Impact of the Types and Relative Quantities of IGHV Gene Mutations in Predicting Prognosis of Patients With Chronic Lymphocytic Leukemia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 CA258924
NCI NIH HHS - United States
PubMed
35903706
PubMed Central
PMC9315922
DOI
10.3389/fonc.2022.897280
Knihovny.cz E-zdroje
- Klíčová slova
- CLL, chronic lymphocytic leukemia, immunoglobulin variable domain, prognosis, somatic mutations,
- Publikační typ
- časopisecké články MeSH
Patients with CLL with mutated IGHV genes (M-CLL) have better outcomes than patients with unmutated IGHVs (U-CLL). Since U-CLL usually express immunoglobulins (IGs) that are more autoreactive and more effectively transduce signals to leukemic B cells, B-cell receptor (BCR) signaling is likely at the heart of the worse outcomes of CLL cases without/few IGHV mutations. A corollary of this conclusion is that M-CLL follow less aggressive clinical courses because somatic IGHV mutations have altered BCR structures and no longer bind stimulatory (auto)antigens and so cannot deliver trophic signals to leukemic B cells. However, the latter assumption has not been confirmed in a large patient cohort. We tried to address the latter by measuring the relative numbers of replacement (R) mutations that lead to non-conservative amino acid changes (Rnc) to the combined numbers of conservative (Rc) and silent (S) amino acid R mutations that likely do not or cannot change amino acids, "(S+Rc) to Rnc IGHV mutation ratio". When comparing time-to-first-treatment (TTFT) of patients with (S+Rc)/Rnc ≤ 1 and >1, TTFTs were similar, even after matching groups for equal numbers of samples and identical numbers of mutations per sample. Thus, BCR structural change might not be the main reason for better outcomes for M-CLL. Since the total number of IGHV mutations associated better with longer TTFT, better clinical courses appear due to the biologic state of a B cell having undergone many stimulatory events leading to IGHV mutations. Analyses of larger patient cohorts will be needed to definitively answer this question.
Chronic Lymphocytic Leukemia Center Dana Farber Cancer Institute Boston MA United States
Clinical Hematology Belfast City Hospital Belfast Ireland
Department of Biological Hematology Hôpital Pitié Salpêtrière Sorbonne Université Paris France
Department of Data Science Dana Farber Cancer Institute Boston MA United States
Department of Hematology and Oncology Niguarda Cancer Center Niguarda Hospital Milan Italy
Department of Hematology Royal Bournemouth Hospital Bournemouth United Kingdom
Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
Department of Molecular Pathology Royal Bournemouth Hospital Bournemouth United Kingdom
Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
Division of Hematology Mayo Clinic Rochester MN United States
Hematology Department Nikea General Hospital Pireaus Greece
Hematology Unit Department of Medicine University of Padua University Hospital Padua Italy
Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece
Northwell Health Cancer Institute Lake Success NY United States
Zobrazit více v PubMed
Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. . Ig V Gene Mutation Status and CD38 Expression as Novel Prognostic Indicators in Chronic Lymphocytic Leukemia. Blood (1999) 94(6):1840–7. doi: 10.1182/blood.V94.6.1840 PubMed DOI
Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) Genes are Associated With a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood (1999) 94:1848-54. doi: 10.1182/blood.V94.6.1848 PubMed DOI
Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, et al. . Chronic Lymphocytic Leukaemia. Nat Rev Dis Primers (2017) 3:16096. doi: 10.1038/nrdp.2016.96 PubMed DOI PMC
Chiorazzi N, Chen SS, Rai KR. Chronic Lymphocytic Leukemia. Cold Spring Harb Perspect Med (2020). doi: 10.1101/cshperspect.a035220 PubMed DOI PMC
Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. . iwCLL Guidelines for Diagnosis, Indications for Treatment, Response Assessment, and Supportive Management of CLL. Blood (2018) 131(25):2745–60. doi: 10.1182/blood-2017-09-806398 PubMed DOI
Rossi D, Terzi-di-Bergamo L, De Paoli L, Cerri M, Ghilardi G, Chiarenza A, et al. . Molecular Prediction of Durable Remission After First-Line Fludarabine-Cyclophosphamide-Rituximab in Chronic Lymphocytic Leukemia. Blood (2015) 126(16):1921–4. doi: 10.1182/blood-2015-05-647925 PubMed DOI PMC
Thompson PA, Tam CS, O'Brien SM, Wierda WG, Stingo F, Plunkett W, et al. . Fludarabine, Cyclophosphamide, and Rituximab Treatment Achieves Long-Term Disease-Free Survival in IGHV-Mutated Chronic Lymphocytic Leukemia. Blood (2016) 127(3):303–9. doi: 10.1182/blood-2015-09-667675 PubMed DOI PMC
Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P, et al. . Long-Term Remissions After FCR Chemoimmunotherapy in Previously Untreated Patients With CLL: Updated Results of the CLL8 Trial. Blood (2016) 127(2):208–15. doi: 10.1182/blood-2015-06-651125 PubMed DOI
Herman SEM, Mustafa RZ, Gyamfi JA, Pittaluga S, Chang S, Chang B, et al. . Ibrutinib Inhibits B-Cell Receptor and NF-κb Signaling and Reduces Tumor Proliferation in Tissue-Resident Cells of Patients With Chronic Lymphocytic Leukemia. Blood (2014). doi: 10.1182/blood-2014-02-548610 PubMed DOI PMC
Bahlo J, Kutsch N, Bauer K, Bergmann MA, Byrd J, Chaffee G. An International Prognostic Index for Patients With Chronic Lymphocytic Leukaemia (CLL-IPI): A Meta-Analysis of Individual Patient Data. Lancet Oncol (2016) 17(6):779–90. doi: 10.1016/S1470-2045(16)30029-8 PubMed DOI
Delgado J, Doubek M, Baumann T, Kotaskova J, Molica S, Mozas P, et al. . Chronic Lymphocytic Leukemia: A Prognostic Model Comprising Only Two Biomarkers (IGHV Mutational Status and FISH Cytogenetics) Separates Patients With Different Outcome and Simplifies the CLL-IPI. Am J Hematol (2017) 92(4):375–80. doi: 10.1002/ajh.24660 PubMed DOI
Cohen JA, Rossi FM, Zucchetto A, Bomben R, Terzi-di-Bergamo L, Rabe KG, et al. . A Laboratory-Based Scoring System Predicts Early Treatment in Rai 0 Chronic Lymphocytic Leukemia. Haematologica (2020) 105(6):1613–20. doi: 10.3324/haematol.2019.228171 PubMed DOI PMC
Broker BM, Klajman A, Youinou P, Jouquan J, Worman CP, Murphy J, et al. . Chronic Lymphocytic Leukemic Cells Secrete Multispecific Autoantibodies. J Autoimmun (1988) 1(5):469–81. doi: 10.1016/0896-8411(88)90068-6 PubMed DOI
