Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis

. 2022 Aug 04 ; 13 (1) : 4540. [epub] 20220804

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35927244
Odkazy

PubMed 35927244
PubMed Central PMC9352765
DOI 10.1038/s41467-022-31862-8
PII: 10.1038/s41467-022-31862-8
Knihovny.cz E-zdroje

During pancreas development endocrine cells leave the ductal epithelium to form the islets of Langerhans, but the morphogenetic mechanisms are incompletely understood. Here, we identify the Ca2+-independent atypical Synaptotagmin-13 (Syt13) as a key regulator of endocrine cell egression and islet formation. We detect specific upregulation of the Syt13 gene and encoded protein in endocrine precursors and the respective lineage during islet formation. The Syt13 protein is localized to the apical membrane of endocrine precursors and to the front domain of egressing endocrine cells, marking a previously unidentified apical-basal to front-rear repolarization during endocrine precursor cell egression. Knockout of Syt13 impairs endocrine cell egression and skews the α-to-β-cell ratio. Mechanistically, Syt13 is a vesicle trafficking protein, transported via the microtubule cytoskeleton, and interacts with phosphatidylinositol phospholipids for polarized localization. By internalizing a subset of plasma membrane proteins at the front domain, including α6β4 integrins, Syt13 modulates cell-matrix adhesion and allows efficient endocrine cell egression. Altogether, these findings uncover an unexpected role for Syt13 as a morphogenetic driver of endocrinogenesis and islet formation.

Zobrazit více v PubMed

Bechard ME, et al. Precommitment low-level neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells. Genes Dev. 2016;30:1852–1865. doi: 10.1101/gad.284729.116. PubMed DOI PMC

Byrnes LE, et al. Lineage dynamics of murine pancreatic development at single-cell resolution. Nat. Commun. 2018;9:1–17. doi: 10.1038/s41467-018-06176-3. PubMed DOI PMC

Kesavan G, et al. Cdc42-mediated tubulogenesis controls cell specification. Cell. 2009;139:791–801. doi: 10.1016/j.cell.2009.08.049. PubMed DOI

Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 2011;240:530–565. doi: 10.1002/dvdy.22584. PubMed DOI

Bastidas-Ponce, A., Scheibner, K., Lickert, H. & Bakhti, M. Cellular and molecular mechanisms coordinating pancreas development. Development144 (2017). PubMed

Löf-Öhlin ZM, et al. EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat. Cell Biol. 2017;19:1313–1325. doi: 10.1038/ncb3628. PubMed DOI

Bankaitis ED, Bechard ME, Gu G, Magnuson MA, Wright CVE. ROCK-nmMyoII, Notch and Neurog3 gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche. Development. 2018;145:dev162115. doi: 10.1242/dev.162115. PubMed DOI PMC

Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev. Dyn. 2011;240:589–604. doi: 10.1002/dvdy.22544. PubMed DOI

Bakhti M, Böttcher A, Lickert H. Modelling the endocrine pancreas in health and disease. Nat. Rev. Endocrinol. 2019;15:155–171. doi: 10.1038/s41574-018-0132-z. PubMed DOI

Sharon N, et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell. 2019;176:790–804.e13. doi: 10.1016/j.cell.2018.12.003. PubMed DOI PMC

Greiner TU, Kesavan G, Ståhlberg A, Semb H. Rac1 regulates pancreatic islet morphogenesis. BMC Dev. Biol. 2009;9:2. doi: 10.1186/1471-213X-9-2. PubMed DOI PMC

Kesavan G, et al. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation. Development. 2014;141:685–696. doi: 10.1242/dev.100297. PubMed DOI PMC

Pictet, R. & Rutter, W. J. Development of the embryonic endocrine pancreas. In Handbook of Physiology, Williams and Wilkins, Baltimore, 25–66 (1972).

Pauerstein PT, et al. A radial axis defined by semaphorin-to-neuropilin signaling controls pancreatic islet morphogenesis. Development. 2017;144:3744–3754. PubMed PMC

Freudenblum J, et al. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development. 2018;145:dev158477. doi: 10.1242/dev.158477. PubMed DOI PMC

Rukstalis JM, Habener JF. Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr. Patterns. 2007;7:471–479. doi: 10.1016/j.modgep.2006.11.001. PubMed DOI PMC

Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 2008;77:615–641. doi: 10.1146/annurev.biochem.77.062005.101135. PubMed DOI

Südhof TC, Rizo J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron. 1996;17:379–388. doi: 10.1016/S0896-6273(00)80171-3. PubMed DOI

Fukuda M, Mikoshiba K. Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII) Biochem. J. 2001;354:249–257. doi: 10.1042/bj3540249. PubMed DOI PMC

von Poser C, Südhof TC. Synaptotagmin 13: structure and expression of a novel synaptotagmin. Eur. J. Cell Biol. 2001;80:41–47. doi: 10.1078/0171-9335-00133. PubMed DOI

Willmann SJ, et al. The global gene expression profile of the secondary transition during pancreatic development. Mech. Dev. 2016;139:51–64. doi: 10.1016/j.mod.2015.11.004. PubMed DOI

Bastidas-Ponce, A. et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development. 10.1242/dev.173849 (2019). PubMed

Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature. 10.1038/s41586-019-1168-5 (2019). PubMed PMC

Schonhoff SE, Giel-Moloney M, Leiter AB. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev. Biol. 2004;270:443–454. doi: 10.1016/j.ydbio.2004.03.013. PubMed DOI

Thorens B, et al. Ins1 Cre knock-in mice for beta cell-specific gene recombination. Diabetologia. 2015;58:558–565. doi: 10.1007/s00125-014-3468-5. PubMed DOI PMC

