Identifying biomarkers deciphering sepsis from trauma-induced sterile inflammation and trauma-induced sepsis
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38283341
PubMed Central
PMC10820703
DOI
10.3389/fimmu.2023.1310271
Knihovny.cz E-zdroje
- Klíčová slova
- A2M, IL1F10, SYT13, bacteremia, biomarkers, sepsis, systemic inflammatory response syndrome, trauma,
- MeSH
- antiinfekční látky * MeSH
- biologické markery MeSH
- infekční nemoci * komplikace MeSH
- lidé MeSH
- sepse * komplikace diagnóza MeSH
- septický šok * komplikace MeSH
- synaptotagminy MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiinfekční látky * MeSH
- biologické markery MeSH
- synaptotagminy MeSH
- SYT13 protein, human MeSH Prohlížeč
OBJECTIVE: The purpose of this study was to identify a panel of biomarkers for distinguishing early stage sepsis patients from non-infected trauma patients. BACKGROUND: Accurate differentiation between trauma-induced sterile inflammation and real infective sepsis poses a complex life-threatening medical challenge because of their common symptoms albeit diverging clinical implications, namely different therapies. The timely and accurate identification of sepsis in trauma patients is therefore vital to ensure prompt and tailored medical interventions (provision of adequate antimicrobial agents and if possible eradication of infective foci) that can ultimately lead to improved therapeutic management and patient outcome. The adequate withholding of antimicrobials in trauma patients without sepsis is also important in aspects of both patient and environmental perspective. METHODS: In this proof-of-concept study, we employed advanced technologies, including Matrix-Assisted Laser Desorption/Ionization (MALDI) and multiplex antibody arrays (MAA) to identify a panel of biomarkers distinguishing actual sepsis from trauma-induced sterile inflammation. RESULTS: By comparing patient groups (controls, infected and non-infected trauma and septic shock patients under mechanical ventilation) at different time points, we uncovered distinct protein patterns associated with early trauma-induced sterile inflammation on the one hand and sepsis on the other hand. SYT13 and IL1F10 emerged as potential early sepsis biomarkers, while reduced levels of A2M were indicative of both trauma-induced inflammation and sepsis conditions. Additionally, higher levels of TREM1 were associated at a later stage in trauma patients. Furthermore, enrichment analyses revealed differences in the inflammatory response between trauma-induced inflammation and sepsis, with proteins related to complement and coagulation cascades being elevated whereas proteins relevant to focal adhesion were diminished in sepsis. CONCLUSIONS: Our findings, therefore, suggest that a combination of biomarkers is needed for the development of novel diagnostic approaches deciphering trauma-induced sterile inflammation from actual infective sepsis.
Zobrazit více v PubMed
Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev (2012) 25:609–34. doi: 10.1128/CMR.00016-12 PubMed DOI PMC
Allott NEH, Banger MS, Mcgregor AH. Evaluating the diagnostic pathway for acute ACL injuries in trauma centres: a systematic review. BMC Musculoskelet Disord (2022) 23:649. doi: 10.1186/s12891-022-05595-0 PubMed DOI PMC
Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, et al. . Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis (2017) 1863:2564–73. doi: 10.1016/j.bbadis.2017.01.013 PubMed DOI PMC
Balogh ZJ, Reumann MK, Gruen RL, Mayer-Kuckuk P, Schuetz MA, Harris IA, et al. . Advances and future directions for management of trauma patients with musculoskeletal injuries. Lancet (2012) 380:1109–19. doi: 10.1016/S0140-6736(12)60991-X PubMed DOI
Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. . A genomic storm in critically injured humans. J Exp Med (2011) 208:2581–90. doi: 10.1084/jem.20111354 PubMed DOI PMC
Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) (2022) 9:968453. doi: 10.3389/fmed.2022.968453 PubMed DOI PMC
Calfee CS, Matthay MA. Clinical immunology: Culprits with evolutionary ties. Nature (2010) 464:41–2. doi: 10.1038/464041a PubMed DOI PMC
Wenceslau CF, Mccarthy CG, Szasz T, Goulopoulou S, Webb RC. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome. Am J Physiol Heart Circ Physiol (2015) 308:H768–777. doi: 10.1152/ajpheart.00779.2014 PubMed DOI PMC
Krebs ED, Hassinger TE, Guidry CA, Berry PS, Elwood NR, Sawyer RG. Non-utility of sepsis scores for identifying infection in surgical intensive care unit patients. Am J Surg (2019) 218:243–7. doi: 10.1016/j.amjsurg.2018.11.044 PubMed DOI
O'dell JC, Halimeh BN, Johnston J, Mccoy CC, Winfield RD, Guidry CA. Antibiotic initiation timing and mortality in trauma patients with ventilator-associated pneumonia. Am Surg (2022) 89:4740–6. doi: 10.1177/00031348221129518 PubMed DOI
Lee GR, Gallo D, Alves De Souza RW, Tiwari-Heckler S, Csizmadia E, Harbison JD, et al. . Trauma-induced heme release increases susceptibility to bacterial infection. JCI Insight (2021) 6:e150813. doi: 10.1172/jci.insight.150813 PubMed DOI PMC
Kim HI, Park J, Gallo D, Shankar S, Konecna B, Han Y, et al. . DANGER signals activate G-protein receptor kinases suppressing neutrophil function and predisposing to infection after tissue trauma. Ann Surg (2023) 278:e1277-e1288. doi: 10.1097/SLA.0000000000005898 PubMed DOI
Hranjec T, Rosenberger LH, Swenson B, Metzger R, Flohr TR, Politano AD, et al. . Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis (2012) 12:774–80. doi: 10.1016/S1473-3099(12)70151-2 PubMed DOI PMC
Chung S, Choi D, Cho J, Huh Y, Moon J, Kwon J, et al. . Timing and associated factors for sepsis-3 in severe trauma patients: A 3-year single trauma center experience. Acute Crit Care (2018) 33:130–4. doi: 10.4266/acc.2018.00122 PubMed DOI PMC
Mas-Celis F, Olea-Lopez J, Parroquin-Maldonado JA. Sepsis in trauma: A deadly complication. Arch Med Res (2021) 52:808–16. doi: 10.1016/j.arcmed.2021.10.007 PubMed DOI
Raju R. Immune and metabolic alterations following trauma and sepsis - An overview. Biochim Biophys Acta Mol Basis Dis (2017) 1863:2523–5. doi: 10.1016/j.bbadis.2017.08.008 PubMed DOI PMC
Tong Y, Zhang J, Fu Y, He X, Feng Q. Risk factors and outcome of sepsis in traumatic patients and pathogen detection using metagenomic next-generation sequencing. Can J Infect Dis Med Microbiol (2022) 2022:2549413. doi: 10.1155/2022/2549413 PubMed DOI PMC
Renninger CH, Tedesco NS, Strelzow J. American academy of orthopaedic surgeons appropriate use criteria: prevention of surgical site infections after major extremity trauma. J Am Acad Orthop Surg (2023) 31:497–504. doi: 10.5435/JAAOS-D-22-00969 PubMed DOI