Sthoeger ZM, Wakai M, Tse DB, Vinciguerra VP, Allen SL, Budman DR, et al. . Production of Autoantibodies by CD5-Expressing B Lymphocytes From Patients With Chronic Lymphocytic Leukemia. J Exp Med (1989) 169(1):255–68. doi: 10.1084/jem.169.1.255 PubMed DOI PMC
Borche L, Lim A, Binet JL, Dighiero G. Evidence That Chronic Lymphocytic Leukemia B Lymphocytes are Frequently Committed to Production of Natural Autoantibodies. Blood (1990) 76(3):562–9. doi: 10.1182/blood.V76.3.562.562 PubMed DOI
Lanemo Myhrinder A, Hellqvist E, Sidorova E, Soderberg A, Baxendale H, Dahle C, et al. . A New Perspective: Molecular Motifs on Oxidized LDL, Apoptotic Cells, and Bacteria are Targets for Chronic Lymphocytic Leukemia Antibodies. Blood (2008) 111(7):3838–48. doi: 10.1182/blood-2007-11-125450 PubMed DOI
Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, Zhang L, et al. . Chronic Lymphocytic Leukemia Cells Recognize Conserved Epitopes Associated With Apoptosis and Oxidation. Mol Med (2008) 14(11-12):665–74. doi: 10.2119/2008-00102.Catera PubMed DOI PMC
Chu CC, Catera R, Hatzi K, Yan XJ, Zhang L, Wang XB, et al. . Chronic Lymphocytic Leukemia Antibodies With a Common Stereotypic Rearrangement Recognize Nonmuscle Myosin Heavy Chain IIA. Blood (2008) 112(13):5122–9. doi: 10.1182/blood-2008-06-162024 PubMed DOI PMC
Martin T, Duffy SF, Carson DA, Kipps TJ. Evidence for Somatic Selection of Natural Autoantibodies. J Exp Med (1992) 175(4):983–91. doi: 10.1084/jem.175.4.983 PubMed DOI PMC
Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT, et al. . Unmutated and Mutated Chronic Lymphocytic Leukemias Derive From Self-Reactive B Cell Precursors Despite Expressing Different Antibody Reactivity. J Clin Invest (2005) 115(6):1636–43. doi: 10.1172/JCI24387 PubMed DOI PMC
Lanham S, Hamblin T, Oscier D, Ibbotson R, Stevenson F, Packham G. Differential Signaling via Surface IgM is Associated With VH Gene Mutational Status and CD38 Expression in Chronic Lymphocytic Leukemia. Blood (2003) 101(3):1087–93. doi: 10.1182/blood-2002-06-1822 PubMed DOI
Mockridge IC, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK. Reversible Anergy of Sigm-Mediated Signaling in the Two Subsets of CLL Defined by VH-Gene Mutational Status. Blood (2007) 109(10):4424–31. doi: 10.1182/blood-2006-11-056648 PubMed DOI
Guarini A, Chiaretti S, Tavolaro S, Maggio R, Peragine N, Citarella F, et al. . BCR-Ligation Induced by IgM Stimulation Results in Gene Expression and Functional Changes Only in IgVH Unmutated Chronic Lymphocytic Leukemia (CLL) Cells. Blood (2008) 12:127688. doi: 10.1182/blood-2007-12-127688 PubMed DOI
D'Avola A, Drennan S, Tracy I, Henderson I, Chiecchio L, Larrayoz M, et al. . Surface IgM Expression and Function Associate With Clinical Behavior, Genetic Abnormalities and DNA Methylation in CLL. Blood (2016) 128:816-27. doi: 10.1182/blood-2016-03-707786 PubMed DOI
Mazzarello AN, Gentner-Göbel E, Dühren-von Minden M, Tarasenko TN, Nicolò A, Ferrer G, et al. . B Cell Receptor Isotypes Differentially Associate With Cell Signaling, Kinetics, and Outcome in Chronic Lymphocytic Leukemia. J Clin Invest (2022) 132(2):e149308. doi: 10.1172/jci149308 PubMed DOI PMC