Cao, J. et al. A human cell atlas of fetal gene expression. Science370, eaba7721 (2020). PubMed PMC

Bakhti M, et al. Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol. Metab. 2019;30:16–29. doi: 10.1016/j.molmet.2019.09.005. PubMed DOI PMC

Nelson, W. J. Transitions between Front—Rear and Apical—Basal Polarity. 1–19 (Spring, 2009). PubMed PMC

Martin TFJ. PI(4,5)P2-binding effector proteins for vesicle exocytosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2015;1851:785–793. doi: 10.1016/j.bbalip.2014.09.017. PubMed DOI PMC

Voleti R, Tomchick DR, Südhof TC, Rizo J. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C2A domain in asynchronous neurotransmitter release. Proc. Natl Acad. Sci. USA. 2017;114:E8518–E8527. doi: 10.1073/pnas.1710708114. PubMed DOI PMC

Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 2020;21:307–326. doi: 10.1038/s41580-020-0214-3. PubMed DOI

Sugiyama T, Rodriguez RT, McLean GW, Kim SK. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc. Natl Acad. Sci. USA. 2007;104:175–180. doi: 10.1073/pnas.0609490104. PubMed DOI PMC

Rickert P, Weiner OD, Wang F, Bourne HR, Servant G. Leukocytes navigate by compass: Roles of PI3Kγ and its lipid products. Trends Cell Biol. 2000;10:466. doi: 10.1016/S0962-8924(00)01841-9. PubMed DOI PMC

Mandal K. Review of PIP2 in cellular signaling, functions and diseases. Int. J. Mol. Sci. 2020;21:8342. doi: 10.3390/ijms21218342. PubMed DOI PMC

Nyeng P, et al. p120ctn-mediated organ patterning precedes and determines pancreatic progenitor fate. Dev. Cell. 2019;49:31–47. doi: 10.1016/j.devcel.2019.02.005. PubMed DOI

Mamidi A, et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 2018;564:114–118. doi: 10.1038/s41586-018-0762-2. PubMed DOI

Butz S, Fernandez-Chacon R, Schmitz F, Jahn R, Südhof TC. The subcellular localizations of atypical synaptotagmins III and VI. Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. J. Biol. Chem. 1999;274:18290–18296. doi: 10.1074/jbc.274.26.18290. PubMed DOI

Awasthi, A. et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science363, eaav1483 (2019). PubMed

Han S, et al. Altered expression of synaptotagmin 13 mRNA in adult mouse brain after contextual fear conditioning. Biochem. Biophys. Res. Commun. 2012;425:880–885. doi: 10.1016/j.bbrc.2012.07.166. PubMed DOI

Nizzardo M, et al. Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathol. 2020;139:837–853. doi: 10.1007/s00401-020-02133-x. PubMed DOI PMC

Kanda M, et al. Synaptotagmin XIII expression and peritoneal metastasis in gastric cancer. Br. J. Surg. 2018;105:1349–1358. doi: 10.1002/bjs.10876. PubMed DOI

Li Q, Zhang S, Hu M, Xu M, Jiang X. Silencing of synaptotagmin 13 inhibits tumor growth through suppressing proliferation and promoting apoptosis of colorectal cancer cells. Int. J. Mol. Med. 2020;45:237–244. PubMed PMC

Zhang L, et al. Identification SYT13 as a novel biomarker in lung adenocarcinoma. J. Cell. Biochem. 2020;121:963–973. doi: 10.1002/jcb.29224. PubMed DOI

Muzumdar MD, Tasic B, Miyamichi K, Li N, Luo L. A global double-fluorescent cre reporter mouse. Genesis. 2007;45:593–605. doi: 10.1002/dvg.20335. PubMed DOI

Tarquis-medina M, et al. Synaptotagmin-13 is a neuroendocrine marker in brain, intestine and pancreas. Int J. Mol. Sci. 2021;22:12526. doi: 10.3390/ijms222212526. PubMed DOI PMC

Huang C, Gu G. Effective isolation of functional islets from neonatal mouse pancreas. J. Vis. Exp. 2017;119:55160. PubMed PMC

Gloeckner, C. J., Boldt, K. & Ueffing, M. Strep/FLAG tandem affinity purification (SF-TAP) to study protein interactions. Current Protocols in Protein Science. Chapter 19, Unit19.20, Wiley Online Library, (2009). PubMed

Olsen JV, et al. Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteom. 2005;4:2010–2021. doi: 10.1074/mcp.T500030-MCP200. PubMed DOI

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J, et al. A practical guide to the maxquant computational platform for silac-based quantitative proteomics. Nat. Protoc. 2009;4:698–705. doi: 10.1038/nprot.2009.36. PubMed DOI

Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC

Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 2021;18:100–106. doi: 10.1038/s41592-020-01018-x. PubMed DOI

Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. in. Methods Enzymol. 2012;504:183–200. doi: 10.1016/B978-0-12-391857-4.00009-4. PubMed DOI

Rouser G, Fleischer S, Yamamoto A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–496. doi: 10.1007/BF02531316. PubMed DOI

Kourtzelis I, et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat. Immunol. 2019;20:40–49. doi: 10.1038/s41590-018-0249-1. PubMed DOI PMC

Wolf FA, Angerer P, Theis FJ. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15. doi: 10.1186/s13059-017-1382-0. PubMed DOI PMC

Wolf FA, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20:59. doi: 10.1186/s13059-019-1663-x. PubMed DOI PMC

Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008;10:P10008. doi: 10.1088/1742-5468/2008/10/P10008. DOI

Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Bakhti, M. et al. Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. theislab/2022_Bakhti_pancreas_Syt13. 10.5281/zenodo.6614964 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...