Identifying biomarkers deciphering sepsis from trauma-induced sterile inflammation and trauma-induced sepsis

. 2023 ; 14 () : 1310271. [epub] 20240112

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38283341

OBJECTIVE: The purpose of this study was to identify a panel of biomarkers for distinguishing early stage sepsis patients from non-infected trauma patients. BACKGROUND: Accurate differentiation between trauma-induced sterile inflammation and real infective sepsis poses a complex life-threatening medical challenge because of their common symptoms albeit diverging clinical implications, namely different therapies. The timely and accurate identification of sepsis in trauma patients is therefore vital to ensure prompt and tailored medical interventions (provision of adequate antimicrobial agents and if possible eradication of infective foci) that can ultimately lead to improved therapeutic management and patient outcome. The adequate withholding of antimicrobials in trauma patients without sepsis is also important in aspects of both patient and environmental perspective. METHODS: In this proof-of-concept study, we employed advanced technologies, including Matrix-Assisted Laser Desorption/Ionization (MALDI) and multiplex antibody arrays (MAA) to identify a panel of biomarkers distinguishing actual sepsis from trauma-induced sterile inflammation. RESULTS: By comparing patient groups (controls, infected and non-infected trauma and septic shock patients under mechanical ventilation) at different time points, we uncovered distinct protein patterns associated with early trauma-induced sterile inflammation on the one hand and sepsis on the other hand. SYT13 and IL1F10 emerged as potential early sepsis biomarkers, while reduced levels of A2M were indicative of both trauma-induced inflammation and sepsis conditions. Additionally, higher levels of TREM1 were associated at a later stage in trauma patients. Furthermore, enrichment analyses revealed differences in the inflammatory response between trauma-induced inflammation and sepsis, with proteins related to complement and coagulation cascades being elevated whereas proteins relevant to focal adhesion were diminished in sepsis. CONCLUSIONS: Our findings, therefore, suggest that a combination of biomarkers is needed for the development of novel diagnostic approaches deciphering trauma-induced sterile inflammation from actual infective sepsis.

Zobrazit více v PubMed

Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev (2012) 25:609–34. doi: 10.1128/CMR.00016-12 PubMed DOI PMC

Allott NEH, Banger MS, Mcgregor AH. Evaluating the diagnostic pathway for acute ACL injuries in trauma centres: a systematic review. BMC Musculoskelet Disord (2022) 23:649. doi: 10.1186/s12891-022-05595-0 PubMed DOI PMC

Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, et al. . Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis (2017) 1863:2564–73. doi: 10.1016/j.bbadis.2017.01.013 PubMed DOI PMC

Balogh ZJ, Reumann MK, Gruen RL, Mayer-Kuckuk P, Schuetz MA, Harris IA, et al. . Advances and future directions for management of trauma patients with musculoskeletal injuries. Lancet (2012) 380:1109–19. doi: 10.1016/S0140-6736(12)60991-X PubMed DOI

Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. . A genomic storm in critically injured humans. J Exp Med (2011) 208:2581–90. doi: 10.1084/jem.20111354 PubMed DOI PMC

Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) (2022) 9:968453. doi: 10.3389/fmed.2022.968453 PubMed DOI PMC

Calfee CS, Matthay MA. Clinical immunology: Culprits with evolutionary ties. Nature (2010) 464:41–2. doi: 10.1038/464041a PubMed DOI PMC

Wenceslau CF, Mccarthy CG, Szasz T, Goulopoulou S, Webb RC. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome. Am J Physiol Heart Circ Physiol (2015) 308:H768–777. doi: 10.1152/ajpheart.00779.2014 PubMed DOI PMC

Krebs ED, Hassinger TE, Guidry CA, Berry PS, Elwood NR, Sawyer RG. Non-utility of sepsis scores for identifying infection in surgical intensive care unit patients. Am J Surg (2019) 218:243–7. doi: 10.1016/j.amjsurg.2018.11.044 PubMed DOI