O’Brien S BJ, Blum KA, Furman RR, Coutre SE, Sharman J, Flinn IW, et al. . The Bruton Tyrosine Kinase Inhibitor PCI-32765 Induces Durable Responses in Relapsed or Refractory (R/R) Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL): Follow-Up of a Phase Ib/II Study. Blood (2011) 118:983. doi: 10.1182/blood.V118.21.983.983 DOI
Farooqui MZ, Valdez J, Martyr S, Aue G, Saba N, Niemann CU, et al. . Ibrutinib for Previously Untreated and Relapsed or Refractory Chronic Lymphocytic Leukaemia With TP53 Aberrations: A Phase 2, Single-Arm Trial. Lancet Oncol (2015) 16(2):169–76. doi: 10.1016/S1470-2045(14)71182-9 PubMed DOI PMC
Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. . Targeting BTK With Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. New Engl J Med (2013) 369(1):32–42. doi: 10.1056/NEJMoa1215637 PubMed DOI PMC
Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum K, et al. . Ibrutinib Treatment for First-Line and Relapsed/Refractory Chronic Lymphocytic Leukemia: Final Analysis of the Pivotal Phase Ib/II PCYC-1102 Study. Clin Cancer Res (2020) 26:3918-27. doi: 10.1158/1078-0432.ccr-19-2856 PubMed DOI PMC
Burger JA, Hoellenriegel J. Phosphoinositide 3'-Kinase Delta: Turning Off BCR Signaling in Chronic Lymphocytic Leukemia. Oncotarget (2011). doi: 10.18632/oncotarget.341 PubMed DOI PMC
Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. . Idelalisib, an Inhibitor of Phosphatidylinositol 3-Kinase P110δ, for Relapsed/Refractory Chronic Lymphocytic Leukemia. Blood (2014) 123:3390–7. doi: 10.1182/blood-2013-11-535047 PubMed DOI PMC
Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, et al. . Idelalisib, a Selective Inhibitor of Phosphatidylinositol 3-Kinase-δ, as Therapy for Previously Treated Indolent Non-Hodgkin Lymphoma. Blood (2014) 123:3406–13. doi: 10.1182/blood-2013-11-538546 PubMed DOI PMC
Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. . Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. New Engl J Med (2014) 370(11):997–1007. doi: 10.1056/NEJMoa1315226 PubMed DOI PMC
Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. . Bruton Tyrosine Kinase Represents a Promising Therapeutic Target for Treatment of Chronic Lymphocytic Leukemia and is Effectively Targeted by PCI-32765. Blood (2011) 117(23):6287–96. doi: 10.1182/blood-2011-01-328484 PubMed DOI PMC
Ponader S, Chen S-S, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, et al. . The Bruton Tyrosine Kinase Inhibitor PCI-32765 Thwarts Chronic Lymphocytic Leukemia Cell Survival and Tissue Homing In Vitro and In Vivo . Blood (2012) 119(5):1182–9. doi: 10.1182/blood-2011-10-386417 PubMed DOI PMC
Niedermeier M, Hennessy BT, Knight ZA, Henneberg M, Hu J, Kurtova AV, et al. . Isoform-Selective Phosphoinositide 3'-Kinase Inhibitors Inhibit CXCR4 Signaling and Overcome Stromal Cell-Mediated Drug Resistance in Chronic Lymphocytic Leukemia: A Novel Therapeutic Approach. Blood (2009) 165068:5549-57. doi: 10.1182/blood-2008-06-165068 PubMed DOI PMC
Fiorcari S, Brown WS, McIntyre BW, Estrov Z, Maffei R, O'Brien S, et al. . The PI3-Kinase Delta Inhibitor Idelalisib (GS-1101) Targets Integrin-Mediated Adhesion of Chronic Lymphocytic Leukemia (CLL) Cell to Endothelial and Marrow Stromal Cells. PLoS One (2013) 8(12):e83830. doi: 10.1371/journal.pone.0083830 PubMed DOI PMC
