Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
70/5/52/R.U./Engg.-08/2020-2021
University of Rajshahi
71/5/52/R.U./Engg.08/2020-2021
University of Rajshahi
PubMed
35888063
PubMed Central
PMC9321111
DOI
10.3390/life12070973
PII: life12070973
Knihovny.cz E-zdroje
- Klíčová slova
- color fundus photographs, deep neural network, detection of retinal diseases, segmentation of retinal landmarks,
- Publikační typ
- časopisecké články MeSH
Color fundus photographs are the most common type of image used for automatic diagnosis of retinal diseases and abnormalities. As all color photographs, these images contain information about three primary colors, i.e., red, green, and blue, in three separate color channels. This work aims to understand the impact of each channel in the automatic diagnosis of retinal diseases and abnormalities. To this end, the existing works are surveyed extensively to explore which color channel is used most commonly for automatically detecting four leading causes of blindness and one retinal abnormality along with segmenting three retinal landmarks. From this survey, it is clear that all channels together are typically used for neural network-based systems, whereas for non-neural network-based systems, the green channel is most commonly used. However, from the previous works, no conclusion can be drawn regarding the importance of the different channels. Therefore, systematic experiments are conducted to analyse this. A well-known U-shaped deep neural network (U-Net) is used to investigate which color channel is best for segmenting one retinal abnormality and three retinal landmarks.
CAPM Company Limited Bonani Dhaka 1213 Bangladesh
Faculty of Engineering Shizuoka University Hamamatsu 432 8561 Japan
Faculty of Engineering University of Rajshahi Rajshahi 6205 Bangladesh
Faculty of Information Technology Brno University of Technology 61200 Brno Czech Republic
Zobrazit více v PubMed
Resnikoff S., Felch W., Gauthier T.M., Spivey B. The number of ophthalmologists in practice and training worldwide: A growing gap despite more than 200000 practitioners. Br. J. Ophthalmol. 2012;96:783–787. doi: 10.1136/bjophthalmol-2011-301378. PubMed DOI
Abràmoff M.D., Garvin M.K., Sonka M. Retinal Imaging and Image Analysis. IEEE Rev. Biomed. Eng. 2010;3:169–208. doi: 10.1109/RBME.2010.2084567. PubMed DOI PMC
Owen C.G., Rudnicka A.R., Mullen R., Barman S.A., Monekosso D., Whincup P.H., Ng J., Paterson C. Measuring Retinal Vessel Tortuosity in 10-Year-Old Children: Validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) Program. Investig. Ophthalmol. Vis. Sci. 2009;50:2004–2010. doi: 10.1167/iovs.08-3018. PubMed DOI
Fraz M., Remagnino P., Hoppe A., Uyyanonvara B., Rudnicka A., Owen C., Barman S. An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation. IEEE Trans. Biomed. Eng. 2012;59:2538–2548. doi: 10.1109/TBME.2012.2205687. PubMed DOI
Staal J.J., Abramoff M.D., Niemeijer M., Viergever M.A., van Ginneken B. Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging. 2004;23:501–509. doi: 10.1109/TMI.2004.825627. PubMed DOI
Budai A., Bock R., Maier A., Hornegger J., Michelson G. Robust Vessel Segmentation in Fundus Images. Int. J. Biomed. Imaging. 2013;2013:154860. doi: 10.1155/2013/154860. PubMed DOI PMC
Porwal P., Pachade S., Kamble R., Kokare M., Deshmukh G., Sahasrabuddhe V., Meriaudeau F. Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for Diabetic Retinopathy Screening Research. Data. 2018;3:25. doi: 10.3390/data3030025. DOI
Cuadros J., Bresnick G. EyePACS: An Adaptable Telemedicine System for Diabetic Retinopathy Screening. J. Diabetes Sci. Technol. 2009;3:509–516. doi: 10.1177/193229680900300315. PubMed DOI PMC
Decencière E., Zhang X., Cazuguel G., Lay B., Cochener B., Trone C., Gain P., Ordonez R., Massin P., Erginay A., et al. Feedback on a publicly distributed database: The Messidor database. Image Anal. Stereol. 2014;33:231–234. doi: 10.5566/ias.1155. DOI
Hoover A., Kouznetsova V., Goldbaum M. Locating Blood Vessels in Retinal Images by Piece-wise Threshold Probing of a Matched Filter Response. IEEE Trans. Med. Imaging. 2000;19:203–210. doi: 10.1109/42.845178. PubMed DOI
Hoover A., Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging. 2003;22:951–958. doi: 10.1109/TMI.2003.815900. PubMed DOI
Abdulla W., Chalakkal R.J. University of Auckland Diabetic Retinopathy (UoA-DR) Database. University of Auckland; Auckland, NZ, USA: 2018. DOI
Davis B.M., Crawley L., Pahlitzsch M., Javaid F., Cordeiro M.F. Glaucoma: The retina and beyond. Acta Neuropathol. 2016;132:807–826. doi: 10.1007/s00401-016-1609-2. PubMed DOI PMC
Ferris F.L., Fine S.L., Hyman L. Age-Related Macular Degeneration and Blindness due to Neovascular Maculopathy. JAMA Ophthalmol. 1984;102:1640–1642. doi: 10.1001/archopht.1984.01040031330019. PubMed DOI
Wykoff C.C., Khurana R.N., Nguyen Q.D., Kelly S.P., Lum F., Hall R., Abbass I.M., Abolian A.M., Stoilov I., To T.M., et al. Risk of Blindness Among Patients with Diabetes and Newly Diagnosed Diabetic Retinopathy. Diabetes Care. 2021;44:748–756. doi: 10.2337/dc20-0413. PubMed DOI PMC
Romero-Aroca P. Managing diabetic macular edema: The leading cause of diabetes blindness. World J. Diabetes. 2011;2:98–104. doi: 10.4239/wjd.v2.i6.98. PubMed DOI PMC
Ronneberger O., Fischer P., Brox T. International Conference on Medical Image Computing and Computer Assisted Intervention. Springer; Berlin/Heidelberg, Germany: 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation; pp. 234–241. DOI
DeHoog E., Schwiegerling J. Fundus camera systems: A comparative analysis. Appl. Opt. 2009;48:221–228. doi: 10.1364/AO.48.000221. PubMed DOI PMC
Bayer B.E. Color Imaging Array. 3971065. [(accessed on 17 June 2022)];U.S. Patent. 1976 Available online: https://patentimages.storage.googleapis.com/89/c6/87/c4fb7fbb6d0a0d/US3971065.pdf.
