Antisenescence effect of REAC biomodulation to counteract the evolution of myelodysplastic syndrome
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
35899943
PubMed Central
PMC9616590
DOI
10.33549/physiolres.934903
PII: 934903
Knihovny.cz E-resources
- MeSH
- Leukemia, Myeloid, Acute * MeSH
- Cell Differentiation MeSH
- Humans MeSH
- Myelodysplastic Syndromes * genetics metabolism therapy MeSH
- Tumor Suppressor Protein p53 metabolism MeSH
- Telomerase * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Tumor Suppressor Protein p53 MeSH
- Telomerase * MeSH
About 30 percent of patients diagnosed with myelodysplastic syndromes (MDS) progress to acute myeloid leukemia (AML). The senescence of bone marrow?derived mesenchymal stem cells (BMSCs) seems to be one of the determining factors in inducing this drift. Research is continuously looking for new methodologies and technologies that can use bioelectric signals to act on senescence and cell differentiation towards the phenotype of interest. The Radio Electric Asymmetric Conveyer (REAC) technology, aimed at reorganizing the endogenous bioelectric activity, has already shown to be able to determine direct cell reprogramming effects and counteract the senescence mechanisms in stem cells. Aim of the present study was to prove if the anti-senescence results previously obtained in different kind of stem cells with the REAC Tissue optimization - regenerative (TO-RGN) treatment, could also be observed in BMSCs, evaluating cell viability, telomerase activity, p19ARF, P21, P53, and hTERT gene expression. The results show that the REAC TO-RGN treatment may be a useful tool to counteract the BMSCs senescence which can be the basis of AML drift. Nevertheless, further clinical studies on humans are needed to confirm this hypothesis.
See more in PubMed
Disperati P, Ichim CV, Tkachuk D, Chun K, Schuh AC, Wells RA. Progression of myelodysplasia to acute lymphoblastic leukaemia: implications for disease biology. Leuk Res. 2006 Feb;30(2):233–239. doi: 10.1016/j.leukres.2005.06.011. PubMed DOI
Mattiucci D, Maurizi G, Leoni P, Poloni A. Aging- and senescence-associated changes of mesenchymal stromal cells in myelodysplastic syndromes. Cell Transplant. 2018 May;27(5):754–764. doi: 10.1177/0963689717745890. PubMed DOI PMC
Ernst P, Heidel FH. Molecular mechanisms of senescence and implications for the treatment of myeloid malignancies. Cancers (Basel) 2021 Feb 4;13(4):612. doi: 10.3390/cancers13040612. PubMed DOI PMC
Chen X, Li N, Weng J, Du X. Senescent mesenchymal stem cells in myelodysplastic syndrome: Functional alterations, molecular mechanisms, and therapeutic strategies. Front Cell Dev Biol. 2021 Feb 11;:8617466. doi: 10.3389/fcell.2020.617466. PubMed DOI PMC
Issa JP. Epigenetic changes in the myelodysplastic syndrome. Hematol Oncol Clin North Am. 2010 Apr;24(2):317–30. doi: 10.1016/j.hoc.2010.02.007. PubMed DOI PMC
Heuser M, Yun H, Thol F. Epigenetics in myelodysplastic syndromes. Semin Cancer Biol. 2018 Aug;51:170–179. doi: 10.1016/j.semcancer.2017.07.009. PubMed DOI PMC
Mehdipour P, Santoro F, Minucci S. Epigenetic alterations in acute myeloid leukemias. FEBS J. 2015 May;282(9):1786–800. doi: 10.1111/febs.13142. PubMed DOI
Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, Mason CE. Epigenetic modifications in acute myeloid leukemia: Prognosis, treatment, and heterogeneity. Front Genet. 2019 Mar 1;10:133. doi: 10.3389/fgene.2019.00133. PubMed DOI PMC
Prebet T, Lhoumeau AC, Arnoulet C, Aulas A, Marchetto S, Audebert S, Puppo F, Chabannon C, Sainty D, Santoni MJ, et al. The cell polarity ptk7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome. Blood. 2010 Sep 30;116(13):2315–23. doi: 10.1182/blood-2010-01-262352. PubMed DOI
Levin M. Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell. 2014 Dec 1;25(24):3835–50. doi: 10.1091/mbc.e13-12-0708. PubMed DOI PMC
Cruciani S, Garroni G, Ventura C, Danani A, Necas A, Maioli M. Stem cells and physical energies: Can we really drive stem cell fate? Physiol Res. 2019 Dec 30;68(Suppl 4):S375–S384. doi: 10.33549/physiolres.934388. PubMed DOI
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol. 2018 Jan 15;433(2):177–189. doi: 10.1016/j.ydbio.2017.08.032. PubMed DOI PMC