Göckeritz E, Kerwien S, Baumann M, Wigger M, Vondey V, Neumann L, et al. . Efficacy of Phosphatidylinositol-3 Kinase Inhibitors With Diverse Isoform Selectivity Profiles for Inhibiting the Survival of Chronic Lymphocytic Leukemia Cells. Int J Cancer (2015) 137:234–42. doi: 10.1002/ijc.29579 PubMed DOI
Shanafelt TD, Wang V, Kay NE, Hanson CA, O'Brien SM, Barrientos JC, et al. . Ibrutinib and Rituximab Provides Superior Clinical Outcome Compared to FCR in Younger Patients With Chronic Lymphocytic Leukemia (CLL): Extended Follow-Up From the E1912 Trial. Blood (2019) 134(Supplement_1):33–. doi: 10.1182/blood-2019-126824 DOI
Munir T, Brown JR, O'Brien S, Barrientos JC, Barr PM, Reddy NM, et al. . Final Analysis From RESONATE: Up to Six Years of Follow-Up on Ibrutinib in Patients With Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma. Am J Hematol (2019) 94(12):1353–63. doi: 10.1002/ajh.25638 PubMed DOI PMC
Burger JA, Barr PM, Robak T, Owen C, Ghia P, Tedeschi A, et al. . Long-Term Efficacy and Safety of First-Line Ibrutinib Treatment for Patients With CLL/SLL: 5 Years of Follow-Up From the Phase 3 RESONATE-2 Study. Leukemia (2020) 34(3):787–98. doi: 10.1038/s41375-019-0602-x PubMed DOI PMC
Langerbeins P, Zhang C, Robrecht S, Cramer P, Fürstenau M, Al-Sawaf O, et al. . The CLL12 Trial: Ibrutinib vs Placebo in Treatment-Naïve, Early-Stage Chronic Lymphocytic Leukemia. Blood (2022) 139(2):177–87. doi: 10.1182/blood.2021010845 PubMed DOI
Chan KF, Koukouravas S, Yeo JY, Koh DW, Gan SK. Probability of Change in Life: Amino Acid Changes in Single Nucleotide Substitutions. Biosystems (2020) 193-194:104135. doi: 10.1016/j.biosystems.2020.104135 PubMed DOI
Dayhoff MO, Schwartz RM, Chen HR, Barker WC, Hunt LT, Orcutt BC. Nucleic Acid Sequence Database. DNA (1981) 1(1):51–8. doi: 10.1089/dna.1.1981.1.51 PubMed DOI
Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume I - The Analysis of Case-Control Studies. IARC Sci Publ (1980) 32):5–338. PubMed
Jain P, Nogueras Gonzalez GM, Kanagal-Shamanna R, Rozovski U, Sarwari N, Tam C, et al. . The Absolute Percent Deviation of IGHV Mutation Rather Than a 98% Cut-Off Predicts Survival of Chronic Lymphocytic Leukaemia Patients Treated With Fludarabine, Cyclophosphamide and Rituximab. Br J Haematol (2018) 180(1):33–40. doi: 10.1111/bjh.15018 PubMed DOI PMC
Chiorazzi N, Stevenson FK. Celebrating 20 Years of IGHV Mutation Analysis in CLL. Hemasphere (2020) 4(1):e334. doi: 10.1097/HS9.0000000000000334 PubMed DOI PMC
Bomben R, Dal Bo M, Zucchetto A, Zaina E, Nanni P, Sonego P, et al. . Mutational Status of IgV(H) Genes in B-Cell Chronic Lymphocytic Leukemia and Prognosis: Percent Mutations or Antigen-Driven Selection? Leukemia (2005) 19(8):1490–2. doi: 10.1038/sj.leu.2403830 PubMed DOI
Hamblin TJ, Davis ZA, Oscier DG. Determination of How Many Immunoglobulin Variable Region Heavy Chain Mutations are Allowable in Unmutated Chronic Lymphocytic Leukaemia - Long-Term Follow Up of Patients With Different Percentages of Mutations. Br J Haematol (2008) 140(3):320–3. doi: 10.1111/j.1365-2141.2007.06928.x__ PubMed DOI