Zhang L., Wu X. Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans. Image Process. 2005;14:2167–2178. doi: 10.1109/TIP.2005.857260. PubMed DOI
Chung K., Chan Y. Color Demosaicing Using Variance of Color Differences. IEEE Trans. Image Process. 2006;15:2944–2955. doi: 10.1109/TIP.2006.877521. PubMed DOI
Chung K., Yang W., Yan W., Wang C. Demosaicing of Color Filter Array Captured Images Using Gradient Edge Detection Masks and Adaptive Heterogeneity-Projection. IEEE Trans. Image Process. 2008;17:2356–2367. doi: 10.1109/TIP.2008.2005561. PubMed DOI
Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M.V., Das A., Jonas J.B., Keeffe J., Kempen J.H., et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health. 2017;5:1221–1234. doi: 10.1016/S2214-109X(17)30393-5. PubMed DOI
Burton M.J., Ramke J., Marques A.P., Bourne R.R.A., Congdon N., Jones I., Tong B.A.M.A., Arunga S., Bachani D., Bascaran C., et al. The Lancet Global Health Commission on Global Eye Health: Vision beyond 2020. Lancet Glob. Health. 2021;9:489–551. doi: 10.1016/S2214-109X(20)30488-5. PubMed DOI PMC
Guerrero-Bote V.P., Moya-Anegón F. A further step forward in measuring journals’ scientific prestige: The SJR2 indicator. J. Inf. 2012;6:674–688. doi: 10.1016/j.joi.2012.07.001. DOI
Hipwell J.H., Strachan F., Olson J.A., Mchardy K.C., Sharp P.F., Forrester J.V. Automated detection of microaneurysms in digital red-free photographs: A diabetic retinopathy screening tool. Diabet. Med. 2000;17:588–594. doi: 10.1046/j.1464-5491.2000.00338.x. PubMed DOI
Walter T., Klein J.C., Massin P., Erginay A. A contribution of image processing to the diagnosis of diabetic retinopathy—Detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging. 2002;21:1236–1243. doi: 10.1109/TMI.2002.806290. PubMed DOI
Klein R., Meuer S.M., Moss S.E., Klein B.E.K., Neider M.W., Reinke J. Detection of Age-Related Macular Degeneration Using a NonmydriaticDigital Camera and a Standard Film Fundus Camera. JAMA Arch. Ophthalmol. 2004;122:1642–1646. doi: 10.1001/archopht.122.11.1642. PubMed DOI
Scott I.U., Edwards A.R., Beck R.W., Bressler N.M., Chan C.K., Elman M.J., Friedman S.M., Greven C.M., Maturi R.K., Pieramici D.J., et al. A Phase II Randomized Clinical Trial of Intravitreal Bevacizumab for Diabetic Macular Edema. Am. Acad. Ophthalmol. 2007;114:1860–1867. doi: 10.1016/j.ophtha.2007.05.062. PubMed DOI PMC
Kose C., Sevik U., Gencalioglu O. Automatic segmentation of age-related macular degeneration in retinal fundus images. Comput. Biol. Med. 2008;38:611–619. doi: 10.1016/j.compbiomed.2008.02.008. PubMed DOI
Abramoff M.D., Niemeijer M., Suttorp-Schultan M.S.A., Viergever M.A., Russell S.R., Ginneken B.V. Evaluation of a System for Automatic Detection of Diabetic Retinopathy From Color Fundus Photographs in a Large Population of Patients With Diabetes. Diabetes Care. 2008;31:193–198. doi: 10.2337/dc07-1312. PubMed DOI PMC
Gangnon R.E., Davis M.D., Hubbard L.D., Aiello L.M., Chew E.Y., Ferris F.L., Fisher M.R. A Severity Scale for Diabetic Macular Edema Developed from ETDRS Data. Investig. Ophthalmol. Vis. Sci. 2008;49:5041–5047. doi: 10.1167/iovs.08-2231. PubMed DOI PMC
Bock R., Meier J., Nyul L.G., Hornegger J., Michelson G. Glaucoma risk index: Automated glaucoma detection from color fundus images. Med. Image Anal. 2010;14:471–481. doi: 10.1016/j.media.2009.12.006. PubMed DOI
Kose C., Sevik U., Gencalioglu O., Ikibas C., Kayikicioglu T. A Statistical Segmentation Method for Measuring Age-Related Macular Degeneration in Retinal Fundus Images. J. Med. Syst. 2010;34:1–13. doi: 10.1007/s10916-008-9210-4. PubMed DOI
Muramatsu C., Hayashi Y., Sawada A., Hatanaka Y., Hara T., Yamamoto T., Fujita H. Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. J. Biomed. Opt. 2010;15:016021. doi: 10.1117/1.3322388. PubMed DOI
Joshi G.D., Sivaswamy J., Krishnadas S.R. Optic Disk and Cup Segmentation From Monocular Color Retinal Images for Glaucoma Assessment. IEEE Trans. Med. Imaging. 2011;30:1192–1205. doi: 10.1109/TMI.2011.2106509. PubMed DOI
Agurto C., Barriga E.S., Murray V., Nemeth S., Crammer R., Bauman W., Zamora G., Pattichis M.S., Soliz P. Automatic Detection of Diabetic Retinopathy and Age-Related Macular Degeneration in Digital Fundus Images. Investig. Ophthalmol. Vis. Sci. 2011;52:5862–5871. doi: 10.1167/iovs.10-7075. PubMed DOI PMC
Fadzil M.H.A., Izhar L.I., Nugroho H., Nugroho H.A. Analysis of retinal fundus images for grading of diabetic retinopathy severity. Med. Biol. Eng. Comput. 2011;49:693–700. doi: 10.1007/s11517-011-0734-2. PubMed DOI
Mookiah M.R.K., Acharya U.R., Lim C.M., Petznick A., Suri J.S. Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl.-Based Syst. 2012;33:73–82. doi: 10.1016/j.knosys.2012.02.010. DOI
Hijazi M.H.A., Coenen F., Zheng Y. Data mining techniques for the screening of age-related macular degeneration. Knowl.-Based Syst. 2012;29:83–92. doi: 10.1016/j.knosys.2011.07.002. DOI
Deepak K.S., Sivaswamy J. Automatic Assessment of Macular Edema From Color Retinal Images. IEEE Trans. Med. Imaging. 2012;31:766–776. doi: 10.1109/TMI.2011.2178856. PubMed DOI
Akram M.U., Khalid S., Tariq A., Javed M.Y. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Comput. Med. Imaging Graph. 2013;37:346–357. doi: 10.1016/j.compmedimag.2013.06.008. PubMed DOI
Oh E., Yoo T.K., Park E. Diabetic retinopathy risk prediction for fundus examination using sparse learning: A cross-sectional study. Med. Inform. Decis. Mak. 2013;13:106. doi: 10.1186/1472-6947-13-106. PubMed DOI PMC
Fuente-Arriaga J.A.D.L., Felipe-Riveron E.M., Garduno-Calderon E. Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images. Comput. Biol. Med. 2014;47:27–35. doi: 10.1016/j.compbiomed.2014.01.005. PubMed DOI
Akram M.U., Khalid S., Tariq A., Khan S.A., Azam F. Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 2014;45:161–171. doi: 10.1016/j.compbiomed.2013.11.014. PubMed DOI
Noronha K.P., Acharya U.R., Nayak K.P., Martis R.J., Bhandary S.V. Automated classification of glaucoma stages using higher order cumulant features. Biomed. Signal Process. Control. 2014;10:174–183. doi: 10.1016/j.bspc.2013.11.006. DOI