Harrell KN, Lee WB, Rooks HJ, Briscoe WE, Capote W, Dart BWT, et al. . Early pneumonia diagnosis decreases ventilator-associated pneumonia rates in trauma population. J Trauma Acute Care Surg (2023) 94:30–5. doi: 10.1097/TA.0000000000003808 PubMed DOI
Prunet B, Bourenne J, David JS, Bouzat P, Boutonnet M, Cordier PY, et al. . Patterns of invasive mechanical ventilation in patients with severe blunt chest trauma and lung contusion: A French multicentric evaluation of practices. J Intensive Care Soc (2019) 20:46–52. doi: 10.1177/1751143718767060 PubMed DOI PMC
Yang YW, Wu CH, Tsai HT, Chen YR, Chang YP, Han YY, et al. . Dynamics of immune responses are inconsistent when trauma patients are grouped by injury severity score and clinical outcomes. Sci Rep (2023) 13:1391. doi: 10.1038/s41598-023-27969-7 PubMed DOI PMC
Ahmad HI, Jabbar A, Mushtaq N, Javed Z, Hayyat MU, Bashir J, et al. . Immune tolerance vs. Immune resistance: the interaction between host and pathogens in infectious diseases. Front Vet Sci (2022) 9:827407. doi: 10.3389/fvets.2022.827407 PubMed DOI PMC
Tsurumi A, Flaherty PJ, Que YA, Ryan CM, Mendoza AE, Almpani M, et al. . Multi-biomarker prediction models for multiple infection episodes following blunt trauma. iScience (2020) 23:101659. doi: 10.1016/j.isci.2020.101659 PubMed DOI PMC
Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for a reappraisal. Crit Care (2020) 24:287. doi: 10.1186/s13054-020-02993-5 PubMed DOI PMC
Thair S, Mewes C, Hinz J, Bergmann I, Buttner B, Sehmisch S, et al. . Gene expression-based diagnosis of infections in critically ill patients-prospective validation of the sepsisMetaScore in a longitudinal severe trauma cohort. Crit Care Med (2021) 49:e751–60. doi: 10.1097/CCM.0000000000005027 PubMed DOI
Abdelhamid SS, Scioscia J, Vodovotz Y, Wu J, Rosengart A, Sung E, et al. . Multi-omic admission-based prognostic biomarkers identified by machine learning algorithms predict patient recovery and 30-day survival in trauma patients. Metabolites (2022) 12. doi: 10.3390/metabo12090774 PubMed DOI PMC
Vincent JL, Pereira AJ, Gleeson J, Backer D. Early management of sepsis. Clin Exp Emerg Med (2014) 1:3–7. doi: 10.15441/ceem.14.005 PubMed DOI PMC
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. . The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA (2016) 315:801–10. doi: 10.1001/jama.2016.0287 PubMed DOI PMC
Gul F, Arslantas MK, Cinel I, Kumar A. Changing definitions of sepsis. Turk J Anaesthesiol Reanim (2017) 45:129–38. doi: 10.5152/TJAR.2017.93753 PubMed DOI PMC
Taniguchi LU, Pires EMC, Vieira JM, Jr., Azevedo LCP. Systemic inflammatory response syndrome criteria and the prediction of hospital mortality in critically ill patients: a retrospective cohort study. Rev Bras Ter Intensiva (2017) 29:317–24. doi: 10.5935/0103-507X.20170047 PubMed DOI PMC
Lu HX, Du J, Wen DL, Sun JH, Chen MJ, Zhang AQ, et al. . Development and validation of a novel predictive score for sepsis risk among trauma patients. World J Emerg Surg (2019) 14:11. doi: 10.1186/s13017-019-0231-8 PubMed DOI PMC
Schefzik R, Hahn B, Schneider-Lindner V. Dissecting contributions of individual systemic inflammatory response syndrome criteria from a prospective algorithm to the prediction and diagnosis of sepsis in a polytrauma cohort. Front Med (Lausanne) (2023) 10:1227031. doi: 10.3389/fmed.2023.1227031 PubMed DOI PMC
Iyengar KP, Venkatesan AS, Jain VK, Shashidhara MK, Elbana H, Botchu R. Risks in the management of polytrauma patients: clinical insights. Orthop Res Rev (2023) 15:27–38. doi: 10.2147/ORR.S340532 PubMed DOI PMC
