Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35927244
PubMed Central
PMC9352765
DOI
10.1038/s41467-022-31862-8
PII: 10.1038/s41467-022-31862-8
Knihovny.cz E-zdroje
- MeSH
- endokrinní buňky * MeSH
- integriny MeSH
- Langerhansovy ostrůvky * MeSH
- morfogeneze MeSH
- pankreas MeSH
- synaptotagminy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- integriny MeSH
- synaptotagminy MeSH
During pancreas development endocrine cells leave the ductal epithelium to form the islets of Langerhans, but the morphogenetic mechanisms are incompletely understood. Here, we identify the Ca2+-independent atypical Synaptotagmin-13 (Syt13) as a key regulator of endocrine cell egression and islet formation. We detect specific upregulation of the Syt13 gene and encoded protein in endocrine precursors and the respective lineage during islet formation. The Syt13 protein is localized to the apical membrane of endocrine precursors and to the front domain of egressing endocrine cells, marking a previously unidentified apical-basal to front-rear repolarization during endocrine precursor cell egression. Knockout of Syt13 impairs endocrine cell egression and skews the α-to-β-cell ratio. Mechanistically, Syt13 is a vesicle trafficking protein, transported via the microtubule cytoskeleton, and interacts with phosphatidylinositol phospholipids for polarized localization. By internalizing a subset of plasma membrane proteins at the front domain, including α6β4 integrins, Syt13 modulates cell-matrix adhesion and allows efficient endocrine cell egression. Altogether, these findings uncover an unexpected role for Syt13 as a morphogenetic driver of endocrinogenesis and islet formation.
German Center for Diabetes Research Neuherberg Germany
Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
Institute of Computational Biology Helmholtz Zentrum München Neuherberg Germany
Institute of Diabetes and Regeneration Research Helmholtz Zentrum München Neuherberg Germany
SOTIO a s Jankovcova 1518 2 Prague Czech Republic
Technical University of Munich Department of Mathematics Garching b Munich Germany
Technical University of Munich School of Life Sciences Weihenstephan Freising Germany
Technische Universität München School of Medicine München Germany
Zobrazit více v PubMed
Bechard ME, et al. Precommitment low-level neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells. Genes Dev. 2016;30:1852–1865. doi: 10.1101/gad.284729.116. PubMed DOI PMC
Byrnes LE, et al. Lineage dynamics of murine pancreatic development at single-cell resolution. Nat. Commun. 2018;9:1–17. doi: 10.1038/s41467-018-06176-3. PubMed DOI PMC
Kesavan G, et al. Cdc42-mediated tubulogenesis controls cell specification. Cell. 2009;139:791–801. doi: 10.1016/j.cell.2009.08.049. PubMed DOI
Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 2011;240:530–565. doi: 10.1002/dvdy.22584. PubMed DOI
Bastidas-Ponce, A., Scheibner, K., Lickert, H. & Bakhti, M. Cellular and molecular mechanisms coordinating pancreas development. Development144 (2017). PubMed
Löf-Öhlin ZM, et al. EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat. Cell Biol. 2017;19:1313–1325. doi: 10.1038/ncb3628. PubMed DOI
Bankaitis ED, Bechard ME, Gu G, Magnuson MA, Wright CVE. ROCK-nmMyoII, Notch and Neurog3 gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche. Development. 2018;145:dev162115. doi: 10.1242/dev.162115. PubMed DOI PMC
Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev. Dyn. 2011;240:589–604. doi: 10.1002/dvdy.22544. PubMed DOI
Bakhti M, Böttcher A, Lickert H. Modelling the endocrine pancreas in health and disease. Nat. Rev. Endocrinol. 2019;15:155–171. doi: 10.1038/s41574-018-0132-z. PubMed DOI
Sharon N, et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell. 2019;176:790–804.e13. doi: 10.1016/j.cell.2018.12.003. PubMed DOI PMC
Greiner TU, Kesavan G, Ståhlberg A, Semb H. Rac1 regulates pancreatic islet morphogenesis. BMC Dev. Biol. 2009;9:2. doi: 10.1186/1471-213X-9-2. PubMed DOI PMC
Kesavan G, et al. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation. Development. 2014;141:685–696. doi: 10.1242/dev.100297. PubMed DOI PMC
Pictet, R. & Rutter, W. J. Development of the embryonic endocrine pancreas. In Handbook of Physiology, Williams and Wilkins, Baltimore, 25–66 (1972).