Mookiah M.R.K., Acharya U.R., Koh J.E.W., Chua C.K., Tan J.H., Chandran V., Lim C.M., Noronha K., Laude A., Tong L. Decision support system for age-related macular degeneration using discrete wavelet transform. Med. Biol. Eng. Comput. 2014;52:781–796. doi: 10.1007/s11517-014-1180-8. PubMed DOI
Casanova R., Saldana S., Chew E.Y., Danis R.P., Greven C.M., Ambrosius W.T. Application of Random Forests Methods to Diabetic Retinopathy Classification Analyses. PLoS ONE. 2014;9:e98587. doi: 10.1371/journal.pone.0098587. PubMed DOI PMC
Issac A., Sarathi M.P., Dutta M.K. An Adaptive Threshold Based Image Processing Technique for Improved Glaucoma Detection and Classification. Comput. Methods Programs Biomed. 2015;122:229–244. doi: 10.1016/j.cmpb.2015.08.002. PubMed DOI
Mookiah M.R.K., Acharya U.R., Chandran V., Martis R.J., Tan J.H., Koh J.E.W., Chua C.K., Tong L., Laude A. Application of higher-order spectra for automated grading of diabetic maculopathy. Med. Biol. Eng. Comput. 2015;53:1319–1331. doi: 10.1007/s11517-015-1278-7. PubMed DOI
Jaya T., Dheeba J., Singh N.A. Detection of Hard Exudates in Colour Fundus ImagesUsing Fuzzy Support Vector Machine-Based Expert System. J. Digit. Imaging. 2015;28:761–768. doi: 10.1007/s10278-015-9793-5. PubMed DOI PMC
Oh J.E., Yang H.K., Kim K.G., Hwang J.M. Automatic Computer-Aided Diagnosis of Retinal Nerve Fiber Layer Defects Using Fundus Photographs in Optic Neuropathy. Investig. Ophthalmol. Vis. Sci. 2015;56:2872–2879. doi: 10.1167/iovs.14-15096. PubMed DOI
Singh A., Dutta M.K., ParthaSarathi M., Uher V., Burget R. Image Processing Based Automatic Diagnosis of Glaucoma using Wavelet Features of Segmented Optic Disc from Fundus Image. Comput. Methods Programs Biomed. 2016;124:108–120. doi: 10.1016/j.cmpb.2015.10.010. PubMed DOI
Acharya U.R., Mookiah M.R.K., Koh J.E.W., Tan J.H., Noronha K., Bhandary S.V., Rao A.K., Hagiwara Y., Chua C.K., Laude A. Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features. Comput. Biol. Med. 2016;73:131–140. doi: 10.1016/j.compbiomed.2016.04.009. PubMed DOI
Bhaskaranand M., Ramachandra C., Bhat S., Cuadros J., Nittala M.G., Sadda S., Solanki K. Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis. J. Diabetes Sci. Technol. 2016;10:254–261. doi: 10.1177/1932296816628546. PubMed DOI PMC
Phan T.V., Seoud L., Chakor H., Cheriet F. Automatic Screening and Grading of Age-Related Macular Degeneration from Texture Analysis of Fundus Images. J. Ophthalmol. 2016;2016:5893601. doi: 10.1155/2016/5893601. PubMed DOI PMC
Wang Y.T., Tadarati M., Wolfson Y., Bressler S.B., Bressler N.M. Comparison of Prevalence of Diabetic Macular Edema Based on Monocular Fundus Photography vs Optical Coherence Tomography. JAMA Ophthalmol. 2016;134:222–228. doi: 10.1001/jamaophthalmol.2015.5332. PubMed DOI
Acharya U.R., Bhat S., Koh J.E.W., Bhandary S.V., Adeli H. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput. Biol. Med. 2017;88:72–83. doi: 10.1016/j.compbiomed.2017.06.022. PubMed DOI
Acharya U.R., Mookiah M.R.K., Koh J.E.W., Tan J.H., Bhandary S.V., Rao A.K., Hagiwara Y., Chua C.K., Laude A. Automated Diabetic Macular Edema (DME) Grading System using DWT, DCT Features and Maculopathy Index. Comput. Biol. Med. 2017;84:59–68. doi: 10.1016/j.compbiomed.2017.03.016. PubMed DOI
Leontidis G. A new unified framework for the early detection of the progression to diabetic retinopathy from fundus images. Comput. Biol. Med. 2017;90:98–115. doi: 10.1016/j.compbiomed.2017.09.008. PubMed DOI
Maheshwari S., Pachori R.B., Acharya U.R. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images. IEEE J. Biomed. Health Inform. 2017;21:803–813. doi: 10.1109/JBHI.2016.2544961. PubMed DOI
Maheshwari S., Pachori R.B., Kanhangad V., Bhandary S.V., Acharya R. Iterative variational mode decomposition based automated detection of glaucoma using fundus images. Comput. Biol. Med. 2017;88:142–149. doi: 10.1016/j.compbiomed.2017.06.017. PubMed DOI
Saha S.K., Fernando B., Cuadros J., Xiao D., Kanagasingam Y. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine. J. Digit. Imaging. 2018;31:869–878. doi: 10.1007/s10278-018-0084-9. PubMed DOI PMC
Colomer A., Igual J., Naranjo V. Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images. Sensors. 2020;20:5. doi: 10.3390/s20041005. PubMed DOI PMC
Gardner G.G., Keating D., Williamson T.H., Elliott A.T. Automatic detection of diabetic retinopathy using an artificial neural network: A screening tool. Br. J. Ophthalmol. 1996;80:940–944. doi: 10.1136/bjo.80.11.940. PubMed DOI PMC
Nayak J., Acharya U.R., Bhat P.S., Shetty N., Lim T.C. Automated Diagnosis of Glaucoma Using Digital Fundus Images. J. Med. Syst. 2009;33:337–346. doi: 10.1007/s10916-008-9195-z. PubMed DOI
Ganesan K., Martis R.J., Acharya U.R., Chua C.K., Min L.C., Ng E.Y.K., Laude A. Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Med. Biol. Eng. Comput. 2014;52:663–672. doi: 10.1007/s11517-014-1167-5. PubMed DOI
Mookiah M.R.K., Acharya U.R., Fujita H., Koh J.E.W., Tan J.H., Noronha K., Bhandary S.V., Chua C.K., Lim C.M., Laude A., et al. Local Configuration Pattern Features for Age-Related Macular Degeneration Characterisation and Classification. Comput. Biol. Med. 2015;63:208–218. doi: 10.1016/j.compbiomed.2015.05.019. PubMed DOI
Asaoka R., Murata H., Iwase A., Araie M. Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology. 2016;123:1974–1980. doi: 10.1016/j.ophtha.2016.05.029. PubMed DOI
Abramoff M.D., Lou Y., Erginay A., Clarida W., Amelon R., Folk J.C., Niemeijer M. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Investig. Ophthalmol. Vis. Sci. 2016;57:5200–5206. doi: 10.1167/iovs.16-19964. PubMed DOI
Gulshan V., Peng L., Coram M., Stumpe M.C., Wu D., Narayanaswamy A., Venugopalan S., Widner K., Madams T., Cuadros J., et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316:2402–2410. doi: 10.1001/jama.2016.17216. PubMed DOI