Ward PA. New approaches to the study of sepsis. EMBO Mol Med (2012) 4:1234–43. doi: 10.1002/emmm.201201375 PubMed DOI PMC
Liesenfeld O, Lehman L, Hunfeld KP, Kost G. Molecular diagnosis of sepsis: New aspects and recent developments. Eur J Microbiol Immunol (Bp) (2014) 4:1–25. doi: 10.1556/EuJMI.4.2014.1.1 PubMed DOI PMC
Duncan CF, Youngstein T, Kirrane MD, Lonsdale DO. Diagnostic challenges in sepsis. Curr Infect Dis Rep (2021) 23:22. doi: 10.1007/s11908-021-00765-y PubMed DOI PMC
Lakbar I, Singer M, Leone M. 2030: will we still need our microbiologist? Intensive Care Med (2023) 49:1232–4. doi: 10.1007/s00134-023-07186-6 PubMed DOI
Ludwig KR, Hummon AB. Mass spectrometry for the discovery of biomarkers of sepsis. Mol Biosyst (2017) 13:648–64. doi: 10.1039/C6MB00656F PubMed DOI PMC
Von Groote T, Meersch-Dini M. Biomarkers for the Prediction and Judgement of Sepsis and Sepsis Complications: A Step towards precision medicine? J Clin Med (2022) 11. doi: 10.3390/jcm11195782 PubMed DOI PMC
Denny KJ, De Waele J, Laupland KB, Harris PNA, Lipman J. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect (2020) 26:35–40. doi: 10.1016/j.cmi.2019.07.007 PubMed DOI
Povoa P, Coelho L, Dal-Pizzol F, Ferrer R, Huttner A, Conway Morris A, et al. . How to use biomarkers of infection or sepsis at the bedside: guide to clinicians. Intensive Care Med (2023) 49:142–53. doi: 10.1007/s00134-022-06956-y PubMed DOI PMC
Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care (2022) 26:14. doi: 10.1186/s13054-021-03862-5 PubMed DOI PMC
Pottecher J, Noll E, Borel M, Audibert G, Gette S, Meyer C, et al. . Protocol for TRAUMADORNASE: a prospective, randomized, multicentre, double-blinded, placebo-controlled clinical trial of aerosolized dornase alfa to reduce the incidence of moderate-to-severe hypoxaemia in ventilated trauma patients. Trials (2020) 21:274. doi: 10.1186/s13063-020-4141-6 PubMed DOI PMC
Copes WS, Champion HR, Sacco WJ, Lawnick MM, Keast SL, Bain LW. The injury severity score revisited. J Trauma (1988) 28:69–77. doi: 10.1097/00005373-198801000-00010 PubMed DOI
Li Y, Liu C, Xiao W, Song T, Wang S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: A meta-analysis. Neurocrit Care (2020) 32:272–85. doi: 10.1007/s12028-019-00773-w PubMed DOI PMC
Klompas M. Complications of mechanical ventilation–the CDC's new surveillance paradigm. N Engl J Med (2013) 368:1472–5. doi: 10.1056/NEJMp1300633 PubMed DOI
Calandra T, Cohen J, International Sepsis Forum Definition of Infection in The, I.C.U.C.C . The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med (2005) 33:1538–48. doi: 10.1097/01.CCM.0000168253.91200.83 PubMed DOI
Olinder J, Borjesson A, Norrman J, West T, Carlstrom J, Gustafsson A, et al. . Hepcidin discriminates sepsis from other critical illness at admission to intensive care. Sci Rep (2022) 12:14857. doi: 10.1038/s41598-022-18826-0 PubMed DOI PMC
Olinder J, Ehinger D, Liljenborg E, Herwald H, Ryden C. Plasma levels of hepcidin and reticulocyte haemoglobin during septic shock. J Innate Immun (2020) 12:1232–4. doi: 10.1159/000508561 PubMed DOI PMC
Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, et al. . SAPS 3–From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med (2005) 31:1345–55. doi: 10.1007/s00134-005-2763-5 PubMed DOI PMC