Pauerstein PT, et al. A radial axis defined by semaphorin-to-neuropilin signaling controls pancreatic islet morphogenesis. Development. 2017;144:3744–3754. PubMed PMC
Freudenblum J, et al. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development. 2018;145:dev158477. doi: 10.1242/dev.158477. PubMed DOI PMC
Rukstalis JM, Habener JF. Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr. Patterns. 2007;7:471–479. doi: 10.1016/j.modgep.2006.11.001. PubMed DOI PMC
Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 2008;77:615–641. doi: 10.1146/annurev.biochem.77.062005.101135. PubMed DOI
Südhof TC, Rizo J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron. 1996;17:379–388. doi: 10.1016/S0896-6273(00)80171-3. PubMed DOI
Fukuda M, Mikoshiba K. Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII) Biochem. J. 2001;354:249–257. doi: 10.1042/bj3540249. PubMed DOI PMC
von Poser C, Südhof TC. Synaptotagmin 13: structure and expression of a novel synaptotagmin. Eur. J. Cell Biol. 2001;80:41–47. doi: 10.1078/0171-9335-00133. PubMed DOI
Willmann SJ, et al. The global gene expression profile of the secondary transition during pancreatic development. Mech. Dev. 2016;139:51–64. doi: 10.1016/j.mod.2015.11.004. PubMed DOI
Bastidas-Ponce, A. et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development. 10.1242/dev.173849 (2019). PubMed
Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature. 10.1038/s41586-019-1168-5 (2019). PubMed PMC
Schonhoff SE, Giel-Moloney M, Leiter AB. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev. Biol. 2004;270:443–454. doi: 10.1016/j.ydbio.2004.03.013. PubMed DOI
Thorens B, et al. Ins1 Cre knock-in mice for beta cell-specific gene recombination. Diabetologia. 2015;58:558–565. doi: 10.1007/s00125-014-3468-5. PubMed DOI PMC
Cao, J. et al. A human cell atlas of fetal gene expression. Science370, eaba7721 (2020). PubMed PMC
Bakhti M, et al. Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol. Metab. 2019;30:16–29. doi: 10.1016/j.molmet.2019.09.005. PubMed DOI PMC
Nelson, W. J. Transitions between Front—Rear and Apical—Basal Polarity. 1–19 (Spring, 2009). PubMed PMC
Martin TFJ. PI(4,5)P2-binding effector proteins for vesicle exocytosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2015;1851:785–793. doi: 10.1016/j.bbalip.2014.09.017. PubMed DOI PMC
Voleti R, Tomchick DR, Südhof TC, Rizo J. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C2A domain in asynchronous neurotransmitter release. Proc. Natl Acad. Sci. USA. 2017;114:E8518–E8527. doi: 10.1073/pnas.1710708114. PubMed DOI PMC
Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 2020;21:307–326. doi: 10.1038/s41580-020-0214-3. PubMed DOI
Sugiyama T, Rodriguez RT, McLean GW, Kim SK. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc. Natl Acad. Sci. USA. 2007;104:175–180. doi: 10.1073/pnas.0609490104. PubMed DOI PMC
Rickert P, Weiner OD, Wang F, Bourne HR, Servant G. Leukocytes navigate by compass: Roles of PI3Kγ and its lipid products. Trends Cell Biol. 2000;10:466. doi: 10.1016/S0962-8924(00)01841-9. PubMed DOI PMC
Mandal K. Review of PIP2 in cellular signaling, functions and diseases. Int. J. Mol. Sci. 2020;21:8342. doi: 10.3390/ijms21218342. PubMed DOI PMC
Nyeng P, et al. p120ctn-mediated organ patterning precedes and determines pancreatic progenitor fate. Dev. Cell. 2019;49:31–47. doi: 10.1016/j.devcel.2019.02.005. PubMed DOI
Mamidi A, et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 2018;564:114–118. doi: 10.1038/s41586-018-0762-2. PubMed DOI
