Stable isotope evidence for dietary diversification in the pre-Columbian Amazon
Language English Country Great Britain, England Media electronic
Document type Historical Article, Journal Article, Research Support, Non-U.S. Gov't
Grant support
817911
European Research Council - International
273734
Marie Curie - United Kingdom
PubMed
33024191
PubMed Central
PMC7539003
DOI
10.1038/s41598-020-73540-z
PII: 10.1038/s41598-020-73540-z
Knihovny.cz E-resources
- MeSH
- Archaeology methods MeSH
- Bayes Theorem MeSH
- History, 15th Century MeSH
- History, 16th Century MeSH
- History, 17th Century MeSH
- History, Ancient MeSH
- History, Medieval MeSH
- Diet history MeSH
- Nitrogen Isotopes analysis MeSH
- Carbon Isotopes analysis MeSH
- Collagen chemistry MeSH
- Bone and Bones chemistry MeSH
- Humans MeSH
- Eating MeSH
- Plants MeSH
- Mammals MeSH
- Feeding Behavior MeSH
- Body Remains MeSH
- Animals MeSH
- Check Tag
- History, 15th Century MeSH
- History, 16th Century MeSH
- History, 17th Century MeSH
- History, Ancient MeSH
- History, Medieval MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Brazil MeSH
- Names of Substances
- Nitrogen Isotopes MeSH
- Carbon Isotopes MeSH
- Collagen MeSH
Archaeological research is radically transforming the view that the Amazon basin and surrounding areas witnessed limited societal development before European contact. Nevertheless, uncertainty remains on the nature of the subsistence systems and the role that aquatic resources, terrestrial mammalian game, and plants had in supporting population growth, geographic dispersal, cultural adaptations and political complexity during the later stages of the pre-Columbian era. This is exacerbated by the general paucity of archaeological human remains enabling individual dietary reconstructions. Here we use stable carbon and nitrogen isotope analysis of bone collagen to reconstruct the diets of human individuals from São Luís Island (Brazilian Amazon coast) dated between ca. 1800 and 1000 cal BP and associated with distinct ceramic traditions. We expanded our analysis to include previously published data from Maracá and Marajó Island, in the eastern Amazon. Quantitative estimates of the caloric contributions from food groups and their relative nutrients using a Bayesian Mixing Model revealed distinct subsistence strategies, consisting predominantly of plants and terrestrial mammals and variably complemented with aquatic resources. This study offers novel quantitative information on the extent distinct food categories of polyculture agroforestry systems fulfilled the caloric and protein requirements of Late Holocene pre-Columbian populations in the Amazon basin.
BioArCh Department of Archaeology University of York York YO10 5DD UK
Department of Archaeology Max Planck Institute for the Science of Human History 07745 Jena Germany
Faculty of Arts Masaryk University Arne Nováka 1 60200 Brno střed Czech Republic
School of Archaeology University of Oxford 1 South Parks Road Oxford OX1 3TG UK
See more in PubMed
Clement CR, et al. The domestication of Amazonia before European conquest. Proc. Biol. Sci. 2015;282:20150813. PubMed PMC
Neves, E. G. Was agriculture a key productive activity in pre-colonial Amazonia? The stable productive basis for social equality in the Central Amazon. In Human-Environment Interactions: Current and Future Directions (eds. Brondízio, E. S. & Moran, E. F.) 371–388 (Springer, Netherlands, 2013).
McMichael CH, et al. Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. Biol. Sci. 2014;281:20132475. PubMed PMC
Levis C, et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science. 2017;355:925–931. doi: 10.1126/science.aal0157. PubMed DOI
McKey D, et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl. Acad. Sci. USA. 2010;107:7823–7828. doi: 10.1073/pnas.0908925107. PubMed DOI PMC
Watling J, et al. Impact of pre-Columbian ‘geoglyph’ builders on Amazonian forests. Proc. Natl. Acad. Sci. 2017;114:1868–1873. doi: 10.1073/pnas.1614359114. PubMed DOI PMC
Blatrix R, et al. The unique functioning of a pre-Columbian Amazonian floodplain fishery. Sci. Rep. 2018;8:5998. doi: 10.1038/s41598-018-24454-4. PubMed DOI PMC
Heckenberger M, Neves EG. Amazonian archaeology. Annu. Rev. Anthropol. 2009;38:251–266. doi: 10.1146/annurev-anthro-091908-164310. DOI
de Souza JG, et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 2019;3:1007–1017. doi: 10.1038/s41559-019-0924-0. PubMed DOI
Iriarte J, et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl. Acad. Sci. USA. 2012;109:6473–6478. doi: 10.1073/pnas.1201461109. PubMed DOI PMC
Schaan, D. P. The nonagricultural Chiefdoms of Marajó Island. In The Handbook of South American Archaeology (eds. Silverman, H. & Isbell, W. H.) 339–357 (Springer, New York, 2008).
