The Effect of Osteoblast Isolation Methods from Adult Rats on Osteoclastogenesis in Co-Cultures

. 2022 Jul 17 ; 23 (14) : . [epub] 20220717

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35887222

Grantová podpora
18-09306S Czech Science Foundation

Co-cultures of osteoblasts and osteoclasts are on the rise because they enable a more complex study. Diseases such as osteoporosis are related to a higher age. Thus, cell isolation from adult individuals is necessary. Osteoblasts can be isolated from the rat femur by three methods: explant culture, explant culture with enzymatic pre-treatment, or enzymatic treatment. The isolation methods yield different populations of osteoblasts which, in a co-culture with peripheral blood mononuclear cells, might result in differences in osteoclastogenesis. Therefore, we examined the differences in osteogenic markers, cell proliferation, and the metabolic activity of isolated osteoblast-like cells in a growth and differentiation medium. We then evaluated the effect of the isolated populations of osteoblast-like cells on osteoclastogenesis in a subsequent co-culture by evaluating osteoclast markers, counting formed osteoclast-like cells, and analyzing their area and number of nuclei. Co-cultures were performed in the presence or absence of osteoclastogenic growth factors, M-CSF and RANKL. It was discovered that enzymatic isolation is not feasible in adult rats, but explant culture and explant culture with enzymatic pre-treatment were both successful. Explant culture with enzymatic pre-treatment yielded cells with a higher proliferation than explant culture in a growth medium. The differentiation medium reduced differences in proliferation during the culture. Some differences in metabolic activity and ALP activity were also found between the osteoblast-like cells isolated by explant culture or by explant culture with enzymatic pre-treatment, but only on some days of cultivation. According to microscopy, the presence of exogenous growth factors supporting osteoclastogenesis in co-cultures was necessary for the formation of osteoclast-like cells. In this case, the formation of a higher number of osteoclast-like cells with a larger area was observed in the co-culture with osteoblast-like cells isolated by explant culture compared to the explant culture with enzymatic pre-treatment. Apart from this observation, no differences in osteoclast markers were noted between the co-cultures with osteoblast-like cells isolated by explant culture and the explant culture with enzymatic pre-treatment. The TRAP and CA II activity was higher in the co-cultures with exogenous growth than that in the co-cultures without exogenous growth factors on day 7, but the opposite was true on day 14. To conclude, explant culture and explant culture with enzymatic pre-treatment are both suitable methods to yield osteoblast-like cells from adult rats capable of promoting osteoclastogenesis in a direct co-culture with peripheral blood mononuclear cells. Explant culture with enzymatic pre-treatment yielded cells with a higher proliferation. The explant culture yielded osteoblast-like cells which induced the formation of a higher number of osteoclast-like cells with a larger area compared to the explant culture with enzymatic pre-treatment when cultured with exogenous M-CSF and RANKL.

Zobrazit více v PubMed

Greiner S., Kadow-Romacker A., Schmidmaier G., Wildemann B. Cocultures of osteoblasts and osteoclasts are influenced by local application of zoledronic acid incorporated in a poly(D,L-lactide) implant coating. J. Biomed. Mater. Res. Part A. 2009;91:288–295. doi: 10.1002/jbm.a.32245. PubMed DOI

Jones G.L., Motta A., Marshall M.J., El Haj A.J., Cartmell S.H. Osteoblast: Osteoclast co-cultures on silk fibroin, chitosan and PLLA films. Biomaterials. 2009;30:5376–5384. doi: 10.1016/j.biomaterials.2009.07.028. PubMed DOI

Kaji H., Sugimoto T., Kanatani M., Fukase M., Kumegawa M., Chihara K. Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: Role of cAMP-dependent protein kinase. J. Bone Miner. Res. 1996;11:62–71. doi: 10.1002/jbmr.5650110110. PubMed DOI

Lee S.-K., Kalinowski J., Jastrzebski S., Lorenzo J.A. 1,25 (OH)2 Vitamin D3-Stimulated Osteoclast Formation in Spleen-Osteoblast Cocultures Is Mediated in Part by Enhanced IL-1α and Receptor Activator of NF-κB Ligand Production in Osteoblasts. J. Immunol. 2002;169:2374–2380. doi: 10.4049/jimmunol.169.5.2374. PubMed DOI