O'dell JC, Halimeh BN, Johnston J, Mccoy CC, Winfield RD, Guidry CA. Antibiotic initiation timing and mortality in trauma patients with ventilator-associated pneumonia. Am Surg (2022) 89:4740–6. doi: 10.1177/00031348221129518 PubMed DOI

Lee GR, Gallo D, Alves De Souza RW, Tiwari-Heckler S, Csizmadia E, Harbison JD, et al. . Trauma-induced heme release increases susceptibility to bacterial infection. JCI Insight (2021) 6:e150813. doi: 10.1172/jci.insight.150813 PubMed DOI PMC

Kim HI, Park J, Gallo D, Shankar S, Konecna B, Han Y, et al. . DANGER signals activate G-protein receptor kinases suppressing neutrophil function and predisposing to infection after tissue trauma. Ann Surg (2023) 278:e1277-e1288. doi: 10.1097/SLA.0000000000005898 PubMed DOI

Hranjec T, Rosenberger LH, Swenson B, Metzger R, Flohr TR, Politano AD, et al. . Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis (2012) 12:774–80. doi: 10.1016/S1473-3099(12)70151-2 PubMed DOI PMC

Chung S, Choi D, Cho J, Huh Y, Moon J, Kwon J, et al. . Timing and associated factors for sepsis-3 in severe trauma patients: A 3-year single trauma center experience. Acute Crit Care (2018) 33:130–4. doi: 10.4266/acc.2018.00122 PubMed DOI PMC

Mas-Celis F, Olea-Lopez J, Parroquin-Maldonado JA. Sepsis in trauma: A deadly complication. Arch Med Res (2021) 52:808–16. doi: 10.1016/j.arcmed.2021.10.007 PubMed DOI

Raju R. Immune and metabolic alterations following trauma and sepsis - An overview. Biochim Biophys Acta Mol Basis Dis (2017) 1863:2523–5. doi: 10.1016/j.bbadis.2017.08.008 PubMed DOI PMC

Tong Y, Zhang J, Fu Y, He X, Feng Q. Risk factors and outcome of sepsis in traumatic patients and pathogen detection using metagenomic next-generation sequencing. Can J Infect Dis Med Microbiol (2022) 2022:2549413. doi: 10.1155/2022/2549413 PubMed DOI PMC

Renninger CH, Tedesco NS, Strelzow J. American academy of orthopaedic surgeons appropriate use criteria: prevention of surgical site infections after major extremity trauma. J Am Acad Orthop Surg (2023) 31:497–504. doi: 10.5435/JAAOS-D-22-00969 PubMed DOI

Harrell KN, Lee WB, Rooks HJ, Briscoe WE, Capote W, Dart BWT, et al. . Early pneumonia diagnosis decreases ventilator-associated pneumonia rates in trauma population. J Trauma Acute Care Surg (2023) 94:30–5. doi: 10.1097/TA.0000000000003808 PubMed DOI

Prunet B, Bourenne J, David JS, Bouzat P, Boutonnet M, Cordier PY, et al. . Patterns of invasive mechanical ventilation in patients with severe blunt chest trauma and lung contusion: A French multicentric evaluation of practices. J Intensive Care Soc (2019) 20:46–52. doi: 10.1177/1751143718767060 PubMed DOI PMC

Yang YW, Wu CH, Tsai HT, Chen YR, Chang YP, Han YY, et al. . Dynamics of immune responses are inconsistent when trauma patients are grouped by injury severity score and clinical outcomes. Sci Rep (2023) 13:1391. doi: 10.1038/s41598-023-27969-7 PubMed DOI PMC

Ahmad HI, Jabbar A, Mushtaq N, Javed Z, Hayyat MU, Bashir J, et al. . Immune tolerance vs. Immune resistance: the interaction between host and pathogens in infectious diseases. Front Vet Sci (2022) 9:827407. doi: 10.3389/fvets.2022.827407 PubMed DOI PMC