Roosevelt AC. Moundbuilders of the Amazon: Geophysical Archaeology on Marajo Island, Brazil. San Diego: Academic Press; 1991.
Pugliese, F. A., Augusto Zimpel Neto, C. & Neves, E. G. What do Amazonian shellmounds tell us about the long-term indigenous history of South America? In Encyclopedia of Global Archaeology 1–25 (Springer, Berlin 2018).
van der Merwe NJ, Roosevelt AC, Vogel JC. Isotopic evidence for prehistoric subsistence change at Parmana Venezuela. Nature. 1981;292:536. doi: 10.1038/292536a0. DOI
Hermenegildo T, O’Connell TC, Guapindaia VLC, Neves EG. New evidence for subsistence strategies of late pre-colonial societies of the mouth of the Amazon based on carbon and nitrogen isotopic data. Quat. Int. 2017;448:139–149. doi: 10.1016/j.quaint.2017.03.003. DOI
Roosevelt A. Resource management in Amazonia before the conquest: Beyond ethnographic projection. Adv. Econ. Bot. 1989;7:30–62.
Roosevelt, A. C. The Lower Amazon: A Dynamic Human Habitat. In Imperfect Balance: Landscape Transformations in the Precolumbian Americas (ed. Lentz, D. L.) 455–491 (2000).
Prestes-Carneiro, G., Béarez, P., Bailon, S., Rapp Py-Daniel, A. & Neves, E. G. Subsistence fishery at Hatahara (750–1230 CE), a pre-Columbian central Amazonian village. J. Archaeol. Sci.: Rep.8, 454–462 (2016).
Erickson CL. An artificial landscape-scale fishery in the Bolivian Amazon. Nature. 2000;408:190–193. doi: 10.1038/35041555. PubMed DOI
Schaan, D. P. The Camutins chiefdom: rise and development of social complexity on Marajó Island, Brazilian Amazon. (University of Pittsburgh, 2004).
Garson AG. Comment upon the economic potential of fish utilization in riverine environments and potential archaeological biases. Am. Antiq. 1980;45:562–567. doi: 10.2307/279874. DOI
Prestes-Carneiro G, Béarez P, Shock MP, Prümers H, Jaimes Betancourt C. Pre-hispanic fishing practices in interfluvial Amazonia: Zooarchaeological evidence from managed landscapes on the Llanos de Mojos savanna. PLoS ONE. 2019;14:e0214638. doi: 10.1371/journal.pone.0214638. PubMed DOI PMC
Gross DR. Protein capture and cultural development in the amazon basin. Am. Anthropol. 1975;77:526–549. doi: 10.1525/aa.1975.77.3.02a00040. DOI
Lathrap, D. W. The ‘Hunting’ Economics of the Tropical Forest Zone of South America: An Attempt at Historical Perspective (1968).
Beckerman S. The abundance of protein in Amazonia: a reply to gross. Am. Anthropol. 1979;81:533–560. doi: 10.1525/aa.1979.81.3.02a00020. DOI
Gragson TL. Fishing the waters of Amazonia: native subsistence economies in a tropical rain forest. Am. Anthropol. 1992;94:428–440. doi: 10.1525/aa.1992.94.2.02a00100. DOI
Ambrose, S. H. & Norr, L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, In Prehistoric Human Bone - Archaeology at the Molecular Level 1–37 (Springer, Berlin 1993).
Jim S, Jones V, Ambrose SH, Evershed RP. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br. J. Nutr. 2006;95:1055–1062. doi: 10.1079/BJN20051685. PubMed DOI
Webb, E. C. et al. The influence of varying proportions of terrestrial and marine dietary protein on the stable carbon-isotope compositions of pig tissues from a controlled feeding experiment. STAR: Sci. Technol. Archaeol. Res.3, 36–52 (2017).