Maria S., Swanson M.H., Enderby L.T., D’Amico F., Enderby B., Samsonraj R.M., Dudakovic A., van Wijnen A.J., Witt-Enderby P.A. Melatonin-micronutrients Osteopenia Treatment Study (MOTS): A translational study assessing melatonin, strontium (citrate), vitamin D3 and vitamin K2 (MK7) on bone density, bone marker turnover and health related quality of life in postmenopausal osteopenic women following a one-year double-blind RCT and on osteoblast-osteoclast co-cultures. Aging. 2017;9:256–285. doi: 10.18632/aging.101158. PubMed DOI PMC

Pagani S., Torricelli P., Veronesi F., Salamanna F., Cepollaro S., Fini M. An advanced tri-culture model to evaluate the dynamic interplay among osteoblasts, osteoclasts, and endothelial cells. J. Cell. Physiol. 2018;233:291–301. doi: 10.1002/jcp.25875. PubMed DOI

Wang L., Wu S., Cao G., Fan Y., Dunne N., Li X. Biomechanical studies on biomaterial degradation and co-cultured cells: Mechanisms, potential applications, challenges and prospects. J. Mater. Chem. B. 2019;7:7439–7459. doi: 10.1039/C9TB01539F. PubMed DOI

Owen R., Reilly G.C. In vitro Models of Bone Remodelling and Associated Disorders. Front. Bioeng. Biotechnol. 2018;6:134. doi: 10.3389/fbioe.2018.00134. PubMed DOI PMC

Bernhardt A., Österreich V., Gelinsky M. Three-Dimensional Co-culture of Primary Human Osteocytes and Mature Human Osteoclasts in Collagen Gels. Tissue Eng. Part A. 2020;26:647–655. doi: 10.1089/ten.tea.2019.0085. PubMed DOI

Bernhardt A., Thieme S., Domaschke H., Springer A., Rösen-Wolff A., Gelinsky M. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen—Towards an in vitro model for bone remodeling. J. Biomed. Mater. Res. Part A. 2010;95:848–856. doi: 10.1002/jbm.a.32856. PubMed DOI

Hiura K., Sumitani K., Kawata T., Higashino K., Okawa M., Sato T., Hakeda Y., Kumegawa M. Mouse Osteoblastic Cells (MC3T3-E1) at Different Stages of Differentiation Have Opposite Effects on Osteoclastic Cell Formation. Endocrinology. 1991;128:1630–1637. doi: 10.1210/endo-128-3-1630. PubMed DOI

Kim C.H., You L., Yellowley C.E., Jacobs C.R. Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone. 2006;39:1043–1047. doi: 10.1016/j.bone.2006.05.017. PubMed DOI

Mbalaviele G., Jaiswal N., Meng A., Cheng L., Van Den Bos C., Thiede M. Human Mesenchymal Stem Cells Promote Human Osteoclast Differentiation from CD34+ Bone Marrow Hematopoietic Progenitors. Endocrinology. 1999;140:3736–3743. doi: 10.1210/endo.140.8.6880. PubMed DOI

Middleton K., Al-Dujaili S., Mei X., Günther A., You L. Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation. J. Biomech. 2017;59:35–42. doi: 10.1016/j.jbiomech.2017.05.012. PubMed DOI

Zehnder T., Boccaccini A.R., Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix. Biofabrication. 2017;9:025016. doi: 10.1088/1758-5090/aa64ec. PubMed DOI

Nakagawa K., Abukawa H., Shin M.Y., Terai H., Troulis M.J., Vacanti J.P. Osteoclastogenesis on Tissue-Engineered Bone. Tissue Eng. 2004;10:93–100. doi: 10.1089/107632704322791736. PubMed DOI

Schulze S., Wehrum D., Dieter P., Hempel U. A supplement-free osteoclast–osteoblast co-culture for pre-clinical application. J. Cell. Physiol. 2018;233:4391–4400. doi: 10.1002/jcp.26076. PubMed DOI