Tsurumi A, Flaherty PJ, Que YA, Ryan CM, Mendoza AE, Almpani M, et al. . Multi-biomarker prediction models for multiple infection episodes following blunt trauma. iScience (2020) 23:101659. doi: 10.1016/j.isci.2020.101659 PubMed DOI PMC

Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for a reappraisal. Crit Care (2020) 24:287. doi: 10.1186/s13054-020-02993-5 PubMed DOI PMC

Thair S, Mewes C, Hinz J, Bergmann I, Buttner B, Sehmisch S, et al. . Gene expression-based diagnosis of infections in critically ill patients-prospective validation of the sepsisMetaScore in a longitudinal severe trauma cohort. Crit Care Med (2021) 49:e751–60. doi: 10.1097/CCM.0000000000005027 PubMed DOI

Abdelhamid SS, Scioscia J, Vodovotz Y, Wu J, Rosengart A, Sung E, et al. . Multi-omic admission-based prognostic biomarkers identified by machine learning algorithms predict patient recovery and 30-day survival in trauma patients. Metabolites (2022) 12. doi: 10.3390/metabo12090774 PubMed DOI PMC

Vincent JL, Pereira AJ, Gleeson J, Backer D. Early management of sepsis. Clin Exp Emerg Med (2014) 1:3–7. doi: 10.15441/ceem.14.005 PubMed DOI PMC

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. . The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA (2016) 315:801–10. doi: 10.1001/jama.2016.0287 PubMed DOI PMC

Gul F, Arslantas MK, Cinel I, Kumar A. Changing definitions of sepsis. Turk J Anaesthesiol Reanim (2017) 45:129–38. doi: 10.5152/TJAR.2017.93753 PubMed DOI PMC

Taniguchi LU, Pires EMC, Vieira JM, Jr., Azevedo LCP. Systemic inflammatory response syndrome criteria and the prediction of hospital mortality in critically ill patients: a retrospective cohort study. Rev Bras Ter Intensiva (2017) 29:317–24. doi: 10.5935/0103-507X.20170047 PubMed DOI PMC

Lu HX, Du J, Wen DL, Sun JH, Chen MJ, Zhang AQ, et al. . Development and validation of a novel predictive score for sepsis risk among trauma patients. World J Emerg Surg (2019) 14:11. doi: 10.1186/s13017-019-0231-8 PubMed DOI PMC

Schefzik R, Hahn B, Schneider-Lindner V. Dissecting contributions of individual systemic inflammatory response syndrome criteria from a prospective algorithm to the prediction and diagnosis of sepsis in a polytrauma cohort. Front Med (Lausanne) (2023) 10:1227031. doi: 10.3389/fmed.2023.1227031 PubMed DOI PMC

Iyengar KP, Venkatesan AS, Jain VK, Shashidhara MK, Elbana H, Botchu R. Risks in the management of polytrauma patients: clinical insights. Orthop Res Rev (2023) 15:27–38. doi: 10.2147/ORR.S340532 PubMed DOI PMC

Ward PA. New approaches to the study of sepsis. EMBO Mol Med (2012) 4:1234–43. doi: 10.1002/emmm.201201375 PubMed DOI PMC

Liesenfeld O, Lehman L, Hunfeld KP, Kost G. Molecular diagnosis of sepsis: New aspects and recent developments. Eur J Microbiol Immunol (Bp) (2014) 4:1–25. doi: 10.1556/EuJMI.4.2014.1.1 PubMed DOI PMC

Duncan CF, Youngstein T, Kirrane MD, Lonsdale DO. Diagnostic challenges in sepsis. Curr Infect Dis Rep (2021) 23:22. doi: 10.1007/s11908-021-00765-y PubMed DOI PMC