Gruszka AM, Valli D, Alcalay M. Wnt signalling in acute myeloid leukaemia. Cells. 2019 Nov 7;8(11):1403. doi: 10.3390/cells8111403. PubMed DOI PMC
Ria R, Moschetta M, Reale A, Mangialardi G, Castrovilli A, Vacca A, Dammacco F. Managing myelodysplastic symptoms in elderly patients. Clin Interv Aging. 2009;4:413–23. doi: 10.2147/CIA.S5203. PubMed DOI PMC
Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Gualini S, Fontani V, Ventura C. Radiofrequency energy loop primes cardiac, neuronal, and skeletal muscle differentiation in mouse embryonic stem cells: A new tool for improving tissue regeneration. Cell Transplant. 2012;21(6):1225–33. doi: 10.3727/096368911X600966. PubMed DOI
Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Gualini S, Cavallini C, Fontani V, Ventura C. Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages. Cell Transplant. 2013;22(7):1227–35. doi: 10.3727/096368912X657297. PubMed DOI
Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Delitala A, Bianchi F, Tremolada C, Fontani V, Ventura C. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: A novel approach to multipotency. Cell Transplant. 2014;23(12):1489–500. doi: 10.3727/096368913X672037. PubMed DOI
Rinaldi S, Maioli M, Santaniello S, Castagna A, Pigliaru G, Gualini S, Margotti ML, Carta A, Fontani V, Ventura C. Regenerative treatment using a radioelectric asymmetric conveyor as a novel tool in antiaging medicine: An in vitro beta-galactosidase study. Clin Interv Aging. 2012;7:191–4. doi: 10.2147/CIA.S33312. PubMed DOI PMC
Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Delitala A, Lotti Margotti M, Bagella L, Fontani V, Ventura C. Anti-senescence efficacy of radio-electric asymmetric conveyer technology. Age (Dordr) 2014 Feb;36(1):9–20. doi: 10.1007/s11357-013-9537-8. PubMed DOI PMC
Rinaldi S, Maioli M, Pigliaru G, Castagna A, Santaniello S, Basoli V, Fontani V, Ventura C. Stem cell senescence. Effects of reac technology on telomerase-independent and telomerase-dependent pathways. Sci Rep. 2014 Sep 16;4:6373. doi: 10.1038/srep06373. PubMed DOI PMC
Geyh S, Oz S, Cadeddu RP, Frobel J, Bruckner B, Kundgen A, Fenk R, Bruns I, Zilkens C, Hermsen D, et al. Insufficient stromal support in mds results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013 Sep;27(9):1841–51. doi: 10.1038/leu.2013.193. PubMed DOI
Ruiz-Aparicio PF, Vernot JP. Bone marrow aging and the leukaemia-induced senescence of mesenchymal stem/stromal cells: Exploring similarities. J Pers Med. 2022 Apr 29;12(5):716. doi: 10.3390/jpm12050716. PubMed DOI PMC
Bao EL, Cheng AN, Sankaran VG. The genetics of human hematopoiesis and its disruption in disease. EMBO Mol Med. 2019 Aug;11(8):e10316. doi: 10.15252/emmm.201910316. PubMed DOI PMC
Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017 Feb 25;8(5):761–773. doi: 10.7150/jca.17648. PubMed DOI PMC
Zhou J, Mauerer K, Farina L, Gribben JG. The role of the tumor microenvironment in hematological malignancies and implication for therapy. Front Biosci. 2005 May 1;10:1581–96. doi: 10.2741/1642. PubMed DOI
Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther. 2019 Nov 19;10(1):327. doi: 10.1186/s13287-019-1422-727. PubMed DOI PMC
Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity. 2018 Apr 17;48(4):632–648. PubMed PMC
Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther. 2010 Oct;21(10):1226–38. doi: 10.1089/hum.2010.173. PubMed DOI
Lucas D, Frenette PS. Stem cells: Reprogramming finds its niche. Nature. 2014 Jul 17;511(7509):301–2. doi: 10.1038/nature13516. PubMed DOI PMC
Resnick I, Stepensky P, Elkin G, Barkatz C, Gurevich O, Prigozhina T, Pikarsky E, Waldman E, Amar A, Samuel S, et al. Msc for the improvement of hematopoietic engraftment. Bone Marrow Transplant. 2010 Mar;45(3):605–6. doi: 10.1038/bmt.2009.199. PubMed DOI
Poon Z, Dighe N, Venkatesan SS, Cheung AMS, Fan X, Bari S, Hota M, Ghosh S, Hwang WYK. Bone marrow mscs in mds: Contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia. 2019 Jun;33(6):1487–1500. doi: 10.1038/s41375-018-0310-y. PubMed DOI PMC
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int. 2018 Jun 14;2018:3057624. doi: 10.1155/2018/3057624. PubMed DOI PMC
Fafian-Labora JA, Morente-Lopez M, Arufe MC. Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells. 2019 Jun 26;11(6):337–346. doi: 10.4252/wjsc.v11.i6.337. PubMed DOI PMC
Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (review) Int J Mol Med. 2017 Apr;39(4):775–782. doi: 10.3892/ijmm.2017.2912. PubMed DOI
Maioli M, Basoli V, Santaniello S, Cruciani S, Delitala AP, Pinna R, Milia E, Grillari-Voglauer R, Fontani V, Rinaldi S, et al. Osteogenesis from dental pulp derived stem cells: A novel conditioned medium including melatonin within a mixture of hyaluronic, butyric, and retinoic acids. Stem Cells Int. 2016;2016:2056416. doi: 10.1155/2016/2056416. PubMed DOI PMC
Silver BB, Nelson CM. The bioelectric code: Reprogramming cancer and aging from the interface of mechanical and chemical microenvironments. Front Cell Dev Biol. 2018 Mar 6;6:21. doi: 10.3389/fcell.2018.00021. PubMed DOI PMC
Levin M. Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell. 2014 Dec 1;25(24):3835–50. doi: 10.1091/mbc.e13-12-0708. PubMed DOI PMC
Rinaldi S, Mura M, Castagna A, Fontani V. Long-lasting changes in brain activation induced by a single reac technology pulse in wi-fi bands. Randomized double-blind fmri qualitative study. Sci Rep. 2014 Jul 11;4:5668. doi: 10.1038/srep05668. PubMed DOI PMC
Maioli M, Rinaldi S, Migheli R, Pigliaru G, Rocchitta G, Santaniello S, Basoli V, Castagna A, Fontani V, Ventura C, Serra PA. Neurological morphofunctional differentiation induced by reac technology in pc12. A neuro protective model for parkinson’s disease. Sci Rep. 2015 May 15;5:10439. doi: 10.1038/srep10439. PubMed DOI PMC
Zippo AG, Rinaldi S, Pellegata G, Caramenti GC, Valente M, Fontani V, Biella GE. Electrophysiological effects of non-invasive radio electric asymmetric conveyor (reac) on thalamocortical neural activities and perturbed experimental conditions. Sci Rep. 2015 Dec 11;5:18200. doi: 10.1038/srep18200. PubMed DOI PMC
Lorenzini L, Giuliani A, Sivilia S, Baldassarro VA, Fernandez M, Lotti Margotti M, Giardino L, Fontani V, Rinaldi S, Calza L. Reac technology modifies pathological neuroinflammation and motor behaviour in an alzheimer’s disease mouse model. Sci Rep. 2016 Oct 24;6:35719. doi: 10.1038/srep35719. PubMed DOI PMC
Maioli M, Rinaldi S, Pigliaru G, Santaniello S, Basoli V, Castagna A, Fontani V, Ventura C. Reac technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci Rep. 2016 Jun 24;6:28682. doi: 10.1038/srep28682. PubMed DOI PMC
Panaro MA, Aloisi A, Nicolardi G, Lofrumento DD, De Nuccio F, La Pesa V, Cianciulli A, Rinaldi R, Calvello R, Fontani V, et al. Radio electric asymmetric conveyer technology modulates neuroinflammation in a mouse model of neurodegeneration. Neurosci Bull. 2018 Apr;34(2):270–282. doi: 10.1007/s12264-017-0188-0. PubMed DOI PMC
Rinaldi S, Meloni MA, Galleri G, Maioli M, Pigliaru G, Cugia G, Santaniello S, Castagna A, Fontani V. Radio electric asymmetric conveyer (reac) technology to obviate loss of t cell responsiveness under simulated microgravity. PLoS One. 2018 Jul 6;13(7):e0200128. doi: 10.1371/journal.pone.0200128. PubMed DOI PMC
Basoli V, Santaniello S, Rinaldi S, Fontani V, Pigliaru G, Wieser M, Strajeriu A, Castagna A, Redl H, Ventura C, et al. Physical stimulation by reac and bmp4/wnt-1 inhibitor synergistically enhance cardiogenic commitment in iPCSs. PLoS One. 2019 Jan 23;14(1):e0211188. doi: 10.1371/journal.pone.0211188. PubMed DOI PMC
Collodel G, Fioravanti A, Pascarelli NA, Lamboglia A, Fontani V, Maioli M, Santaniello S, Pigliaru G, Castagna A, Moretti E, et al. Effects of regenerative radioelectric asymmetric conveyer treatment on human normal and osteoarthritic chondrocytes exposed to il-1beta. A biochemical and morphological study. Clin Interv Aging. 2013;8:309–16. doi: 10.2147/CIA.S42229. PubMed DOI PMC
Grandjenette C, Schnekenburger M, Gaigneaux A, Gerard D, Christov C, Mazumder A, Dicato M, Diederich M. Human telomerase reverse transcriptase depletion potentiates the growth-inhibitory activity of imatinib in chronic myeloid leukemia stem cells. Cancer Lett. 2020 Jan 28;469:468–480. doi: 10.1016/j.canlet.2019.11.017. PubMed DOI
Hartmann U, Brümmendorf T, Balabanov S, Thiede C, Illme T, Schaich M. Telomere length and hTERT expression in patients with acute myeloid leukemia correlates with chromosomal abnormalities. Haematologica. 2005 Mar;90(3):307–16. PubMed