Cao J.J., Wronski T.J., Iwaniec U., Phleger L., Kurimoto P., Boudignon B., Halloran B.P. Aging Increases Stromal/Osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse. J. Bone Miner. Res. 2005;20:1659–1668. doi: 10.1359/JBMR.050503. PubMed DOI

Tortelli F., Pujic N., Liu Y., Laroche N., Vico L., Cancedda R. Osteoblast and Osteoclast Differentiation in an In Vitro Three-Dimensional Model of Bone. Tissue Eng. Part A. 2009;15:2373–2383. doi: 10.1089/ten.tea.2008.0501. PubMed DOI

Chen X., Wang Z., Duan N., Zhu G., Schwarz E.M., Xie C. Osteoblast-Osteoclast Interactions. Connect. Tissue Res. 2018;59:99. doi: 10.1080/03008207.2017.1290085. PubMed DOI PMC

Kuftinec M.M., Miller S.A. Bone growth in the neonatal rat. II. Biochemical aspects of bone mineral incorporation. Calcif. Tissue Res. 1975;17 doi: 10.1007/BF02546681. PubMed DOI

Declercq H., Van den Vreken N., De Maeyer E., Verbeeck R., Schacht E., De Ridder L., Cornelissen M. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: Comparison of different isolation techniques and source. Biomaterials. 2004;25:757–768. doi: 10.1016/S0142-9612(03)00580-5. PubMed DOI

Mills B.G., Singer F.R., Weiner L.P., Holst P.A. Long-term culture of cells from bone affected by Paget’s disease. Calcif. Tissue Int. 1979;29:79–87. doi: 10.1007/BF02408061. PubMed DOI

Jonsson K.B., Frost A., Nilsson O., Ljunghall S., Ljunggren O. Three isolation techniques for primary culture of human osteoblast-like cells: A comparison. Acta Orthop. Scand. 1999;70:365–373. doi: 10.3109/17453679908997826. PubMed DOI

Orriss I.R., Hajjawi M.O.R., Huesa C., Macrae V.E., Arnett T.R. Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats. Int. J. Mol. Med. 2014;34:1201–1208. doi: 10.3892/ijmm.2014.1926. PubMed DOI PMC

Taylor S.E.B., Shah M., Orriss I.R. Generation of rodent and human osteoblasts. Bonekey Rep. 2014;3:1–10. doi: 10.1038/bonekey.2014.80. PubMed DOI PMC

Gerber I., ap Gwynn I. Influence of cell isolation, cell culture density, and cell nutrition on differentiation of rat calvarial osteoblast-like cells in vitro. Eur. Cell. Mater. 2001;2:10–20. doi: 10.22203/eCM.v002a02. PubMed DOI

Robey P.G. Collagenase-Treated Trabecular Bone Fragments: A Reproducible Source of Cells in the Osteoblastic Lineage. Calcif. Tissue Int. 1995;56:S11–S12. doi: 10.1007/BF03354641. DOI

Zhao S., Kato Y., Zhang Y., Harris S., Ahuja S.S., Bonewald L.F. MLO-Y4 Osteocyte-Like Cells Support Osteoclast Formation and Activation. J. Bone Miner. Res. 2002;17:2068–2079. doi: 10.1359/jbmr.2002.17.11.2068. PubMed DOI

Costa-Rodrigues J., Teixeira C.A., Sampaio P., Fernandes M.H. Characterisation of the osteoclastogenic potential of human osteoblastic and fibroblastic conditioned media. J. Cell. Biochem. 2010;109:205–216. doi: 10.1002/jcb.22398. PubMed DOI

West M.D., Sternberg H., Labat I., Janus J., Chapman K.B., Malik N.N., de Grey A.D., Larocca D. Toward a unified theory of aging and regeneration. Regen. Med. 2019;14:867–886. doi: 10.2217/rme-2019-0062. PubMed DOI

