Analysis of rare driving events in pediatric acute myeloid leukemia
Jazyk angličtina Země Itálie Médium electronic
Typ dokumentu časopisecké články
PubMed
35899387
PubMed Central
PMC9827169
DOI
10.3324/haematol.2021.280250
Knihovny.cz E-zdroje
- MeSH
- akutní myeloidní leukemie * diagnóza genetika metabolismus MeSH
- dítě MeSH
- dospělí MeSH
- Ewingův sarkom * MeSH
- lidé MeSH
- mutace MeSH
- nukleofosmin MeSH
- prognóza MeSH
- transkriptom MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nukleofosmin MeSH
Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics.
AML BFM Study Group Pediatric Hematology and Oncology Essen
Department of Cell Biology Erasmus MC Rotterdam
Department of Oncology St Jude Children's Research Hospital Memphis Tennessee
Department of Pathology St Jude Children's Research Hospital Memphis Tennessee
Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital Athens
Italian Association of Pediatric Hematology and Oncology University of Pavia Pavia
Pediatric Oncology Hematology Erasmus MC Sophia Children's Hospital Rotterdam
Pediatrics and Adolescent Medicine Aarhus University Hospital Aarhus
US Biologic Inc Memphis Tennessee
Women and Child Health Department Hematology Oncology Clinic and Lab University of Padova Padova
Zobrazit více v PubMed
Rasche M, Zimmermann M, Borschel L, et al. . Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018;32(10):2167-2177. PubMed PMC
Zwaan CM, Kolb EA, Reinhardt D, et al. . Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol. 2015;33(27):2949-2962. PubMed PMC
Rubnitz JE, Gibson B, Smith FO. Acute myeloid leukemia. Hematol Oncol Clin North Am. 2010;24(1):35-63. PubMed
Rubnitz JE. Current management of childhood acute myeloid leukemia. Paediatr Drugs. 2017;19(1):1-10. PubMed
Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. . Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187-3205. PubMed
Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia. Hematology Am Soc Hematol Educ Program. 2004:80-97. PubMed
Balgobind BV, Hollink IH, Arentsen-Peters ST, et al. . Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica. 2011;96(10):1478-1487. PubMed PMC
Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179-198. PubMed
Welch JS, Ley TJ, Link DC, et al. . The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264-278. PubMed PMC
Bolouri H Farrar JE Triche T, Jr.et al. . The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24(1):103-112. PubMed PMC
de Rooij JD, Branstetter C, Ma J, et al. . Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet. 2017;49(3):451-456. PubMed PMC
Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al. . NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood. 2011;118(13):3645-3656. PubMed
Tyner JW, Tognon CE, Bottomly D, et al. . Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526-531. PubMed PMC
Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al. . Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica. 2011;96(3):384-392. PubMed PMC
Hollink IH, Zwaan CM, Zimmermann M, et al. . Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia. 2009;23(2):262-270. PubMed
Ho PA, Kutny MA, Alonzo TA, et al. . Leukemic mutations in the methylation-associated genes DNMT3A and IDH2 are rare events in pediatric AML: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2011;57(2):204-209. PubMed PMC
Fornerod M, Ma J, Noort S, et al. . Integrative genomic analysis of pediatric myeloid-related acute leukemias identifies novel subtypes andprognostic indicators. Blood Cancer Discov. 2021;2(6):586-599. PubMed PMC
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29. PubMed PMC
Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics. 2007;23(23):3251-3253. PubMed
Subramanian A, Tamayo P, Mootha VK, et al. . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550. PubMed PMC
Therneau TM. A package for survival analysis in R. 2020. Available from: https://CRAN.R-project.org/package=survival.