Lakbar I, Singer M, Leone M. 2030: will we still need our microbiologist? Intensive Care Med (2023) 49:1232–4. doi: 10.1007/s00134-023-07186-6 PubMed DOI

Ludwig KR, Hummon AB. Mass spectrometry for the discovery of biomarkers of sepsis. Mol Biosyst (2017) 13:648–64. doi: 10.1039/C6MB00656F PubMed DOI PMC

Von Groote T, Meersch-Dini M. Biomarkers for the Prediction and Judgement of Sepsis and Sepsis Complications: A Step towards precision medicine? J Clin Med (2022) 11. doi: 10.3390/jcm11195782 PubMed DOI PMC

Denny KJ, De Waele J, Laupland KB, Harris PNA, Lipman J. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect (2020) 26:35–40. doi: 10.1016/j.cmi.2019.07.007 PubMed DOI

Povoa P, Coelho L, Dal-Pizzol F, Ferrer R, Huttner A, Conway Morris A, et al. . How to use biomarkers of infection or sepsis at the bedside: guide to clinicians. Intensive Care Med (2023) 49:142–53. doi: 10.1007/s00134-022-06956-y PubMed DOI PMC

Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care (2022) 26:14. doi: 10.1186/s13054-021-03862-5 PubMed DOI PMC

Pottecher J, Noll E, Borel M, Audibert G, Gette S, Meyer C, et al. . Protocol for TRAUMADORNASE: a prospective, randomized, multicentre, double-blinded, placebo-controlled clinical trial of aerosolized dornase alfa to reduce the incidence of moderate-to-severe hypoxaemia in ventilated trauma patients. Trials (2020) 21:274. doi: 10.1186/s13063-020-4141-6 PubMed DOI PMC

Copes WS, Champion HR, Sacco WJ, Lawnick MM, Keast SL, Bain LW. The injury severity score revisited. J Trauma (1988) 28:69–77. doi: 10.1097/00005373-198801000-00010 PubMed DOI

Li Y, Liu C, Xiao W, Song T, Wang S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: A meta-analysis. Neurocrit Care (2020) 32:272–85. doi: 10.1007/s12028-019-00773-w PubMed DOI PMC

Klompas M. Complications of mechanical ventilation–the CDC's new surveillance paradigm. N Engl J Med (2013) 368:1472–5. doi: 10.1056/NEJMp1300633 PubMed DOI

Calandra T, Cohen J, International Sepsis Forum Definition of Infection in The, I.C.U.C.C . The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med (2005) 33:1538–48. doi: 10.1097/01.CCM.0000168253.91200.83 PubMed DOI

Olinder J, Borjesson A, Norrman J, West T, Carlstrom J, Gustafsson A, et al. . Hepcidin discriminates sepsis from other critical illness at admission to intensive care. Sci Rep (2022) 12:14857. doi: 10.1038/s41598-022-18826-0 PubMed DOI PMC

Olinder J, Ehinger D, Liljenborg E, Herwald H, Ryden C. Plasma levels of hepcidin and reticulocyte haemoglobin during septic shock. J Innate Immun (2020) 12:1232–4. doi: 10.1159/000508561 PubMed DOI PMC

Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, et al. . SAPS 3–From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med (2005) 31:1345–55. doi: 10.1007/s00134-005-2763-5 PubMed DOI PMC

Papareddy P, Rossnagel M, Doreen Hollwedel F, Kilic G, Veerla S, Naudin C, et al. . A human antithrombin isoform dampens inflammatory responses and protects from organ damage during bacterial infection. Nat Microbiol (2019) 4:2442–55. doi: 10.1038/s41564-019-0559-6 PubMed DOI

Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods (2009) 6:359–62. doi: 10.1038/nmeth.1322 PubMed DOI

Moreno R, Vincent JL, Matos R, Mendonca A, Cantraine F, Thijs L, et al. . The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med (1999) 25:686–96. doi: 10.1007/s001340050931 PubMed DOI