Papareddy P, Rossnagel M, Doreen Hollwedel F, Kilic G, Veerla S, Naudin C, et al. . A human antithrombin isoform dampens inflammatory responses and protects from organ damage during bacterial infection. Nat Microbiol (2019) 4:2442–55. doi: 10.1038/s41564-019-0559-6 PubMed DOI
Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods (2009) 6:359–62. doi: 10.1038/nmeth.1322 PubMed DOI
Moreno R, Vincent JL, Matos R, Mendonca A, Cantraine F, Thijs L, et al. . The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med (1999) 25:686–96. doi: 10.1007/s001340050931 PubMed DOI
Innerhofer P, Fries D, Mittermayr M, Innerhofer N, Von Langen D, Hell T, et al. . Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol (2017) 4:e258–71. doi: 10.1016/S2352-3026(17)30077-7 PubMed DOI
Weber GF, Chousterman BG, He S, Fenn AM, Nairz M, Anzai A, et al. . Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science (2015) 347:1260–5. doi: 10.1126/science.aaa4268 PubMed DOI PMC
Siskind S, Brenner M, Wang P. TREM-1 modulation strategies for sepsis. Front Immunol (2022) 13:907387. doi: 10.3389/fimmu.2022.907387 PubMed DOI PMC
Wu F, Zhang YT, Teng F, Li HH, Guo SB. S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction. Int Immunopharmacol (2023) 115:109716. doi: 10.1016/j.intimp.2023.109716 PubMed DOI
Gyurkovska V, Ivanovska N. Distinct roles of TNF-related apoptosis-inducing ligand (TRAIL) in viral and bacterial infections: from pathogenesis to pathogen clearance. Inflammation Res (2016) 65:427–37. doi: 10.1007/s00011-016-0934-1 PubMed DOI
Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, Pavlov AM, et al. . Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med (2014) 6:27–42. doi: 10.1002/emmm.201303503 PubMed DOI PMC
Kelly BJ, Lautenbach E, Nachamkin I, Coffin SE, Gerber JS, Fuchs BD, et al. . Combined biomarkers discriminate a low likelihood of bacterial infection among surgical intensive care unit patients with suspected sepsis. Diagn Microbiol Infect Dis (2016) 85:109–15. doi: 10.1016/j.diagmicrobio.2016.01.003 PubMed DOI PMC
Vandooren J, Itoh Y. Alpha-2-macroglobulin in inflammation, immunity and infections. Front Immunol (2021) 12:803244. doi: 10.3389/fimmu.2021.803244 PubMed DOI PMC
Vlasakova K, Bourque J, Bailey WJ, Patel S, Besteman EG, Gonzalez RJ, et al. . Universal accessible biomarkers of drug-induced tissue injury and systemic inflammation in rat: performance assessment of TIMP-1, A2M, AGP, NGAL, and albumin. Toxicol Sci (2022) 187:219–33. doi: 10.1093/toxsci/kfac030 PubMed DOI
Xu F, Lin S, Yan X, Wang C, Tu H, Yin Y, et al. . Interleukin 38 protects against lethal sepsis. J Infect Dis (2018) 218:1175–84. doi: 10.1093/infdis/jiy289 PubMed DOI
Chai YS, Lin SH, Zhang M, Deng L, Chen Y, Xie K, et al. . IL-38 is a biomarker for acute respiratory distress syndrome in humans and down-regulates Th17 differentiation in vivo . Clin Immunol (2020) 210:108315. doi: 10.1016/j.clim.2019.108315 PubMed DOI
Diaz-Barreiro A, Huard A, Palmer G. Multifaceted roles of IL-38 in inflammation and cancer. Cytokine (2022) 151:155808. doi: 10.1016/j.cyto.2022.155808 PubMed DOI
Fazeli P, Saeidnia M, Erfani M, Kalani M. An overview of the biological and multifunctional roles of IL-38 in different infectious diseases and COVID-19. Immunol Res (2022) 70:316–24. doi: 10.1007/s12026-022-09275-y PubMed DOI PMC