Ottema S, Mulet-Lazaro R, Erpelinck-Verschueren C, et al. . The leukemic oncogene EVI1 hijacks a MYC super-enhancer by CTCF-facilitated loops. Nat Commun. 2021;12(1):5679. PubMed PMC
Barros-Silva JD, Paulo P, Bakken AC, et al. . Novel 5' fusion partners of ETV1 and ETV4 in prostate cancer. Neoplasia. 2013;15(7):720-726. PubMed PMC
Coenen EA, Zwaan CM, Reinhardt D, et al. . Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Munster AML-study group. Blood. 2013;122(15):2704-2713. PubMed PMC
Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113(13):3088-3091. PubMed PMC
Crompton BD, Stewart C, Taylor-Weiner A, et al. . The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014;4(11):1326-1341. PubMed
Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017;31(4):798-807. PubMed
DiNardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. Hematology Am Soc Hematol Educ Program. 2016;2016(1):348-355. PubMed PMC
Noort S, Zimmermann M, Reinhardt D, et al. . Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood. 2018;132(15):1584-1592. PubMed PMC
Sandahl JD, Coenen EA, Forestier E, et al. . t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica. 2014;99(5):865-872. PubMed PMC
Klinge CM. Non-coding RNAs in breast cancer: intracellular and intercellular communication. Noncoding RNA. 2018;4(4):40. PubMed PMC
Leygue E. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. Nucl Recept Signal. 2007;5:e006. PubMed PMC
Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New insights into the long non-coding RNA SRA: physiological functions and mechanisms of action. Front Med (Lausanne). 2018;5:244. PubMed PMC
Edvardson S, Nicolae CM, Agrawal PB, et al. . Heterozygous de novo UBTF gain-of-function variant is associated with neurodegeneration in childhood. Am J Hum Genet. 2017;101(2):267-273. PubMed PMC
Toro C, Hori RT, Malicdan MCV, et al. . A recurrent de novo missense mutation in UBTF causes developmental neuroregression. Hum Mol Genet. 2018;27(4):691-705. PubMed PMC
Sanij E, Diesch J, Lesmana A, et al. . A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes. Genome Res. 2015;25(2):201-212. PubMed PMC
Tarlock K, Lamble AJ, Wang YC, et al. . CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group. Blood. 2021;138(13):1137-1147. PubMed PMC
Shing DC, McMullan DJ, Roberts P, et al. . FUS/ERG gene fusions in Ewing's tumors. Cancer Res. 2003;63(15):4568-4576. PubMed
Andersson MK, Stahlberg A, Arvidsson Y, et al. . The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 2008;9:37. PubMed PMC
Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. Gene. 2003;303:11-34. PubMed
Cho J, Shen H, Yu H, et al. . Ewing sarcoma gene Ews regulates hematopoietic stem cell senescence. Blood. 2011;117(4):1156-1166. PubMed PMC
Lee J, Nguyen PT, Shim HS, et al. . EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1938-1945. PubMed PMC
Liu TH, Tang YJ, Huang Y, et al. . Expression of the fetal hematopoiesis regulator FEV indicates leukemias of prenatal origin. Leukemia. 2017;31(5):1079-1086. PubMed
Ng AP, Loughran SJ, Metcalf D, et al. . Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice. Blood. 2011;118(9):2454-2461. PubMed
Sugawara T, Oguro H, Negishi M, et al. . FET family proto-oncogene Fus contributes to self-renewal of hematopoietic stem cells. Exp Hematol. 2010;38(8):696-706. PubMed
Taoudi S, Bee T, Hilton A, et al. . ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev. 2011;25(3):251-262. PubMed PMC
Grünewald TGP, Cidre-Aranaz F, Surdez D, et al. . Ewing sarcoma. Nat Rev Dis Primers. 2018;4(1):5. PubMed
Whelan J, Le Deley MC, Dirksen U, et al. . High-dose chemotherapy and blood autologous stem-cell rescue compared with standard chemotherapy in localized high-risk Ewing sarcoma: results of Euro-E.W.I.N.G.99 and Ewing-2008. J Clin Oncol. 2018;36(31):Jco2018782516. PubMed PMC
Campregher PV, de Oliveira Pereira W, Lisboa B, et al. . A novel mechanism of NPM1 cytoplasmic localization in acute myeloid leukemia: the recurrent gene fusion NPM1-HAUS1. Haematologica. 2016;101(7):e287-e290. PubMed PMC
Kraszewska MD, Dawidowska M, Kosmalska M, et al. . BCL11B, FLT3, NOTCH1 and FBXW7 mutation status in T-cell acute lymphoblastic leukemia patients. Blood Cells Mol Dis. 2013;50(1):33-38. PubMed
Przybylski GK, Dik WA, Wanzeck J, et al. . Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia. 2005;19(2):201-208. PubMed
Padella A, Simonetti G, Paciello G, et al. . Novel and rare fusion transcripts involving transcription factors and tumor suppressor genes in acute myeloid leukemia. Cancers (Basel). 2019;11(12):1951. PubMed PMC
Conway O'Brien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014;2014:103175. PubMed PMC