Davis Z, Forconi F, Parker A, Gardiner A, Thomas P, Catovsky D, et al. . The Outcome of Chronic Lymphocytic Leukaemia Patients With 97% IGHV Gene Identity to Germline is Distinct From Cases With <97% Identity and Similar to Those With 98% Identity. Br J Haematology (2016) 173(1):127–36. doi: 10.1111/bjh.13940 PubMed DOI
Morabito F, Shanafelt TD, Gentile M, Reda G, Mauro FR, Rossi D, et al. . Immunoglobulin Heavy Chain Variable Region Gene and Prediction of Time to First Treatment in Patients With Chronic Lymphocytic Leukemia: Mutational Load or Mutational Status? Analysis of 1003 Cases. Am J Hematol (2018) 93(9):E216–E9. doi: 10.1002/ajh.25206 PubMed DOI
Shi K, Sun Q, Qiao C, Zhu H, Wang L, Wu J, et al. . 98% IGHV Gene Identity is the Optimal Cutoff to Dichotomize the Prognosis of Chinese Patients With Chronic Lymphocytic Leukemia. Cancer Med (2020) 9(3):999–1007. doi: 10.1002/cam4.2788 PubMed DOI PMC
Diamond B, Scharff MD. Somatic Mutation of the T15 Heavy Chain Gives Rise to an Antibody With Autoantibody Specificity. Proc Natl Acad Sci USA (1984) 81(18):5841–4. PubMed PMC
Katz JB, Limpanasithikul W, Diamond B. Mutational Analysis of an Autoantibody: Differential Binding and Pathogenicity. J Exp Med (1994) 180(3):925–32. PubMed PMC
Panka DJ, Mudgett-Hunter M, Parks DR, Peterson LL, Herzenberg LA, Haber E, et al. . Variable Region Framework Differences Result in Decreased or Increased Affinity of Variant Anti-Digoxin Antibodies. Proc Natl Acad Sci USA (1988) 85(9):3080–4. doi: 10.1073/pnas.85.9.3080 PubMed DOI PMC
Catera R, Liu Y, Gao C, Yan XJ, Magli A, Allen SL, et al. . Binding of CLL Subset 4 B-Cell Receptor Immunoglobulins to Viable Human Memory B Lymphocytes Requires a Distinctive IGKV Somatic Mutation. Mol Med (2017) 23:1-12. doi: 10.2119/molmed.2017.00003 PubMed DOI PMC
Liu Y, Catera R, Gao C, Yan X-J, Magli A, Allen SL, et al. . CLL Stereotyped Subset 4 Igs Acquire Binding to Viable B Lymphocyte Surfaces by Somatic Mutations, Isotype Class Switching, and With the Prerequisite of IG Self-Association. Blood (2017) 130(Supplement 1):58. doi: 10.1182/blood.V130.Suppl_1.58.58 DOI
Gounari M, Iatrou A, Kotta K, Sarrigeorgiou I, Lymberi P, Chatzidimitriou A, et al. . Changes in N-Glycosylation Induced by Somatic Hypermutation Modulate the Antigen Reactivity of the Immunoglobulin Receptors in CLL Stereotyped Subset 201. Blood (2019) 134(Supplement 1):1733. doi: 10.1182/blood-2019-127852 DOI
Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, et al. . Chronic Lymphocytic Leukaemia is Driven by Antigen-Independent Cell-Autonomous Signalling. Nature (2012) 489(7415):309–12. doi: 10.1038/nature11309 PubMed DOI
Binder M, Müller F, Frick M, Wehr C, Simon F, Leistler B, et al. . CLL B-Cell Receptors can Recognize Themselves: Alternative Epitopes and Structural Clues for Autostimulatory Mechanisms in CLL. Blood (2013) 121(1):239–41. doi: 10.1182/blood-2012-09-454439 PubMed DOI
Minici C, Gounari M, Ubelhart R, Scarfo L, Duhren-von Minden M, Schneider D, et al. . Distinct Homotypic B-Cell Receptor Interactions Shape the Outcome of Chronic Lymphocytic Leukaemia. Nat Commun (2017) 8:15746. doi: 10.1038/ncomms15746 PubMed DOI PMC