Morgan A.J., Bellamy D. Changes in the Mineral Composition of Rat Femur during Neonatal Growth in Relation to Calcification of Aorta. Neonatology. 1974;25:352–364. doi: 10.1159/000240708. PubMed DOI

Harada S.-I., Matsumoto T., Ogata E. Role of ascorbic acid in the regulation of proliferation in osteoblast-like MC3T3-El cells. J. Bone Miner. Res. 1991;6:903–908. doi: 10.1002/jbmr.5650060902. PubMed DOI

Takamizawa S., Maehata Y., Imai K., Senoo H., Sato S., Hata R.-I. Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol. Int. 2004;28:255–265. doi: 10.1016/j.cellbi.2004.01.010. PubMed DOI

Burger M.G., Steinitz A., Geurts J., Pippenger B.E., Schaefer D.J., Martin I., Barbero A., Pelttari K. Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts. Int. J. Mol. Sci. 2017;18:2517. doi: 10.3390/ijms18122517. PubMed DOI PMC

Quarles L.D., Yohay D.A., Lever L.W., Caton R., Wenstrup R.J. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. J. Bone Miner. Res. 1992;7:683–692. doi: 10.1002/jbmr.5650070613. PubMed DOI

Wang D., Christensen K., Chawla K., Xiao G., Krebsbach P.H., Franceschi R.T. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 1999;14:893–903. doi: 10.1359/jbmr.1999.14.6.893. PubMed DOI

Yan X.-Z., Yang W., Yang F., Kersten-Niessen M., Jansen J.A., Both S.K. Effects of Continuous Passaging on Mineralization of MC3T3-E1 Cells with Improved Osteogenic Culture Protocol. Tissue Eng. Part C Methods. 2014;20:198–204. doi: 10.1089/ten.tec.2012.0412. PubMed DOI

Suzuki Y., Tsutsumi Y., Nakagawa M., Suzuki H., Matsushita K., Beppu M., Aoki H., Ichikawa Y., Mizushima Y. Osteoclast-like cells in an in vitro model of bone destruction by rheumatoid synovium. Rheumatology. 2001;40:673–682. doi: 10.1093/rheumatology/40.6.673. PubMed DOI

Soysa N.S., Alles N. Positive and negative regulators of osteoclast apoptosis. Bone Rep. 2019;11:100225. doi: 10.1016/j.bonr.2019.100225. PubMed DOI PMC

Akchurin T., Aissiou T., Kemeny N., Prosk E., Nigam N., Komarova S.V. Complex Dynamics of Osteoclast Formation and Death in Long-Term Cultures. PLoS ONE. 2008;3:e2104. doi: 10.1371/journal.pone.0002104. PubMed DOI PMC

Fuller K., Owens J.M., Jagger C.J., Wilson A., Moss R., Chambers T.J. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J. Exp. Med. 1993;178:1733–1744. doi: 10.1084/jem.178.5.1733. PubMed DOI PMC

Miyazaki T., Katagiri H., Kanegae Y., Takayanagi H., Sawada Y., Yamamoto A., Pando M.P., Asano T., Verma I.M., Oda H., et al. Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J. Cell Biol. 2000;148:333–342. doi: 10.1083/jcb.148.2.333. PubMed DOI PMC

Snipes R.G., Lam K.W., Dodd R.C., Gray T.K., Cohen M.S. Acid phosphatase activity in mononuclear phagocytes and the U937 cell line: Monocyte-derived macrophages express tartrate-resistant acid phosphatase. Blood. 1986;67:729–734. doi: 10.1182/blood.V67.3.729.729. PubMed DOI

Troy K., Cuttner J., Reilly M., Grabowski G., Desnick R. Tartrate-resistant acid phosphatase staining of monocytes in Gaucher disease. Am. J. Hematol. 1985;19:237–244. doi: 10.1002/ajh.2830190305. PubMed DOI

Sundquist K.T., Leppilampi M., Järvelin K., Kumpulainen T., Väänänen H.K. Carbonic anhydrase isoenzymes in isolated rat peripheral monocytes, tissue macrophages, and osteoclasts. Bone. 1987;8:33–38. doi: 10.1016/8756-3282(87)90129-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...