Zilly J., Buhmann J.M., Mahapatra D. Glaucoma Detection Using Entropy Sampling And Ensemble Learning For Automatic Optic Cup And Disc Segmentation. Comput. Med. Imaging Graph. 2017;55:28–41. doi: 10.1016/j.compmedimag.2016.07.012. PubMed DOI
Burlina P.M., Joshi N., Pekala M., Pacheco K.D., Freund D.E., Bressler N.M. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2017;135:1170–1176. doi: 10.1001/jamaophthalmol.2017.3782. PubMed DOI PMC
Abbas Q., Fondon I., Sarmiento A., Jimenez S., Alemany P. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med. Biol. Eng. Comput. 2017;55:1959–1974. doi: 10.1007/s11517-017-1638-6. PubMed DOI
Ting D.S.W., Cheung C.Y., Lim G., Tan G.S.W., Quang N.D., Gan A., Hamzah H., Garcia-Franco R., Yeo I.Y.S., Lee S.Y., et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes. JAMA. 2017;318:2211–2223. doi: 10.1001/jama.2017.18152. PubMed DOI PMC
Burlina P., Pacheco K.D., Joshi N., Freund D.E., Bressler N.M. Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis. Comput. Biol. Med. 2017;82:80–86. doi: 10.1016/j.compbiomed.2017.01.018. PubMed DOI PMC
Gargeya R., Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology. 2017;124:962–969. doi: 10.1016/j.ophtha.2017.02.008. PubMed DOI
Quellec G., Charriere K., Boudi Y., Cochener B., Lamard M. Deep Image Mining for Diabetic Retinopathy Screening. Med. Image Anal. 2017;39:178–193. doi: 10.1016/j.media.2017.04.012. PubMed DOI
Ferreira M.V.D.S., Filho A.O.D.C., Sousa A.D.D., Silva A.C., Gattass M. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of Glaucoma. Expert Syst. Appl. 2018;110:250–263. doi: 10.1016/j.eswa.2018.06.010. DOI
Grassmann F., Mengelkamp J., Brandl C., Harsch S., Zimmermann M.E., Linkohr B., Peters A., Heid I.M., Palm C., Weber B.H.F. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Am. Acad. Ophthalmol. 2018;125:1410–1420. doi: 10.1016/j.ophtha.2018.02.037. PubMed DOI
Khojasteh P., Aliahmad B., Kumar D.K. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. BMC Ophthalmol. 2018;18:288. doi: 10.1186/s12886-018-0954-4. PubMed DOI PMC
Raghavendra U., Fujita H., Bhandary S.V., Gudigar A., Tan J.H., Acharya U.R. Deep Convolution Neural Network for Accurate Diagnosis of Glaucoma Using Digital Fundus Images. Inf. Sci. 2018;441:41–49. doi: 10.1016/j.ins.2018.01.051. DOI
Burlina P.M., Joshi N., Pacheco K.D., Freund D.E., Kong J., Bressler N.M. Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients with Age-Related Macular Degeneration. JAMA Ophthalmol. 2018;136:1359–1366. doi: 10.1001/jamaophthalmol.2018.4118. PubMed DOI PMC
Lam C., Yu C., Huang L., Rubin D. Retinal Lesion Detection with Deep Learning Using Image Patches. Investig. Ophthalmol. Vis. Sci. 2018;59:590–596. doi: 10.1167/iovs.17-22721. PubMed DOI PMC
Li Z., He Y., Keel S., Meng W., Chang R.T., He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018;125:1199–1206. doi: 10.1016/j.ophtha.2018.01.023. PubMed DOI
Fu H., Cheng J., Xu Y., Zhang C., Wong D.W.K., Liu J., Cao X. Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image. IEEE Trans. Med. Imaging. 2018;37:2493–2501. doi: 10.1109/TMI.2018.2837012. PubMed DOI
Liu S., Graham S.L., Schulz A., Kalloniatis M., Zangerl B., Cai W., Gao Y., Chua B., Arvind H., Grigg J., et al. A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. Ophthalmol. Glaucoma. 2018;1:15–22. doi: 10.1016/j.ogla.2018.04.002. PubMed DOI
Liu H., Li L., Wormstone I.M., Qiao C., Zhang C., Liu P., Li S., Wang H., Mou D., Pang R., et al. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmol. 2019;137:1353–1360. doi: 10.1001/jamaophthalmol.2019.3501. PubMed DOI PMC
Keel S., Li Z., Scheetz J., Robman L., Phung J., Makeyeva G., Aung K., Liu C., Yan X., Meng W., et al. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs. Clin. Exp. Ophthalmol. 2019;47:1009–1018. doi: 10.1111/ceo.13575. PubMed DOI
Li F., Liu Z., Chen H., Jiang M., Zhang X., Wu Z. Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm. Transl. Vis. Sci. Technol. 2019;8:4. doi: 10.1167/tvst.8.6.4. PubMed DOI PMC
Diaz-Pinto A., Morales S., Naranjo V., Kohler T., Mossi J.M., Navea A. CNNs for automatic glaucoma assessment using fundus images: An extensive validation. BMC Biomed. Eng. Online. 2019;18:29. doi: 10.1186/s12938-019-0649-y. PubMed DOI PMC
Peng Y., Dharssi S., Chen Q., Keenan T.D., Agron E., Wong W.T., Chew E.Y., Lu Z. DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology. 2019;126:565–575. doi: 10.1016/j.ophtha.2018.11.015. PubMed DOI PMC
Zeng X., Chen H., Luo Y., Ye W. Automated Diabetic Retinopathy Detection Based on Binocular Siamese-Like Convolutional Neural Network. IEEE Access. 2019;4:30744–30753. doi: 10.1109/ACCESS.2019.2903171. DOI
Matsuba S., Tabuchi H., Ohsugi H., Enno H., Ishitobi N., Masumoto H., Kiuchi Y. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration. Int. Ophthalmol. 2019;39:1269–1275. doi: 10.1007/s10792-018-0940-0. PubMed DOI
Raman R., Srinivasan S., Virmani S., Sivaprasad S., Rao C., Rajalakshmi R. Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye. 2019;33:97–109. doi: 10.1038/s41433-018-0269-y. PubMed DOI PMC
Singh R.K., Gorantla R. DMENet: Diabetic Macular Edema diagnosis using Hierarchical Ensemble of CNNs. PLoS ONE. 2020;15:e0220677. doi: 10.1371/journal.pone.0220677. PubMed DOI PMC
Gonzalez-Gonzalo C., Sanchez-Gutierrez V., Hernandez-Martinez P., Contreras I., Lechanteur Y.T., Domanian A., Ginneken B.V., Sanchez C.I. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmol. 2020;98:368–377. doi: 10.1111/aos.14306. PubMed DOI PMC
Gheisari S., Shariflou S., Phu J., Kennedy P.J., Ashish A., Kalloniatis M., Golzan S.M. A combined convolutional and recurrent neural network for enhanced glaucoma detection. Sci. Rep. 2021;11:1945. doi: 10.1038/s41598-021-81554-4. PubMed DOI PMC
Chaudhuri S., Chatterjee S., Katz N., Nelson M., Goldbaum M. Detection of blood vessels in retinal images using two-dimensional matched filter. IEEE Trans. Med. Imaging. 1989;8:263–269. doi: 10.1109/42.34715. PubMed DOI
