Myocardial injury in stress echocardiography: Comparison of dobutamine, dipyridamole and dynamic stressors-single center study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35950564
DOI
10.1111/echo.15411
Knihovny.cz E-zdroje
- Klíčová slova
- hsTnT, myocardial injury, negative stress echocardiography,
- MeSH
- deriváty atropinu MeSH
- dipyridamol MeSH
- dobutamin MeSH
- echokardiografie MeSH
- ischemická choroba srdeční * komplikace MeSH
- kardiotonika MeSH
- lidé MeSH
- nemoci koronárních tepen * komplikace MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- zátěžová echokardiografie MeSH
- zátěžový test MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deriváty atropinu MeSH
- dipyridamol MeSH
- dobutamin MeSH
- kardiotonika MeSH
OBJECTIVES: In stress echocardiography (SE), dipyridamole (DIP) and dynamic stress (ExSE) are reported as being safer than dobutamine stress echocardiography (DSE). We investigated whether these commonly used stressors cause myocardial injury, measured by high sensitivity troponin T (hsTnT). METHODS: One hundred and thirty five patients (DSE n = 46, ExsE n = 46, DIP n = 43) with negative result of SE were studied. The exclusion criteria were known ischaemic heart disease (IHD), baseline wall motion abnormalities, left ventricle systolic dysfunction/regional wall motion abnormalities, septum/posterior wall ≥13 mm, diabetes/pre-diabetes, baseline hsTnT level ≥14 ng/L, baseline blood pressure ≥160/100 mmHg, peak pulmonary pressure ≥45mmHg, eGFR <1ml/s/1.73m2 , more than mild to moderate valvular disease and dobutamine side effects. HsTnT was measured before and 180 minutes after the test. RESULTS: All patients had low pre-test probabilities of having obstructive IHD. HsTnT increased in DSE, less so in ExSE, and was unchanged in the DIP group (∆hsTnT 9.4 [1.5-58.6], 1.1 [-0.9-15.7], -0.1 [-1.4-2.1] ng/L, respectively, p<0.001). In DSE, the ∆hsTnT was associated with peak dobutamine dose (r = 0.30, p = 0.045), test length (r = 0.43, p = 0.003) and atropine use (p<0.001). In ExSE, the hsTnT increase was more likely in females (p = 0.012) and the elderly (>65 years) (r = 0.32, p = 0.03); no association was found between atropine use (p = 0.786) or test length and ∆hsTnT (r = 0.10, p = 0.530). CONCLUSIONS: DSE is associated with myocardial injury in patients with negative SE, no injury was observed in DIP and only mild case in ExSE. Whether myocardial injury is causative of the higher reported adverse event rates in DSE remains to be determined.
Department of Cardio Angiology University Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Cardiology Mater Dei Hospital Triq Dun Karm L Imsida MSD Malta
Department of Clinical Biochemistry University Hospital Hradec Kralove Hradec Kralove Czech Republic
Faculty of Medicine Hradec Kralove Charles University Prague Hradec Kralove Czech Republic
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Wann LS, Faris JV, Childress RH, Dillon JC, Weyman AE, Feigenbaum H. Exercise cross-sectional echocardiography in ischemic heart disease. Circulation. 1979;60:1300-1308
Berthe C, Perard LA, Hiernaux M, et al. Predicting the extend and location of coronary artery disease in acute myocardial infarction by echocardiography during dobutamine infusion. Am J Cardiol. 1986;58:1167-1172
Picano M, Masini A, Distante I, et al. Dipyridamole-echocardiography test in patients with exercise induced ST segment elevation. Am J Cardiol. 1986;57:765-768
Pellikka PA, Aruda-Olson A, Chaudry FA, et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33:1-41
Steeds RP, Wheeler R, Bhattachyryya S, et al. Stress echocardiography in coronary artery disease: a practical guide from the British Society of Echocardiography. Echo Res Pract. 2019;6:G17-G33
Varga A, Garcia MAR, Picano E. Safety of stress echocardiography (from the International Stress Echo Complication Registry). Am J Cardiol. 2006;98:541-543
Matthias W, Arruada A, Santos FC, et al. Safety of dobutamine-atropine stress echocardiography: a prospective experience of 4033 consecutive studies. J Am Soc Echocardiogr. 1999;12:785-791
Geleijnse ML, Krenning BJ, Nemes A, et al. Incidence, Pathophysiology and treatment of complications during dobutamine-atropine stress echocardiography. Circulation. 2010;121:1756-1767
Limkakeng A, Drake W, Lokhnygina Y, et al. Myocardial ischemia on exercise stress echocardiography testing is not associated with changes in troponin T concentration J Appl Lab Med. 2017;1:532-543
Røysland R, Krevdal G, Høiseth AD, et al. Cardiac Troponin T levels and exercise stress testing in patients with suspected coronary artery disease: the Akershus Cardiac Examination (ACE) I study. Clin Sci. 2012;122:599-606
Siriwerdena M, Campbell V, Richards AM, Pemberton C. Cardiac biomarker responses to dobutamine echocardiography in healthy volunteers and patients with coronary artery disease. Clin Chem. 2012;58:1492-1494