Muzio M, Apollonio B, Scielzo C, Frenquelli M, Vandoni I, Boussiotis V, et al. . Constitutive Activation of Distinct BCR-Signaling Pathways in a Subset of CLL Patients: A Molecular Signature of Anergy. Blood (2008) 09:111344. doi: 10.1182/blood-2007-09-111344 PubMed DOI
Thorselius M, Krober A, Murray F, Thunberg U, Tobin G, Buhler A, et al. . Strikingly Homologous Immunoglobulin Gene Rearrangements and Poor Outcome in VH3-21-Utilizing Chronic Lymphocytic Leukemia Independent of Geographical Origin and Mutational Status. Blood (2006) 107:2889–4. doi: 10.1182/blood-2005-06-2227 PubMed DOI
Maity PC, Bilal M, Koning MT, Young M, van Bergen CAM, Renna V, et al. . IGLV3-21*01 is an Inherited Risk Factor for CLL Through the Acquisition of a Single-Point Mutation Enabling Autonomous BCR Signaling. Proc Natl Acad Sci USA (2020) 117(8):4320–7. doi: 10.1073/pnas.1913810117 PubMed DOI PMC
Kocks C, Rajewsky K. Stable Expression and Somatic Hypermutation of Antibody V Regions in B-Cell Developmental Pathways. Annu Rev Immunol (1989) 7:537–59. doi: 10.1146/annurev.iy.07.040189.002541 PubMed DOI
Kleinstein SH, Louzoun Y, Shlomchik MJ. Estimating Hypermutation Rates From Clonal Tree Data. J Immunol (2003) 171(9):4639–49. doi: 10.4049/jimmunol.171.9.4639 PubMed DOI
Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ, et al. . B-Cell Chronic Lymphocytic Leukemia Cells Express a Surface Membrane Phenotype of Activated, Antigen-Experienced B Lymphocytes. Blood (2002) 99(11):4087–93. doi: 10.1182/blood.V99.11.4087 PubMed DOI
Damle RN, Batliwalla FM, Ghiotto F, Valetto A, Albesiano E, Sison C, et al. . Telomere Length and Telomerase Activity Delineate Distinctive Replicative Features of the B-CLL Subgroups Defined by Immunoglobulin V Gene Mutations. Blood (2004) 103(2):375–82. doi: 10.1182/blood-2003-04-1345 PubMed DOI
Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS. DNA Methylation Dynamics During B Cell Maturation Underlie a Continuum of Disease Phenotypes in Chronic Lymphocytic Leukemia. Nat Genet (2016) 48:253–64. doi: 10.1038/ng.3488 PubMed DOI PMC
Queiros AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M, Navarro A, et al. . A B-Cell Epigenetic Signature Defines Three Biological Subgroups of Chronic Lymphocytic Leukemia With Clinical Impact. Leukemia (2015) 29:598-605. doi: 10.1038/leu.2014.252 PubMed DOI
Gaiti F, Chaligne R, Gu H, Brand RM, Kothen-Hill S, Schulman RC, et al. . Epigenetic Evolution and Lineage Histories of Chronic Lymphocytic Leukaemia. Nature (2019) 569(7757):576–80. doi: 10.1038/s41586-019-1198-z PubMed DOI PMC
Ng A, Chiorazzi N. Potential Relevance of B-Cell Maturation Pathways in Defining the Cell(s) of Origin for Chronic Lymphocytic Leukemia. Hematol Oncol Clin North Am (2021) 35(4):665–85. doi: 10.1016/j.hoc.2021.03.002 PubMed DOI
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity (2020) 53(6):1136–50. doi: 10.1016/j.immuni.2020.11.006 PubMed DOI PMC
Jenks SA, Cashman KS, Woodruff MC, Lee FE-H, Sanz I. Extrafollicular Responses in Humans and SLE. Immunol Rev (2019) 288(1):136–48. doi: 10.1111/imr.12741 PubMed DOI PMC