Sinthanayothin C., Boyce J., Cook H., Williamson J. Automated localization of the optic disc, fovea and retinal blood vessels from digital color fundus images. Br. J. Ophthalmol. 1999;83:902–910. doi: 10.1136/bjo.83.8.902. PubMed DOI PMC
Lowell J., Hunter A., Steel D., Basu A., Ryder R., Fletcher E., Kennedy L. Optic Nerve Head Segmentation. IEEE Trans. Med. Imaging. 2004;23:256–264. doi: 10.1109/TMI.2003.823261. PubMed DOI
Li H., Chutatape O. Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 2004;51:246–254. doi: 10.1109/TBME.2003.820400. PubMed DOI
Soares J.V.B., Leandro J.J.G., Cesar R.M., Jelinek H.F., Cree M.J. Retianl Vessel Segmentation Using the 2-D Gabor Wavelet and Supervised Classification. IEEE Trans. Med. Imaging. 2006;25:1214–1222. doi: 10.1109/TMI.2006.879967. PubMed DOI
Xu J., Chutatape O., Sung E., Zheng C., Kuan P.C.T. Optic disk feature extraction via modified deformable model technique for glaucoma analysis. Pattern Recognit. 2007;40:2063–2076. doi: 10.1016/j.patcog.2006.10.015. DOI
Niemeijer M., Abramoff M.D., Ginneken B.V. Segmentation of the Optic Disc, Macula and Vascular Arch in Fundus Photographs. IEEE Trans. Med. Imaging. 2007;26:116–127. doi: 10.1109/TMI.2006.885336. PubMed DOI
Ricci E., Perfetti R. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Trans. Med. Imaging. 2007;26:1357–1365. doi: 10.1109/TMI.2007.898551. PubMed DOI
Abràmoff M.D., Alward W.L.M., Greenlee E.C., Shuba L., Kim C.Y., Fingert J.H., Kwon Y.H. Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Investig. Ophthalmol. Vis. Sci. 2007;48:1665–1673. doi: 10.1167/iovs.06-1081. PubMed DOI PMC
Tobin K.W., Chaum E., Govindasamy V.P., Karnowski T.P. Detection of Anatomic Structures in Human Retinal Imagery. IEEE Trans. Med. Imaging. 2007;26:1729–1739. doi: 10.1109/TMI.2007.902801. PubMed DOI
Youssif A., Ghalwash A.Z., Ghoneim A. Optic Disc Detection From Normalized Digital Fundus Images by Means of a Vessels’ Direction Matched Filter. IEEE Trans. Med. Imaging. 2008;27:11–18. doi: 10.1109/TMI.2007.900326. PubMed DOI
Niemeijer M., Abramoff M.D., Ginneken B.V. Fast Detection of the Optic Disc and Fovea in Color Fundus Photographs. Med. Image Anal. 2009;13:859–870. doi: 10.1016/j.media.2009.08.003. PubMed DOI PMC
Cinsdikici M., Aydin D. Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Comput. Methods Programs Biomed. 2009;96:85–95. doi: 10.1016/j.cmpb.2009.04.005. PubMed DOI
Welfer D., Scharcanski J., Kitamura C.M., Pizzol M.M.D., Ludwig L.W.B., Marinho D.R. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput. Biol. Med. 2010;40:124–137. doi: 10.1016/j.compbiomed.2009.11.009. PubMed DOI
Aquino A., Gegundez-Arias M.E., Marín D. Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection, and Feature Extraction Techniques. IEEE Trans. Med. Imaging. 2010;29:1860–1869. doi: 10.1109/TMI.2010.2053042. PubMed DOI
Zhu X., Rangayyan R.M., Ells A.L. Detection of the Optic Nerve Head in Fundus Images of the Retina Using the Hough Transform for Circles. J. Digit. Imaging. 2010;23:332–341. doi: 10.1007/s10278-009-9189-5. PubMed DOI PMC
Lu S. Accurate and Efficient Optic Disc Detection and Segmentation by a Circular Transformation. IEEE Trans. Med. Imaging. 2011;30:2126–2133. doi: 10.1109/TMI.2011.2164261. PubMed DOI
Welfer D., Scharcanski J., Marinho D.R. Fovea center detection based on the retina anatomy and mathematical morphology. Comput. Methods Programs Biomed. 2011;104:397–409. doi: 10.1016/j.cmpb.2010.07.006. PubMed DOI
Cheung C., Butty Z., Tehrani N., Lam W.C. Computer-assisted image analysis of temporal retinal vessel width and tortuosity in retinopathy of prematurity for the assessment of disease severity and treatment outcome. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 2011;15:374–380. doi: 10.1016/j.jaapos.2011.05.008. PubMed DOI
Kose C., Ikibas C. A personal identification system using retinal vasculature in retinal fundus images. Expert Syst. Appl. 2011;38:13670–13681. doi: 10.1016/j.eswa.2011.04.141. DOI
You X., Peng Q., Yuan Y., Cheung Y., Lei J. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 2011;44:2314–2324. doi: 10.1016/j.patcog.2011.01.007. DOI
Bankhead P., Scholfield N., Mcgeown G., Curtis T. Fast Retinal Vessel Detection and Measurement Using Wavelets and Edge Location Refinement. PLoS ONE. 2012;7:e32435. doi: 10.1371/journal.pone.0032435. PubMed DOI PMC
Qureshi R.J., Kovacs L., Harangi B., Nagy B., Peto T., Hajdu A. Combining algorithms for automatic detection of optic disc and macula in fundus images. Comput. Vis. Image Underst. 2012;116:138–145. doi: 10.1016/j.cviu.2011.09.001. DOI
Fraz M., Barman S.A., Remagnino P., Hoppe A., Basit A., Uyyanonvara B., Rudnicka A.R., Owen C. An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput. Methods Programs Biomed. 2012;108:600–616. doi: 10.1016/j.cmpb.2011.08.009. PubMed DOI
Li Q., You J., Zhang D. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst. Appl. 2012;39:7600–7610. doi: 10.1016/j.eswa.2011.12.046. DOI
Lin K.S., Tsai C.L., Sofka M., Chen S.J., Lin W.Y. Retinal Vascular Tree Reconstruction with Anatomical Realism. IEEE Trans. Biomed. Eng. 2012;59:3337–3347. doi: 10.1109/TBME.2012.2215034. PubMed DOI
Moghimirad E., Rezatofighi S.H., Soltanian-Zadeh H. Retinal vessel segmentation using a multi-scale medialness function. Comput. Biol. Med. 2012;42:50–60. doi: 10.1016/j.compbiomed.2011.10.008. PubMed DOI
Morales S., Naranjo V., Angulo J., Alcaniz M. Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology. IEEE Trans. Med. Imaging. 2013;32:786–796. doi: 10.1109/TMI.2013.2238244. PubMed DOI
Chin K.S., Trucco E., Tan L.L., Wilson P.J. Automatic Fovea Location in Retinal Images Using Anatomical Priors and Vessel Density. Pattern Recognit. Lett. 2013;34:1152–1158. doi: 10.1016/j.patrec.2013.03.016. DOI
Akram M., Khan S. Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Eng. Comput. 2013;29:165–173. doi: 10.1007/s00366-011-0253-7. DOI
Gegundez M.E., Marin D., Bravo J.M., Suero A. Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Comput. Med. Imaging Graph. 2013;37:386–393. doi: 10.1016/j.compmedimag.2013.06.002. PubMed DOI