Colonese AC, et al. Long-term resilience of late holocene coastal subsistence system in Southeastern South america. PLoS ONE. 2014;9:e93854. doi: 10.1371/journal.pone.0093854. PubMed DOI PMC
Pezo-Lanfranco L, et al. Middle Holocene plant cultivation on the Atlantic Forest coast of Brazil? R. Soc. Open Sci. 2018;5:180432. doi: 10.1098/rsos.180432. PubMed DOI PMC
Tafuri MA, et al. Dietary resilience among hunter-gatherers of Tierra del Fuego: isotopic evidence in a diachronic perspective. PLoS ONE. 2017;12:e0175594. doi: 10.1371/journal.pone.0175594. PubMed DOI PMC
O’Leary MH. Carbon isotopes in photosynthesis. Bioscience. 1988;38:328–336. doi: 10.2307/1310735. DOI
Martinelli, L. A. et al. The use of carbon and nitrogen stable isotopes to track effects of land‐use changes in the Brazilian Amazon Region. In Terrestrial Ecology vol. 1, 301–318 (Elsevier, 2007).
Silva, M. H. L. et al. Fish assemblage structure in a port region of the Amazonic coast. Iheringia, Sér. Zool.108, (2018).
Schoeninger MJ, Deniro MJ. Carbon isotope ratios of bone apatite and animal diet reconstruction (reply) Nature. 1983;301:178. doi: 10.1038/301178a0. PubMed DOI
Garcia AM, Hoeinghaus DJ, Vieira JP, Winemiller KO. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuar. Coast. Shelf Sci. 2007;73:399–408. doi: 10.1016/j.ecss.2007.02.003. DOI
Giarrizzo T, Schwamborn R, Saint-Paul U. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuar. Coast. Shelf Sci. 2011;95:447–457. doi: 10.1016/j.ecss.2011.10.018. DOI
Oliveira, A. C. B., Soares, M. G. M., Antonio. Martinelli, L. & Zacarias. Moreira, M. Carbon sources of fish in an Amazonian floodplain lake. Aquat. Sci.68, 229–238 (2006).
Szpak P. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 2014;5:288. doi: 10.3389/fpls.2014.00288. PubMed DOI PMC
Fuller BT, Fuller JL, Harris DA, Hedges REM. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. Am. J. Phys. Anthropol. 2006;129:279–293. doi: 10.1002/ajpa.20249. PubMed DOI
Medina E, Martinelli LA, Barbosa E, Victoria RL. Natural abundance of 13C in tropical grasses from the INPA, Instituto Nacional de Pesquisas da Amazônia, herbarium. Braz. J. Bot. 1999;22:44–51. doi: 10.1590/S0100-84041999000100007. DOI
Schaan D. Long-term human induced impacts on Marajó Island landscapes Amazon Estuary. Diversity. 2010;2:182–206. doi: 10.3390/d2020182. DOI
Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. In Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls (eds. Martinelli, L. A. & Howarth, R. W.) 251–274 (Springer, The Netherlands, 2006).
Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE. 2014;9:e87436. doi: 10.1371/journal.pone.0087436. PubMed DOI PMC
Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics10, (2013).
Phillips DL, et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 2014;92:823–835. doi: 10.1139/cjz-2014-0127. DOI
Fernandes R. A simple(R) model to predict the source of dietary carbon in individual consumers. Archaeometry. 2016;58:500–512. doi: 10.1111/arcm.12193. DOI
Fausto C, Neves EG. Was there ever a Neolithic in the Neotropics? Plant familiarisation and biodiversity in the Amazon. Antiquity. 2018;92:1604–1618. doi: 10.15184/aqy.2018.157. DOI
Kistler L, et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science. 2018;362:1309–1313. doi: 10.1126/science.aav0207. PubMed DOI
Casey, M. M. & Post, David M. The problem of isotopic baseline: reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev.106, 131–148 (2011).
Rêgo JCL, Soares-Gomes A, da Silva FS. Loss of vegetation cover in a tropical island of the Amazon coastal zone (Maranhão Island, Brazil) Land Use Policy. 2018;71:593–601. doi: 10.1016/j.landusepol.2017.10.055. DOI
de Menezes MPM, Berger U, Mehlig U. Mangrove vegetation in Amazonia: a review of studies from the coast of Pará and Maranhão States, north Brazil. Acta Amazon. 2008;38:403–420. doi: 10.1590/S0044-59672008000300004. DOI
Bandeira, A. M., Chahud, A., Ferreira, I. C. P. & Pacheco, M. L. A. F. Mobilidade, subsistência e apropriação do ambiente: contribuições da zooarqueologia sobre o sambaqui do Bacanga, São Luís, Maranhão. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas11, 467–480 (2016).