Innerhofer P, Fries D, Mittermayr M, Innerhofer N, Von Langen D, Hell T, et al. . Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol (2017) 4:e258–71. doi: 10.1016/S2352-3026(17)30077-7 PubMed DOI

Weber GF, Chousterman BG, He S, Fenn AM, Nairz M, Anzai A, et al. . Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science (2015) 347:1260–5. doi: 10.1126/science.aaa4268 PubMed DOI PMC

Siskind S, Brenner M, Wang P. TREM-1 modulation strategies for sepsis. Front Immunol (2022) 13:907387. doi: 10.3389/fimmu.2022.907387 PubMed DOI PMC

Wu F, Zhang YT, Teng F, Li HH, Guo SB. S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction. Int Immunopharmacol (2023) 115:109716. doi: 10.1016/j.intimp.2023.109716 PubMed DOI

Gyurkovska V, Ivanovska N. Distinct roles of TNF-related apoptosis-inducing ligand (TRAIL) in viral and bacterial infections: from pathogenesis to pathogen clearance. Inflammation Res (2016) 65:427–37. doi: 10.1007/s00011-016-0934-1 PubMed DOI

Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, Pavlov AM, et al. . Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med (2014) 6:27–42. doi: 10.1002/emmm.201303503 PubMed DOI PMC

Kelly BJ, Lautenbach E, Nachamkin I, Coffin SE, Gerber JS, Fuchs BD, et al. . Combined biomarkers discriminate a low likelihood of bacterial infection among surgical intensive care unit patients with suspected sepsis. Diagn Microbiol Infect Dis (2016) 85:109–15. doi: 10.1016/j.diagmicrobio.2016.01.003 PubMed DOI PMC

Vandooren J, Itoh Y. Alpha-2-macroglobulin in inflammation, immunity and infections. Front Immunol (2021) 12:803244. doi: 10.3389/fimmu.2021.803244 PubMed DOI PMC

Vlasakova K, Bourque J, Bailey WJ, Patel S, Besteman EG, Gonzalez RJ, et al. . Universal accessible biomarkers of drug-induced tissue injury and systemic inflammation in rat: performance assessment of TIMP-1, A2M, AGP, NGAL, and albumin. Toxicol Sci (2022) 187:219–33. doi: 10.1093/toxsci/kfac030 PubMed DOI

Xu F, Lin S, Yan X, Wang C, Tu H, Yin Y, et al. . Interleukin 38 protects against lethal sepsis. J Infect Dis (2018) 218:1175–84. doi: 10.1093/infdis/jiy289 PubMed DOI

Chai YS, Lin SH, Zhang M, Deng L, Chen Y, Xie K, et al. . IL-38 is a biomarker for acute respiratory distress syndrome in humans and down-regulates Th17 differentiation in vivo . Clin Immunol (2020) 210:108315. doi: 10.1016/j.clim.2019.108315 PubMed DOI

Diaz-Barreiro A, Huard A, Palmer G. Multifaceted roles of IL-38 in inflammation and cancer. Cytokine (2022) 151:155808. doi: 10.1016/j.cyto.2022.155808 PubMed DOI

Fazeli P, Saeidnia M, Erfani M, Kalani M. An overview of the biological and multifunctional roles of IL-38 in different infectious diseases and COVID-19. Immunol Res (2022) 70:316–24. doi: 10.1007/s12026-022-09275-y PubMed DOI PMC

Tarquis-Medina M, Scheibner K, Gonzalez-Garcia I, Bastidas-Ponce A, Sterr M, Jaki J, et al. . Synaptotagmin-13 is a neuroendocrine marker in brain, intestine and pancreas. Int J Mol Sci (2021) 22. doi: 10.3390/ijms222212526 PubMed DOI PMC

