Myocardial injury in stress echocardiography: Comparison of dobutamine, dipyridamole and dynamic stressors-single center study

. 2022 Sep ; 39 (9) : 1171-1179. [epub] 20220811

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35950564

OBJECTIVES: In stress echocardiography (SE), dipyridamole (DIP) and dynamic stress (ExSE) are reported as being safer than dobutamine stress echocardiography (DSE). We investigated whether these commonly used stressors cause myocardial injury, measured by high sensitivity troponin T (hsTnT). METHODS: One hundred and thirty five patients (DSE n = 46, ExsE n = 46, DIP n = 43) with negative result of SE were studied. The exclusion criteria were known ischaemic heart disease (IHD), baseline wall motion abnormalities, left ventricle systolic dysfunction/regional wall motion abnormalities, septum/posterior wall ≥13 mm, diabetes/pre-diabetes, baseline hsTnT level ≥14 ng/L, baseline blood pressure ≥160/100 mmHg, peak pulmonary pressure ≥45mmHg, eGFR <1ml/s/1.73m2 , more than mild to moderate valvular disease and dobutamine side effects. HsTnT was measured before and 180 minutes after the test. RESULTS: All patients had low pre-test probabilities of having obstructive IHD. HsTnT increased in DSE, less so in ExSE, and was unchanged in the DIP group (∆hsTnT 9.4 [1.5-58.6], 1.1 [-0.9-15.7], -0.1 [-1.4-2.1] ng/L, respectively, p<0.001). In DSE, the ∆hsTnT was associated with peak dobutamine dose (r = 0.30, p = 0.045), test length (r = 0.43, p = 0.003) and atropine use (p<0.001). In ExSE, the hsTnT increase was more likely in females (p = 0.012) and the elderly (>65 years) (r = 0.32, p = 0.03); no association was found between atropine use (p = 0.786) or test length and ∆hsTnT (r = 0.10, p = 0.530). CONCLUSIONS: DSE is associated with myocardial injury in patients with negative SE, no injury was observed in DIP and only mild case in ExSE. Whether myocardial injury is causative of the higher reported adverse event rates in DSE remains to be determined.

Zobrazit více v PubMed

Wann LS, Faris JV, Childress RH, Dillon JC, Weyman AE, Feigenbaum H. Exercise cross-sectional echocardiography in ischemic heart disease. Circulation. 1979;60:1300-1308

Berthe C, Perard LA, Hiernaux M, et al. Predicting the extend and location of coronary artery disease in acute myocardial infarction by echocardiography during dobutamine infusion. Am J Cardiol. 1986;58:1167-1172

Picano M, Masini A, Distante I, et al. Dipyridamole-echocardiography test in patients with exercise induced ST segment elevation. Am J Cardiol. 1986;57:765-768

Pellikka PA, Aruda-Olson A, Chaudry FA, et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33:1-41

Steeds RP, Wheeler R, Bhattachyryya S, et al. Stress echocardiography in coronary artery disease: a practical guide from the British Society of Echocardiography. Echo Res Pract. 2019;6:G17-G33

Varga A, Garcia MAR, Picano E. Safety of stress echocardiography (from the International Stress Echo Complication Registry). Am J Cardiol. 2006;98:541-543

Matthias W, Arruada A, Santos FC, et al. Safety of dobutamine-atropine stress echocardiography: a prospective experience of 4033 consecutive studies. J Am Soc Echocardiogr. 1999;12:785-791

Geleijnse ML, Krenning BJ, Nemes A, et al. Incidence, Pathophysiology and treatment of complications during dobutamine-atropine stress echocardiography. Circulation. 2010;121:1756-1767

Limkakeng A, Drake W, Lokhnygina Y, et al. Myocardial ischemia on exercise stress echocardiography testing is not associated with changes in troponin T concentration J Appl Lab Med. 2017;1:532-543

Røysland R, Krevdal G, Høiseth AD, et al. Cardiac Troponin T levels and exercise stress testing in patients with suspected coronary artery disease: the Akershus Cardiac Examination (ACE) I study. Clin Sci. 2012;122:599-606

Siriwerdena M, Campbell V, Richards AM, Pemberton C. Cardiac biomarker responses to dobutamine echocardiography in healthy volunteers and patients with coronary artery disease. Clin Chem. 2012;58:1492-1494

Samaha E, Brown J, Brown F, et al. High-sensitivity cardiac troponin T increases after stress echocardiography. Clin Biochem. 2019;63:18-23

Wongpraparut N, Piyophirapong S, Maneesai A, et al. High-sensitivity cardiac troponin T in stable patients undergoing pharmacological stress testing. Clin Cardiol. 2015;38:293-299

Blatt A, Moravsky G, Pilipodi S, et al. Can dobutamine stress echocardiography induce cardiac troponin elevation? Echocardiography. 2010;28:219-222

Carvellin G, Robuschi F, Scioscioli F, et al. Dipyridamole stress echocardiography does not trigger release of highly-sensitive troponin I and T. J Med Biochem. 2014;33:376-383

Kurz K, Giannitsis E, Zehelein J, Katus HA. Highly sensitive cardiac troponin T values remain constant after brief exercise or pharmacologic-induced reversible myocardial ischemia. Clin Chem. 2008;54:1234-1238

Samaha E, Avila A, Helwani MA, et al. High Sensitivity cardiac troponin after cardiac stress test: a systematic review and meta-analysis. J Am Heart Assoc. 2019;8:e008626

Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020;41:407-477

Sicari R, Nihoyannopoulos P, Evangelista A, et al. Stress echocardiography expert consensus statement-executive summary. Eur Heart J. 2009;30:278-289

Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs non-coronary disease. Eur Heart J. 2011;32:404-411

