. Fish assemblage structure in a port region of the Amazonic coast. Iheringia, Sér. Zool.108, (2018).

Schoeninger MJ, Deniro MJ. Carbon isotope ratios of bone apatite and animal diet reconstruction (reply) Nature. 1983;301:178. doi: 10.1038/301178a0. PubMed DOI

Garcia AM, Hoeinghaus DJ, Vieira JP, Winemiller KO. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuar. Coast. Shelf Sci. 2007;73:399–408. doi: 10.1016/j.ecss.2007.02.003. DOI

Giarrizzo T, Schwamborn R, Saint-Paul U. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuar. Coast. Shelf Sci. 2011;95:447–457. doi: 10.1016/j.ecss.2011.10.018. DOI

Oliveira, A. C. B., Soares, M. G. M., Antonio. Martinelli, L. & Zacarias. Moreira, M. Carbon sources of fish in an Amazonian floodplain lake. Aquat. Sci.68, 229–238 (2006).

Szpak P. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 2014;5:288. doi: 10.3389/fpls.2014.00288. PubMed DOI PMC

Fuller BT, Fuller JL, Harris DA, Hedges REM. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. Am. J. Phys. Anthropol. 2006;129:279–293. doi: 10.1002/ajpa.20249. PubMed DOI

Medina E, Martinelli LA, Barbosa E, Victoria RL. Natural abundance of 13C in tropical grasses from the INPA, Instituto Nacional de Pesquisas da Amazônia, herbarium. Braz. J. Bot. 1999;22:44–51. doi: 10.1590/S0100-84041999000100007. DOI

Schaan D. Long-term human induced impacts on Marajó Island landscapes Amazon Estuary. Diversity. 2010;2:182–206. doi: 10.3390/d2020182. DOI

Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. In Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls (eds. Martinelli, L. A. & Howarth, R. W.) 251–274 (Springer, The Netherlands, 2006).

Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE. 2014;9:e87436. doi: 10.1371/journal.pone.0087436. PubMed DOI PMC

Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics10, (2013).

Phillips DL, et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 2014;92:823–835. doi: 10.1139/cjz-2014-0127. DOI

Fernandes R. A simple(R) model to predict the source of dietary carbon in individual consumers. Archaeometry. 2016;58:500–512. doi: 10.1111/arcm.12193. DOI

Fausto C, Neves EG. Was there ever a Neolithic in the Neotropics? Plant familiarisation and biodiversity in the Amazon. Antiquity. 2018;92:1604–1618. doi: 10.15184/aqy.2018.157. DOI

Kistler L, et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science. 2018;362:1309–1313. doi: 10.1126/science.aav0207. PubMed DOI

Casey, M. M. & Post, David M. The problem of isotopic baseline: reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev.106, 131–148 (2011).

Rêgo JCL, Soares-Gomes A, da Silva FS. Loss of vegetation cover in a tropical island of the Amazon coastal zone (Maranhão Island, Brazil) Land Use Policy. 2018;71:593–601. doi: 10.1016/j.landusepol.2017.10.055. DOI

de Menezes MPM, Berger U, Mehlig U. Mangrove vegetation in Amazonia: a review of studies from the coast of Pará and Maranhão States, north Brazil. Acta Amazon. 2008;38:403–420. doi: 10.1590/S0044-59672008000300004. DOI

Bandeira, A. M., Chahud, A., Ferreira, I. C. P. & Pacheco, M. L. A. F. Mobilidade, subsistência e apropriação do ambiente: contribuições da zooarqueologia sobre o sambaqui do Bacanga, São Luís, Maranhão. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas11, 467–480 (2016).

Bandeira AM. Os sambaquis na Ilha de São Luís – MA: processo de formação, cultura material cerâmica e cronologia. Rev. Memorare. 2018;5:315–360. doi: 10.19177/memorare.v5e12018315-360. DOI

Bandeira AM. Os Tupis na Ilha de São Luís-Maranhão: Fontes Históricas e a Pesquisa Arqueológica. História Unicap. 2015;2:79–98.