Tarquis-Medina M, Scheibner K, Gonzalez-Garcia I, Bastidas-Ponce A, Sterr M, Jaki J, et al. . Synaptotagmin-13 is a neuroendocrine marker in brain, intestine and pancreas. Int J Mol Sci (2021) 22. doi: 10.3390/ijms222212526 PubMed DOI PMC
Bakhti M, Bastidas-Ponce A, Tritschler S, Czarnecki O, Tarquis-Medina M, Nedvedova E, et al. . Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. Nat Commun (2022) 13:4540. doi: 10.1038/s41467-022-31862-8 PubMed DOI PMC
Zhang YD, Zhong R, Liu JQ, Sun ZX, Wang T, Liu JT. Role of synaptotagmin 13 (SYT13) in promoting breast cancer and signaling pathways. Clin Transl Oncol (2023) 25:1629–40. doi: 10.1007/s12094-022-03058-5 PubMed DOI
Bosco MC, Raggi F, Varesio L. Therapeutic potential of targeting TREM-1 in inflammatory diseases and cancer. Curr Pharm Des (2016) 22:6209–33. doi: 10.2174/1381612822666160826110539 PubMed DOI
Brenner T, Uhle F, Fleming T, Wieland M, Schmoch T, Schmitt F, et al. . Soluble TREM-1 as a diagnostic and prognostic biomarker in patients with septic shock: an observational clinical study. Biomarkers (2017) 22:63–9. doi: 10.1080/1354750X.2016.1204005 PubMed DOI
Jolly L, Carrasco K, Salcedo-Magguilli M, Garaud JJ, Lambden S, van der Poll T, et al. . sTREM-1 is a specific biomarker of TREM-1 pathway activation. Cell Mol Immunol (2021) 18:2054–6. doi: 10.1038/s41423-021-00733-5 PubMed DOI PMC
Colonna M. The biology of TREM receptors. Nat Rev Immunol (2023) 23:580–94. doi: 10.1038/s41577-023-00837-1 PubMed DOI PMC
Francois B, Lambden S, Fivez T, Gibot S, Derive M, Grouin JM, et al. . Prospective evaluation of the efficacy, safety, and optimal biomarker enrichment strategy for nangibotide, a TREM-1 inhibitor, in patients with septic shock (ASTONISH): a double-blind, randomised, controlled, phase 2b trial. Lancet Respir Med (2023) 11:894–904. doi: 10.1016/S2213-2600(23)00158-3 PubMed DOI
Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev (2018) 281:8–27. doi: 10.1111/imr.12621 PubMed DOI PMC
Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev (2019) 45:24–34. doi: 10.1016/j.cytogfr.2018.12.004 PubMed DOI
Cahill LA, Joughin BA, Kwon WY, Itagaki K, Kirk CH, Shapiro NI, et al. . Multiplexed plasma immune mediator signatures can differentiate sepsis from nonInfective SIRS: american surgical association 2020 annual meeting paper. Ann Surg (2020) 272:604–10. doi: 10.1097/SLA.0000000000004379 PubMed DOI PMC
Lei M, Han Z, Wang S, Guo C, Zhang X, Song Y, et al. . Biological signatures and prediction of an immunosuppressive status-persistent critical illness-among orthopedic trauma patients using machine learning techniques. Front Immunol (2022) 13:979877. doi: 10.3389/fimmu.2022.979877 PubMed DOI PMC
Wang J, Wen D, Zeng S, Du J, Cui L, Sun J, et al. . Cytokine biomarker phenotype for early prediction and triage of sepsis in blunt trauma patients. J Surg Res (2023) 283:824–32. doi: 10.1016/j.jss.2022.10.059 PubMed DOI
Yang B, Wang X, Liu Z, Lu Z, Fang G, Xue X, et al. . Endothelial-related biomarkers in evaluation of vascular function during progression of sepsis after severe trauma: new potential diagnostic tools in sepsis. J Inflammation Res (2023) 16:2773–82. doi: 10.2147/JIR.S418697 PubMed DOI PMC
Stassen NA, Leslie-Norfleet LA, Robertson AM, Eichenberger MR, Polk HC, Jr. Interferon-gamma gene polymorphisms and the development of sepsis in patients with trauma. Surgery (2002) 132:289–92. doi: 10.1067/msy.2002.127167 PubMed DOI