Zellner T, Tunstall-Pedoe H, Saarela O, et al. High population prevalence of cardiac troponin I measured by high sensitivity essay and cardiovascular risk estimation: the MORGAM Biomarker Project Scottish Cohort. Eur Heart J. 2014;35:271-281

Sellinger S, De Lemons J, Neeland IJ, et al. Older adults “malignant” left ventricular hypertrophy and associated cardiac-specific biomarker phenotypes to identify the differential risk of new-onset reduced versus preserved ejection fraction heart failure-the Cardiovascular Health Study. JACC Heart Fail. 2015;3:445-455

Rubin J, Matsushita K, Ballantyne CM, Hoogeveen R, Coresh J, Selvin E. Chronic hyperglycemia and subclinical myocardial injury. J Am Coll Cardiol. 2012;59:484-489

Januzzi JL, Bamberg F, Lee H, et al. High-sensitivity troponin T concentrations in acute chest pain patients evaluated with cardiac computed tomography. Circulation. 2010;121:1227-1234

Emdin M, Aimo A, Vergaro G, et al. sST2 predicts outcome in chronic heart failure beyond NT−proBNP and high-sensitivity troponin T. J Am Coll Cardiol. 2018;72:2309-2320

de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304:2503-2512

Ahmed W, Schlett CL, Uthamalingam S, et al. Single resting hsTnT level predicts abnormal myocardial stress test in acute chest pain patients with normal initial standard troponin. J Am Coll Cardiol Img. 2013;6:72-82

Oemrawsigh RM, Cheng JM, García-García HM, et al. High-sensitivity Troponin T in relation to coronary plaque characteristics in patients with stable coronary artery disease; results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016;247:135-141

Pipikos T, Kapelouzou A, Tsilimigras DI, et al. Stronger correlation with myocardial ischemia of high-sensitivity troponin T than other biomarkers. J Nucl Cardiol. 2018;26:1674-1683

Sabatine MS, Morrow DA, Lemos JA, Jarolim P, Braunwald E. Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischemia using an ultrasensitive assay: results from TIMI 35. Eur Heart J. 2009;30:162-169

Katus HA, Remppis A, Scheffold T, Diederich KW, Kuabler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and non-reperfused myocardial infarction. Am J Cardiol. 1991;67:1360-1367

Thygesen K, Mair J, Katus H, et al. Study group on biomarkers in cardiology of the ESC working group on acute cardiac care. Eur Heart J. 2010;31:2197-2204

White HD. Pathobiology of troponin elevations. Do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011;57:2406-2408

Amgalan D, Pekson R, Kitsis RN. Troponin release following brief myocardial ischemia. apoptosis versus necrosis. J Am Coll Cardiol Basic Trans Sci. 2017;2:118-121

Sigh K, Communal C, Sawyer DB, Colucci W. Adrenergic regulation of myocardial apoptosis. Cardiovasc Res. 2000;45:713-719

Haskova P, Jansova J, Bures J, et al. Cardioprotective effects of iron chelator HAPI and ROS-activated boronate prochelator BHAPI against catecholamine-induced oxidative cellular injury. Toxicology. 2016;371:17-28

Gaspard N. Heartbreakers-cardiac stress after uncomplicated generalized convulsive seizures. Epilepsy Curr. 2019;19:246-248

Mazzeo RS, Marshall P. Influence of plasma catecholamines on the lactate threshold during graded exercise. J Appl Physiol. 1989;6:1319-1322

Saad YME, Idris H, Shugman IM, et al. Evaluation of serial high sensitivity troponin T levels in individuals without overt coronary heart disease following exercise stress testing. Heart Lung Circ. 2017;26:660-666

Yang M, Hu X, Lu X, et al. The effects of α- and β-adrenergic blocking agents on postresuscitation myocardial dysfunction and myocardial tissue injury in a rat model of cardiac arrest. Transl Res. 2015;165:589-598

Weil BR, Suzuki G, Zoung RF, Iyer V, Canty JM. Tropinin release and reversible left ventricular dysfunction after transient pressure overload. J Am Coll Cardiol. 2018;71:2906-2916

Shan BN, Simpson IA, Rakhit DJ. Takatsubo (apical ballooning) syndrome in the recovery period following dobutamine stress echocardiography: a first report. Eur J Echocardiogr. 2011;12:E5

Mori H, Ishikawa S, Kojima S, et al. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc Res. 1993;27:192-198

Sigh A, Storzoju T, Vallbhaneni S, Shirani J. Stress cardiomyopathy induced during dobutamine stress echocardiography. Int J Crit Illn Inj Sci. 2020;10(Suppl.1):43-48

Pickard JMJ, Burke N, Davidson SM, Yellon DM. Intrinsic cardiac ganglia and acetylcholine are important in the mechanism of ischeamic preconditioning. Basic Res Cardiol. 2017;11:1-12

Katare RG, Ando M, Kakinuma Y, et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009;137:223-231

Donato M, Buchholz B, Rodríquez M, Pérez V, Inserte J, García-Dorado D. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol. 2013;98:425-434

Picano R, Sicari R, Varga A. Dipyridamole stress echocardiography. Cardiol Clin. 1999;17:481-499

Hochgruber T, Reichlin T, Wasila M, et al. Novel insight into pathophysiology of different forms of stress testing. J Clin Biochem. 2014;47:338-343

Lippi G, Salvagno GL, Robuschi F, Scioscioli F, Ruffini L, Carvellin G. Influence of dipyridamole stress echocardiography on galectin-3, amino-terminal B-type natriuretic peptide (NT-proBNP) and high sensitivity troponin T. Acta Cardiol. 2014;69:377-383

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...