Badsha S., Reza A.W., Tan K.G., Dimyati K. A New Blood Vessel Extraction Technique Using Edge Enhancement and Object Classification. J. Digit. Imaging. 2013;26:1107–1115. doi: 10.1007/s10278-013-9585-8. PubMed DOI PMC
Fathi A., Naghsh-Nilchi A. Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed. Signal Process. Control. 2013;8:71–80. doi: 10.1016/j.bspc.2012.05.005. DOI
Fraz M., Basit A., Barman S.A. Application of Morphological Bit Planes in Retinal Blood Vessel Extraction. J. Digit. Imaging. 2013;26:274–286. doi: 10.1007/s10278-012-9513-3. PubMed DOI PMC
Nayebifar B., Moghaddam H.A. A novel method for retinal vessel tracking using particle filters. Comput. Biol. Med. 2013;43:541–548. doi: 10.1016/j.compbiomed.2013.01.016. PubMed DOI
Nguyen U.T.V., Bhuiyan A., Park L.A.F., Ramamohanarao K. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit. 2013;46:703–715. doi: 10.1016/j.patcog.2012.08.009. DOI
Wang Y., Ji G., Lin P. Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recognit. 2013;46:2117–2133. doi: 10.1016/j.patcog.2012.12.014. DOI
Giachetti A., Ballerini L., Trucco E. Accurate and reliable segmentation of the optic disc in digital fundus images. J. Med. Imaging. 2014;1:024001. doi: 10.1117/1.JMI.1.2.024001. PubMed DOI PMC
Kao E.F., Lin P.C., Chou M.C., Jaw T.S., Liu G.C. Automated detection of fovea in fundus images based on vessel-free zone and adaptive Gaussian template. Comput. Methods Programs Biomed. 2014;117:92–103. doi: 10.1016/j.cmpb.2014.08.003. PubMed DOI
Bekkers E., Duits R., Berendschot T., Romeny B.T.H. A Multi-Orientation Analysis Approach to Retinal Vessel Tracking. J. Math. Imaging Vis. 2014;49:583–610. doi: 10.1007/s10851-013-0488-6. DOI
Aquino A. Establishing the macular grading grid by means of fovea centre detection using anatomical-based and visual-based features. Comput. Biol. Med. 2014;55:61–73. doi: 10.1016/j.compbiomed.2014.10.007. PubMed DOI
Cheng E., Du L., Wu Y., Zhu Y.J., Megalooikonomou V., Ling H. Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach. Vis. Appl. 2014;25:1779–1792. doi: 10.1007/s00138-014-0638-x. DOI
Miri M.S., Abràmoff M.D., Lee K., Niemeijer M., Wang J.K., Kwon Y.H., Garvin M.K. Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. IEEE Trans. Med. Imaging. 2015;34:1854–1866. doi: 10.1109/TMI.2015.2412881. PubMed DOI PMC
Dai P., Luo H., Sheng H., Zhao Y., Li L., Wu J., Zhao Y., Suzuki K. A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model. PLoS ONE. 2015;10:e0127748. doi: 10.1371/journal.pone.0127748. PubMed DOI PMC
Mary M.C.V.S., Rajsingh E.B., Jacob J.K.K., Anandhi D., Amato U., Selvan S.E. An empirical study on optic disc segmentation using an active contour model. Biomed. Signal Process. Control. 2015;18:19–29. doi: 10.1016/j.bspc.2014.11.003. DOI
Hassanien A.E., Emary E., Zawbaa H.M. Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search. J. Vis. Commun. Image Represent. 2015;31:186–196. doi: 10.1016/j.jvcir.2015.06.019. DOI
Harangi B., Hajdu A. Detection of the Optic Disc in Fundus Images by Combining Probability Models. Comput. Biol. Med. 2015;65:10–24. doi: 10.1016/j.compbiomed.2015.07.002. PubMed DOI
Imani E., Javidi M., Pourreza H.R. Improvement of Retinal Blood Vessel Detection Using Morphological Component Analysis. Comput. Methods Programs Biomed. 2015;118:263–279. doi: 10.1016/j.cmpb.2015.01.004. PubMed DOI
Lazar I., Hajdu A. Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput. Biol. Med. 2015;66:209–221. doi: 10.1016/j.compbiomed.2015.09.008. PubMed DOI
Roychowdhury S., Koozekanani D.D., Parhi K.K. Iterative Vessel Segmentation of Fundus Images. IEEE Trans. Biomed. Eng. 2015;62:1738–1749. doi: 10.1109/TBME.2015.2403295. PubMed DOI
Pardhasaradhi M., Kande G. Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed. Signal Process. Control. 2016;24:34–46. doi: 10.1016/j.bspc.2015.09.003. DOI
Medhi J.P., Dandapat S. An effective Fovea detection and Automatic assessment of Diabetic Maculopathy in color fundus images. Comput. Biol. Med. 2016;74:30–44. doi: 10.1016/j.compbiomed.2016.04.007. PubMed DOI
Aslani S., Sarnel H. A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed. Signal Process. Control. 2016;30:1–12. doi: 10.1016/j.bspc.2016.05.006. DOI
Roychowdhury S., Koozekanani D., Kuchinka S., Parhi K. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images. J. Biomed. Health Inform. 2016;20:1562–1574. doi: 10.1109/JBHI.2015.2473159. PubMed DOI
Onal S., Chen X., Satamraju V., Balasooriya M., Dabil-Karacal H. Automated and simultaneous fovea center localization and macula segmentation using the new dynamic identification and classification of edges model. J. Med. Imaging. 2016;3:034002. doi: 10.1117/1.JMI.3.3.034002. PubMed DOI PMC
Bahadarkhan K., Khaliq A.A., Shahid M. A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding. PLoS ONE. 2016;11:e0158996. doi: 10.1371/journal.pone.0158996. PubMed DOI PMC
Sarathi M.P., Dutta M.K., Singh A., Travieso C.M. Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed. Signal Process. Control. 2016;25:108–117. doi: 10.1016/j.bspc.2015.10.012. DOI
Christodoulidis A., Hurtut T., Tahar H.B., Cheriet F. A Multi-scale Tensor Voting Approach for Small Retinal Vessel Segmentation in High Resolution Fundus Images. Comput. Med. Imaging Graph. 2016;52:28–43. doi: 10.1016/j.compmedimag.2016.06.001. PubMed DOI
Orlando J.I., Prokofyeva E., Blaschko M.B. A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Trans. Biomed. Eng. 2016;64:16–27. doi: 10.1109/TBME.2016.2535311. PubMed DOI
Ramani R.G., Balasubramanian L. Macula segmentation and fovea localization employing image processing and heuristic based clustering for automated retinal screening. Comput. Methods Programs Biomed. 2018;160:153–163. doi: 10.1016/j.cmpb.2018.03.020. PubMed DOI
Khan K.B., Khaliq A.A., Jalil A., Shahid M. A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising. PLoS ONE. 2018;13:e0192203. doi: 10.1371/journal.pone.0192203. PubMed DOI PMC
Chalakkal R.J., Abdulla W.H., Thulaseedharan S.S. Automatic detection and segmentation of optic disc and fovea in retinal images. IET Image Process. 2018;12:2100–2110. doi: 10.1049/iet-ipr.2018.5666. DOI