Bandeira AM. Os sambaquis na Ilha de São Luís – MA: processo de formação, cultura material cerâmica e cronologia. Rev. Memorare. 2018;5:315–360. doi: 10.19177/memorare.v5e12018315-360. DOI
Bandeira AM. Os Tupis na Ilha de São Luís-Maranhão: Fontes Históricas e a Pesquisa Arqueológica. História Unicap. 2015;2:79–98.
D’Abbeville C. História da missão dos padres capuchinhos na Ilha do Maranhão e circunvizinhanças. Siciliano: São Paulo; 2002.
de D’Évreux Y. Viagem ao norte do Brasil feita nos anos de 1613 a 1614. Siciliano: São Paulo; 2002.
Cantanhêde, L. G. et al. Environmental perception of fishermen: use and conservation of fisheries resources. Biota Neotrop.18, (2018).
Maezumi SY, et al. New insights from pre-columbian land use and fire management in Amazonian dark earth forests. Front. Ecol. Evol. 2018;6:111. doi: 10.3389/fevo.2018.00111. DOI
Craig OE, et al. Stable isotope analysis of Late Upper Palaeolithic human and faunal remains from Grotta del Romito (Cosenza) Italy. J. Archaeol. Sci. 2010;37:2504–2512. doi: 10.1016/j.jas.2010.05.010. DOI
Brown TA, Nelson EE, Vogel SJ, Southon JR. Improved collagen extraction by modified longin method. Radiocarbon. 1988;30:171–177. doi: 10.1017/S0033822200044118. DOI
Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011;25:2538–2560. doi: 10.1002/rcm.5129. PubMed DOI
Kragten, J. Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst119, 2161–2165 (1994).
DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317:806–809. doi: 10.1038/317806a0. DOI
Van Klinken GJ. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 1999;26:687–695. doi: 10.1006/jasc.1998.0385. DOI
Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 1990;17:431–451. doi: 10.1016/0305-4403(90)90007-R. DOI
Szpak P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 2011;38:3358–3372. doi: 10.1016/j.jas.2011.07.022. DOI
Hammer Ø, Harper D, Ryan PD. PAST: paleontological statistics software package for education and data analysis palaeontol. Electronica. 2001;4:1–9.
Fernandes R, Grootes P, Nadeau M-J, Nehlich O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): the case study of Ostorf (Germany) Am. J. Phys. Anthropol. 2015 doi: 10.1002/ajpa.22788. PubMed DOI
Hellevang H, Aagaard P. Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model. Sci. Rep. 2015;5:17352. doi: 10.1038/srep17352. PubMed DOI PMC
van der Merwe NJ, Medina E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 1991;18:249–259. doi: 10.1016/0305-4403(91)90064-V. DOI
Watson LC, Stewart DJ, Teece MA. Trophic ecology of Arapaima in Guyana: giant omnivores in Neotropical floodplains. Neotrop. Ichthyol. 2013;11:341–349. doi: 10.1590/S1679-62252013000200012. DOI
Fernandes R, Nadeau M-J, Grootes PM. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 2012;4:291–301. doi: 10.1007/s12520-012-0102-7. DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2016.
Mcgill R, Tukey JW, Larsen WA. Variations of box plots. Am. Stat. 1978;32:12–16.
Maezumi SY, et al. The legacy of 4500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants. 2018;4:540–547. doi: 10.1038/s41477-018-0205-y. PubMed DOI PMC
Rostain S. Where the Amazon River meets the Orinoco River: Archaeology of the Guianas. Amazônica – Rev. de Antropol. 2012;4:10–28. doi: 10.18542/amazonica.v4i1.880. DOI
Reimer PJ, et al. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon. 2013;55:1869–1887. doi: 10.2458/azu_js_rc.55.16947. DOI
Hogg AG, et al. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon. 2013;55:1889–1903. doi: 10.2458/azu_js_rc.55.16783. DOI
Ramsey CB. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI
Reimer PJ, Reimer RW. A marine reservoir correction database and on-line interface. Radiocarbon. 2001;43:461–463. doi: 10.1017/S0033822200038339. DOI
Cubas M, et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 2020;11:2036. doi: 10.1038/s41467-020-15907-4. PubMed DOI PMC