Bakhti M, Bastidas-Ponce A, Tritschler S, Czarnecki O, Tarquis-Medina M, Nedvedova E, et al. . Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. Nat Commun (2022) 13:4540. doi: 10.1038/s41467-022-31862-8 PubMed DOI PMC

Zhang YD, Zhong R, Liu JQ, Sun ZX, Wang T, Liu JT. Role of synaptotagmin 13 (SYT13) in promoting breast cancer and signaling pathways. Clin Transl Oncol (2023) 25:1629–40. doi: 10.1007/s12094-022-03058-5 PubMed DOI

Bosco MC, Raggi F, Varesio L. Therapeutic potential of targeting TREM-1 in inflammatory diseases and cancer. Curr Pharm Des (2016) 22:6209–33. doi: 10.2174/1381612822666160826110539 PubMed DOI

Brenner T, Uhle F, Fleming T, Wieland M, Schmoch T, Schmitt F, et al. . Soluble TREM-1 as a diagnostic and prognostic biomarker in patients with septic shock: an observational clinical study. Biomarkers (2017) 22:63–9. doi: 10.1080/1354750X.2016.1204005 PubMed DOI

Jolly L, Carrasco K, Salcedo-Magguilli M, Garaud JJ, Lambden S, van der Poll T, et al. . sTREM-1 is a specific biomarker of TREM-1 pathway activation. Cell Mol Immunol (2021) 18:2054–6. doi: 10.1038/s41423-021-00733-5 PubMed DOI PMC

Colonna M. The biology of TREM receptors. Nat Rev Immunol (2023) 23:580–94. doi: 10.1038/s41577-023-00837-1 PubMed DOI PMC

Francois B, Lambden S, Fivez T, Gibot S, Derive M, Grouin JM, et al. . Prospective evaluation of the efficacy, safety, and optimal biomarker enrichment strategy for nangibotide, a TREM-1 inhibitor, in patients with septic shock (ASTONISH): a double-blind, randomised, controlled, phase 2b trial. Lancet Respir Med (2023) 11:894–904. doi: 10.1016/S2213-2600(23)00158-3 PubMed DOI

Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev (2018) 281:8–27. doi: 10.1111/imr.12621 PubMed DOI PMC

Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev (2019) 45:24–34. doi: 10.1016/j.cytogfr.2018.12.004 PubMed DOI

Cahill LA, Joughin BA, Kwon WY, Itagaki K, Kirk CH, Shapiro NI, et al. . Multiplexed plasma immune mediator signatures can differentiate sepsis from nonInfective SIRS: american surgical association 2020 annual meeting paper. Ann Surg (2020) 272:604–10. doi: 10.1097/SLA.0000000000004379 PubMed DOI PMC

Lei M, Han Z, Wang S, Guo C, Zhang X, Song Y, et al. . Biological signatures and prediction of an immunosuppressive status-persistent critical illness-among orthopedic trauma patients using machine learning techniques. Front Immunol (2022) 13:979877. doi: 10.3389/fimmu.2022.979877 PubMed DOI PMC

Wang J, Wen D, Zeng S, Du J, Cui L, Sun J, et al. . Cytokine biomarker phenotype for early prediction and triage of sepsis in blunt trauma patients. J Surg Res (2023) 283:824–32. doi: 10.1016/j.jss.2022.10.059 PubMed DOI

Yang B, Wang X, Liu Z, Lu Z, Fang G, Xue X, et al. . Endothelial-related biomarkers in evaluation of vascular function during progression of sepsis after severe trauma: new potential diagnostic tools in sepsis. J Inflammation Res (2023) 16:2773–82. doi: 10.2147/JIR.S418697 PubMed DOI PMC

Stassen NA, Leslie-Norfleet LA, Robertson AM, Eichenberger MR, Polk HC, Jr. Interferon-gamma gene polymorphisms and the development of sepsis in patients with trauma. Surgery (2002) 132:289–92. doi: 10.1067/msy.2002.127167 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...