Xia H., Jiang F., Deng S., Xin J., Doss R. Mapping Functions Driven Robust Retinal Vessel Segmentation via Training Patches. IEEE Access. 2018;6:61973–61982. doi: 10.1109/ACCESS.2018.2869858. DOI
Thakur N., Juneja M. Optic disc and optic cup segmentation from retinal images using hybrid approach. Expert Syst. Appl. 2019;127:308–322. doi: 10.1016/j.eswa.2019.03.009. DOI
Khawaja A., Khan T.M., Naveed K., Naqvi S.S., Rehman N.U., Nawaz S.J. An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser. IEEE Access. 2019;7:164344–164361. doi: 10.1109/ACCESS.2019.2953259. DOI
Naqvi S.S., Fatima N., Khan T.M., Rehman Z.U., Khan M.A. Automatic Optic Disc Detection and Segmentation by Variational Active Contour Estimation in Retinal Fundus Images. Signal Image Video Process. 2019;13:1191–1198. doi: 10.1007/s11760-019-01463-y. DOI
Wang X., Jiang X., Ren J. Blood Vessel Segmentation from Fundus Image by a Cascade Classification Framework. Pattern Recognit. 2019;88:331–341. doi: 10.1016/j.patcog.2018.11.030. DOI
Dharmawan D.A., Ng B.P., Rahardja S. A new optic disc segmentation method using a modified Dolph-Chebyshev matched filter. Biomed. Signal Process. Control. 2020;59:101932. doi: 10.1016/j.bspc.2020.101932. DOI
Carmona E.J., Molina-Casado J.M. Simultaneous segmentation of the optic disc and fovea in retinal images using evolutionary algorithms. Neural Comput. Appl. 2020;33:1903–1921. doi: 10.1007/s00521-020-05060-w. DOI
Saroj S.K., Kumar R., Singh N.P. Fréchet PDF based Matched Filter Approach for Retinal Blood Vessels Segmentation. Comput. Methods Programs Biomed. 2020;194:105490. doi: 10.1016/j.cmpb.2020.105490. PubMed DOI
Guo X., Wang H., Lu X., Hu X., Che S., Lu Y. Robust Fovea Localization Based on Symmetry Measure. J. Biomed. Health Inform. 2020;24:2315–2326. doi: 10.1109/JBHI.2020.2971593. PubMed DOI
Zhang Y., Lian J., Rong L., Jia W., Li C., Zheng Y. Even faster retinal vessel segmentation via accelerated singular value decomposition. Neural Comput. Appl. 2020;32:1893–1902. doi: 10.1007/s00521-019-04505-1. DOI
Zhou C., Zhang X., Chen H. A New Robust Method for Blood Vessel Segmentation in Retinal fundus Images based on weighted line detector and Hidden Markov model. Comput. Methods Programs Biomed. 2020;187:105231. doi: 10.1016/j.cmpb.2019.105231. PubMed DOI
Kim G., Lee S., Kim S.M. Automated segmentation and quantitative analysis of optic disc and fovea in fundus images. Multimed. Tools Appl. 2021;80:24205–24220. doi: 10.1007/s11042-021-10815-1. DOI
Marin D., Aquino A., Gegundez M., Bravo J.M. A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features. IEEE Trans. Med. Imaging. 2011;30:146–158. doi: 10.1109/TMI.2010.2064333. PubMed DOI
Wang S., Yin Y., Cao G., Wei B., Zheng Y., Yang G. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing. 2015;149:708–717. doi: 10.1016/j.neucom.2014.07.059. DOI
Liskowski P., Krawiec K. Segmenting Retinal Blood Vessels With Deep Neural Networks. IEEE Trans. Med. Imaging. 2016;35:2369–2380. doi: 10.1109/TMI.2016.2546227. PubMed DOI
Barkana B.D., Saricicek I., Yildirim B. Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl.-Based Syst. 2017;118:165–176. doi: 10.1016/j.knosys.2016.11.022. DOI
Mo J., Zhang L. Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 2017;12:2181–2193. doi: 10.1007/s11548-017-1619-0. PubMed DOI
Fu H., Cheng J., Xu Y., Wong D.W.K., Liu J., Cao X. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. IEEE Trans. Med. Imaging. 2018;37:1597–1605. doi: 10.1109/TMI.2018.2791488. PubMed DOI
Al-Bander B., Al-Nuaimy W., Williams B.M., Zheng Y. Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed. Signal Process. Control. 2018;40:91–101. doi: 10.1016/j.bspc.2017.09.008. DOI
Guo Y., Budak U., Sengur A. A Novel Retinal Vessel Detection Approach Based on Multiple Deep Convolution Neural Networks. Comput. Methods Programs Biomed. 2018;167:43–48. doi: 10.1016/j.cmpb.2018.10.021. PubMed DOI
Guo Y., Budak U., Vespa L.J., Khorasani E.S., Şengur A. A Retinal Vessel Detection Approach Using Convolution Neural Network with Reinforcement Sample Learning Strategy. Measurement. 2018;125:586–591. doi: 10.1016/j.measurement.2018.05.003. DOI
Hu K., Zhang Z., Niu X., Zhang Y., Cao C., Xiao F., Gao X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing. 2018;309:179–191. doi: 10.1016/j.neucom.2018.05.011. DOI
Jiang Z., Zhang H., Wang Y., Ko S.B. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput. Med. Imaging Graph. 2018;68:1–15. doi: 10.1016/j.compmedimag.2018.04.005. PubMed DOI
Oliveira A., Pereira S., Silva C.A. Retinal Vessel Segmentation based on Fully Convolutional Neural Networks. Expert Syst. Appl. 2018;112:229–242. doi: 10.1016/j.eswa.2018.06.034. DOI
Sangeethaa S.N., Maheswari P.U. An Intelligent Model for Blood Vessel Segmentation in Diagnosing DR Using CNN. J. Med. Syst. 2018;42:175. doi: 10.1007/s10916-018-1030-6. PubMed DOI
Wang L., Liu H., Lu Y., Chen H., Zhang J., Pu J. A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomed. Signal Process. Control. 2019;51:82–89. doi: 10.1016/j.bspc.2019.01.022. PubMed DOI PMC
Jebaseeli T.J., Durai C.A.D., Peter J.D. Retinal Blood Vessel Segmentation from Diabetic Retinopathy Images using Tandem PCNN Model and Deep Learning Based SVM. Optik. 2019;199:163328. doi: 10.1016/j.ijleo.2019.163328. DOI
Chakravarty A., Sivaswamy J. RACE-net: A Recurrent Neural Network for Biomedical Image Segmentation. J. Biomed. Health Inform. 2019;23:1151–1162. doi: 10.1109/JBHI.2018.2852635. PubMed DOI
Lian S., Li L., Lian G., Xiao X., Luo Z., Li S. A Global and Local Enhanced Residual U-Net for Accurate Retinal Vessel Segmentation. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019;18:852–862. doi: 10.1109/TCBB.2019.2917188. PubMed DOI
Gu Z., Cheng J., Fu H., Zhou K., Hao H., Zhao Y., Zhang T., Gao S., Liu J. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Trans. Med. Imaging. 2019;38:2281–2292. doi: 10.1109/TMI.2019.2903562. PubMed DOI