Butz S, Fernandez-Chacon R, Schmitz F, Jahn R, Südhof TC. The subcellular localizations of atypical synaptotagmins III and VI. Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. J. Biol. Chem. 1999;274:18290–18296. doi: 10.1074/jbc.274.26.18290. PubMed DOI
Awasthi, A. et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science363, eaav1483 (2019). PubMed
Han S, et al. Altered expression of synaptotagmin 13 mRNA in adult mouse brain after contextual fear conditioning. Biochem. Biophys. Res. Commun. 2012;425:880–885. doi: 10.1016/j.bbrc.2012.07.166. PubMed DOI
Nizzardo M, et al. Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathol. 2020;139:837–853. doi: 10.1007/s00401-020-02133-x. PubMed DOI PMC
Kanda M, et al. Synaptotagmin XIII expression and peritoneal metastasis in gastric cancer. Br. J. Surg. 2018;105:1349–1358. doi: 10.1002/bjs.10876. PubMed DOI
Li Q, Zhang S, Hu M, Xu M, Jiang X. Silencing of synaptotagmin 13 inhibits tumor growth through suppressing proliferation and promoting apoptosis of colorectal cancer cells. Int. J. Mol. Med. 2020;45:237–244. PubMed PMC
Zhang L, et al. Identification SYT13 as a novel biomarker in lung adenocarcinoma. J. Cell. Biochem. 2020;121:963–973. doi: 10.1002/jcb.29224. PubMed DOI
Muzumdar MD, Tasic B, Miyamichi K, Li N, Luo L. A global double-fluorescent cre reporter mouse. Genesis. 2007;45:593–605. doi: 10.1002/dvg.20335. PubMed DOI
Tarquis-medina M, et al. Synaptotagmin-13 is a neuroendocrine marker in brain, intestine and pancreas. Int J. Mol. Sci. 2021;22:12526. doi: 10.3390/ijms222212526. PubMed DOI PMC
Huang C, Gu G. Effective isolation of functional islets from neonatal mouse pancreas. J. Vis. Exp. 2017;119:55160. PubMed PMC
Gloeckner, C. J., Boldt, K. & Ueffing, M. Strep/FLAG tandem affinity purification (SF-TAP) to study protein interactions. Current Protocols in Protein Science. Chapter 19, Unit19.20, Wiley Online Library, (2009). PubMed
Olsen JV, et al. Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteom. 2005;4:2010–2021. doi: 10.1074/mcp.T500030-MCP200. PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox J, et al. A practical guide to the maxquant computational platform for silac-based quantitative proteomics. Nat. Protoc. 2009;4:698–705. doi: 10.1038/nprot.2009.36. PubMed DOI
Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC
Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 2021;18:100–106. doi: 10.1038/s41592-020-01018-x. PubMed DOI
Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. in. Methods Enzymol. 2012;504:183–200. doi: 10.1016/B978-0-12-391857-4.00009-4. PubMed DOI
Rouser G, Fleischer S, Yamamoto A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–496. doi: 10.1007/BF02531316. PubMed DOI
Kourtzelis I, et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat. Immunol. 2019;20:40–49. doi: 10.1038/s41590-018-0249-1. PubMed DOI PMC
Wolf FA, Angerer P, Theis FJ. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15. doi: 10.1186/s13059-017-1382-0. PubMed DOI PMC
Wolf FA, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20:59. doi: 10.1186/s13059-019-1663-x. PubMed DOI PMC
Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008;10:P10008. doi: 10.1088/1742-5468/2008/10/P10008. DOI
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Bakhti, M. et al. Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. theislab/2022_Bakhti_pancreas_Syt13. 10.5281/zenodo.6614964 (2022). PubMed PMC