D’Abbeville C. História da missão dos padres capuchinhos na Ilha do Maranhão e circunvizinhanças. Siciliano: São Paulo; 2002.

de D’Évreux Y. Viagem ao norte do Brasil feita nos anos de 1613 a 1614. Siciliano: São Paulo; 2002.

Cantanhêde, L. G. et al. Environmental perception of fishermen: use and conservation of fisheries resources. Biota Neotrop.18, (2018).

Maezumi SY, et al. New insights from pre-columbian land use and fire management in Amazonian dark earth forests. Front. Ecol. Evol. 2018;6:111. doi: 10.3389/fevo.2018.00111. DOI

Craig OE, et al. Stable isotope analysis of Late Upper Palaeolithic human and faunal remains from Grotta del Romito (Cosenza) Italy. J. Archaeol. Sci. 2010;37:2504–2512. doi: 10.1016/j.jas.2010.05.010. DOI

Brown TA, Nelson EE, Vogel SJ, Southon JR. Improved collagen extraction by modified longin method. Radiocarbon. 1988;30:171–177. doi: 10.1017/S0033822200044118. DOI

Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011;25:2538–2560. doi: 10.1002/rcm.5129. PubMed DOI

Kragten, J. Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst119, 2161–2165 (1994).

DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317:806–809. doi: 10.1038/317806a0. DOI

Van Klinken GJ. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 1999;26:687–695. doi: 10.1006/jasc.1998.0385. DOI

Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 1990;17:431–451. doi: 10.1016/0305-4403(90)90007-R. DOI

Szpak P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 2011;38:3358–3372. doi: 10.1016/j.jas.2011.07.022. DOI

Hammer Ø, Harper D, Ryan PD. PAST: paleontological statistics software package for education and data analysis palaeontol. Electronica. 2001;4:1–9.

Fernandes R, Grootes P, Nadeau M-J, Nehlich O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): the case study of Ostorf (Germany) Am. J. Phys. Anthropol. 2015 doi: 10.1002/ajpa.22788. PubMed DOI

Hellevang H, Aagaard P. Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model. Sci. Rep. 2015;5:17352. doi: 10.1038/srep17352. PubMed DOI PMC

van der Merwe NJ, Medina E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 1991;18:249–259. doi: 10.1016/0305-4403(91)90064-V. DOI

Watson LC, Stewart DJ, Teece MA. Trophic ecology of Arapaima in Guyana: giant omnivores in Neotropical floodplains. Neotrop. Ichthyol. 2013;11:341–349. doi: 10.1590/S1679-62252013000200012. DOI

Fernandes R, Nadeau M-J, Grootes PM. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 2012;4:291–301. doi: 10.1007/s12520-012-0102-7. DOI

Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2016.

Mcgill R, Tukey JW, Larsen WA. Variations of box plots. Am. Stat. 1978;32:12–16.

Maezumi SY, et al. The legacy of 4500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants. 2018;4:540–547. doi: 10.1038/s41477-018-0205-y. PubMed DOI PMC

Rostain S. Where the Amazon River meets the Orinoco River: Archaeology of the Guianas. Amazônica – Rev. de Antropol. 2012;4:10–28. doi: 10.18542/amazonica.v4i1.880. DOI

Reimer PJ, et al. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon. 2013;55:1869–1887. doi: 10.2458/azu_js_rc.55.16947. DOI

Hogg AG, et al. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon. 2013;55:1889–1903. doi: 10.2458/azu_js_rc.55.16783. DOI

Ramsey CB. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI

Reimer PJ, Reimer RW. A marine reservoir correction database and on-line interface. Radiocarbon. 2001;43:461–463. doi: 10.1017/S0033822200038339. DOI

Cubas M, et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 2020;11:2036. doi: 10.1038/s41467-020-15907-4. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...