Noh K.J., Park S.J., Lee S. Scale-Space Approximated Convolutional Neural Networks for Retinal Vessel Segmentation. Comput. Methods Programs Biomed. 2019;178:237–246. doi: 10.1016/j.cmpb.2019.06.030. PubMed DOI
Jiang Y., Tan N., Peng T. Optic Disc and Cup Segmentation Based on Deep Convolutional Generative Adversarial Networks. IEEE Access. 2019;7:64483–64493. doi: 10.1109/ACCESS.2019.2917508. DOI
Wang C., Zhao Z., Ren Q., Xu Y., Yu Y. Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation. Entropy. 2019;21:168. doi: 10.3390/e21020168. PubMed DOI PMC
Jiang Y., Duan L., Cheng J., Gu Z., Xia H., Fu H., Li C., Liu J. JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation. IEEE Trans. Biomed. Eng. 2019;67:335–343. doi: 10.1109/TBME.2019.2913211. PubMed DOI
Gao J., Jiang Y., Zhang H., Wang F. Joint disc and cup segmentation based on recurrent fully convolutional network. PLoS ONE. 2020;15:e0238983. doi: 10.1371/journal.pone.0238983. PubMed DOI PMC
Feng S., Zhuo Z., Pan D., Tian Q. CcNet: A Cross-connected Convolutional Network for Segmenting Retinal Vessels Using Multi-scale Features. Neurocomputing. 2020;392:268–276. doi: 10.1016/j.neucom.2018.10.098. DOI
Jin B., Liu P., Wang P., Shi L., Zhao J. Optic Disc Segmentation Using Attention-Based U-Net and the Improved Cross-Entropy Convolutional Neural Network. Entropy. 2020;22:844. doi: 10.3390/e22080844. PubMed DOI PMC
Tamim N., Elshrkawey M., Azim G.A., Nassar H. Retinal Blood Vessel Segmentation Using Hybrid Features and Multi-Layer Perceptron Neural Networks. Symmetry. 2020;12:894. doi: 10.3390/sym12060894. DOI
Sreng S., Maneerat N., Hamamoto K., Win K.Y. Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images. Appl. Sci. 2020;10:4916. doi: 10.3390/app10144916. DOI
Bian X., Luo X., Wang C., Liu W., Lin X. Optic Disc and Optic Cup Segmentation Based on Anatomy Guided Cascade Network. Comput. Methods Programs Biomed. 2020;197:105717. doi: 10.1016/j.cmpb.2020.105717. PubMed DOI
Almubarak H., Bazi Y., Alajlan N. Two-Stage Mask-RCNN Approach for Detecting and Segmenting the Optic Nerve Head, Optic Disc, and Optic Cup in Fundus Images. Appl. Sci. 2020;10:3833. doi: 10.3390/app10113833. DOI
Tian Z., Zheng Y., Li X., Du S., Xu X. Graph convolutional network based optic disc and cup segmentation on fundus images. Biomed. Opt. Express. 2020;11:3043–3057. doi: 10.1364/BOE.390056. PubMed DOI PMC
Zhang L., Lim C.P. Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models. Appl. Soft Comput. 2020;92:106328. doi: 10.1016/j.asoc.2020.106328. DOI
Xie Z., Ling T., Yang Y., Shu R., Liu B.J. Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks. J. Med. Syst. 2020;44:96. doi: 10.1007/s10916-020-01561-2. PubMed DOI
Bengani S., Jothi J.A.A. Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning. Multimed. Tools Appl. 2021;80:3443–3468. doi: 10.1007/s11042-020-09778-6. DOI
Hasan M.K., Alam M.A., Elahi M.T.E., Roy S., Martí R. DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. Artif. Intell. Med. 2021;111:102001. doi: 10.1016/j.artmed.2020.102001. PubMed DOI
Gegundez-Arias M.E., Marin-Santos D., Perez-Borrero I., Vasallo-Vazquez M.J. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Comput. Methods Programs Biomed. 2021;205:106081. doi: 10.1016/j.cmpb.2021.106081. PubMed DOI
Veena H.N., Muruganandham A., Kumaran T.S. A Novel Optic Disc and Optic Cup Segmentation Technique to Diagnose Glaucoma using Deep Learning Convolutional Neural Network over Retinal Fundus Images. J. King Saud Univ. Comput. Inf. Sci. 2021. in press . DOI
Wang L., Gu J., Chen Y., Liang Y., Zhang W., Pu J., Chen H. Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network. Pattern Recognit. 2021;112:107810. doi: 10.1016/j.patcog.2020.107810. PubMed DOI PMC
Lu C.K., Tang T.B., Laude A., Deary I.J., Dhillon B., Murray A.F. Quantification of parapapillary atrophy and optic disc. Investig. Ophthalmol. Vis. Sci. 2011;52:4671–4677. doi: 10.1167/iovs.10-6572. PubMed DOI
Cheng J., Tao D., Liu J., Wong D.W.K., Tan N.M., Wong T.Y., Saw S.M. Peripapillary atrophy detection by sparse biologically inspired feature manifold. IEEE Trans. Med. Imaging. 2012;31:2355–2365. doi: 10.1109/TMI.2012.2218118. PubMed DOI
Lu C.K., Tang T.B., Laude A., Dhillon B., Murray A.F. Parapapillary atrophy and optic disc region assessment (PANDORA): Retinal imaging tool for assessment of the optic disc and parapapillary atrophy. J. Biomed. Opt. 2012;17:106010. doi: 10.1117/1.JBO.17.10.106010. PubMed DOI
Septiarini A., Harjoko A., Pulungan R., Ekantini R. Automatic detection of peripapillary atrophy in retinal fundus images using statistical features. Biomed. Signal Process. Control. 2018;45:151–159. doi: 10.1016/j.bspc.2018.05.028. DOI
Li H., Li H., Kang J., Feng Y., Xu J. Automatic detection of parapapillary atrophy and its association with children myopia. Comput. Methods Programs Biomed. 2020;183:105090. doi: 10.1016/j.cmpb.2019.105090. PubMed DOI
Chai Y., Liu H., Xu J. A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images. Appl. Soft Comput. J. 2020;86:105890. doi: 10.1016/j.asoc.2019.105890. DOI
Son J., Shin J.Y., Kim H.D., Jung K.H., Park K.H., Park S.J. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Ophthalmology. 2020;127:85–94. doi: 10.1016/j.ophtha.2019.05.029. PubMed DOI
Sharma A., Agrawal M., Roy S.D., Gupta V., Vashisht P., Sidhu T. Deep learning to diagnose Peripapillary Atrophy in retinal images along with statistical features. Biomed. Signal Process. Control. 2021;64:102254. doi: 10.1016/j.bspc.2020.102254. DOI
Fu H., Li F., Orlando J.I., Bogunović H., Sun X., Liao J., Xu Y., Zhang S., Zhang X. PALM: PAthoLogic Myopia Challenge. IEEE Dataport. 2019 doi: 10.21227/55pk-8z03. DOI
Kanan C., Cottrell G.W. Color-to-Grayscale: Does the Method Matter in Image Recognition? PLoS ONE. 2012;7:e29740. doi: 10.1371/journal.pone.0029740. PubMed DOI PMC
Zuiderveld K.J. Contrast Limited Adaptive Histogram Equalization. In: Heckbert P.S., editor. Graphics Gems. Elsevier; Amsterdam, The Netherlands: 1994. pp. 474–485. DOI