Samaha E, Brown J, Brown F, et al. High-sensitivity cardiac troponin T increases after stress echocardiography. Clin Biochem. 2019;63:18-23
Wongpraparut N, Piyophirapong S, Maneesai A, et al. High-sensitivity cardiac troponin T in stable patients undergoing pharmacological stress testing. Clin Cardiol. 2015;38:293-299
Blatt A, Moravsky G, Pilipodi S, et al. Can dobutamine stress echocardiography induce cardiac troponin elevation? Echocardiography. 2010;28:219-222
Carvellin G, Robuschi F, Scioscioli F, et al. Dipyridamole stress echocardiography does not trigger release of highly-sensitive troponin I and T. J Med Biochem. 2014;33:376-383
Kurz K, Giannitsis E, Zehelein J, Katus HA. Highly sensitive cardiac troponin T values remain constant after brief exercise or pharmacologic-induced reversible myocardial ischemia. Clin Chem. 2008;54:1234-1238
Samaha E, Avila A, Helwani MA, et al. High Sensitivity cardiac troponin after cardiac stress test: a systematic review and meta-analysis. J Am Heart Assoc. 2019;8:e008626
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020;41:407-477
Sicari R, Nihoyannopoulos P, Evangelista A, et al. Stress echocardiography expert consensus statement-executive summary. Eur Heart J. 2009;30:278-289
Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs non-coronary disease. Eur Heart J. 2011;32:404-411
Zellner T, Tunstall-Pedoe H, Saarela O, et al. High population prevalence of cardiac troponin I measured by high sensitivity essay and cardiovascular risk estimation: the MORGAM Biomarker Project Scottish Cohort. Eur Heart J. 2014;35:271-281
Sellinger S, De Lemons J, Neeland IJ, et al. Older adults “malignant” left ventricular hypertrophy and associated cardiac-specific biomarker phenotypes to identify the differential risk of new-onset reduced versus preserved ejection fraction heart failure-the Cardiovascular Health Study. JACC Heart Fail. 2015;3:445-455
Rubin J, Matsushita K, Ballantyne CM, Hoogeveen R, Coresh J, Selvin E. Chronic hyperglycemia and subclinical myocardial injury. J Am Coll Cardiol. 2012;59:484-489
Januzzi JL, Bamberg F, Lee H, et al. High-sensitivity troponin T concentrations in acute chest pain patients evaluated with cardiac computed tomography. Circulation. 2010;121:1227-1234
Emdin M, Aimo A, Vergaro G, et al. sST2 predicts outcome in chronic heart failure beyond NT−proBNP and high-sensitivity troponin T. J Am Coll Cardiol. 2018;72:2309-2320
de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304:2503-2512
Ahmed W, Schlett CL, Uthamalingam S, et al. Single resting hsTnT level predicts abnormal myocardial stress test in acute chest pain patients with normal initial standard troponin. J Am Coll Cardiol Img. 2013;6:72-82
Oemrawsigh RM, Cheng JM, García-García HM, et al. High-sensitivity Troponin T in relation to coronary plaque characteristics in patients with stable coronary artery disease; results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016;247:135-141
Pipikos T, Kapelouzou A, Tsilimigras DI, et al. Stronger correlation with myocardial ischemia of high-sensitivity troponin T than other biomarkers. J Nucl Cardiol. 2018;26:1674-1683
Sabatine MS, Morrow DA, Lemos JA, Jarolim P, Braunwald E. Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischemia using an ultrasensitive assay: results from TIMI 35. Eur Heart J. 2009;30:162-169
Katus HA, Remppis A, Scheffold T, Diederich KW, Kuabler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and non-reperfused myocardial infarction. Am J Cardiol. 1991;67:1360-1367
Thygesen K, Mair J, Katus H, et al. Study group on biomarkers in cardiology of the ESC working group on acute cardiac care. Eur Heart J. 2010;31:2197-2204
White HD. Pathobiology of troponin elevations. Do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011;57:2406-2408
Amgalan D, Pekson R, Kitsis RN. Troponin release following brief myocardial ischemia. apoptosis versus necrosis. J Am Coll Cardiol Basic Trans Sci. 2017;2:118-121
Sigh K, Communal C, Sawyer DB, Colucci W. Adrenergic regulation of myocardial apoptosis. Cardiovasc Res. 2000;45:713-719
Haskova P, Jansova J, Bures J, et al. Cardioprotective effects of iron chelator HAPI and ROS-activated boronate prochelator BHAPI against catecholamine-induced oxidative cellular injury. Toxicology. 2016;371:17-28
Gaspard N. Heartbreakers-cardiac stress after uncomplicated generalized convulsive seizures. Epilepsy Curr. 2019;19:246-248
Mazzeo RS, Marshall P. Influence of plasma catecholamines on the lactate threshold during graded exercise. J Appl Physiol. 1989;6:1319-1322
Saad YME, Idris H, Shugman IM, et al. Evaluation of serial high sensitivity troponin T levels in individuals without overt coronary heart disease following exercise stress testing. Heart Lung Circ. 2017;26:660-666
Yang M, Hu X, Lu X, et al. The effects of α- and β-adrenergic blocking agents on postresuscitation myocardial dysfunction and myocardial tissue injury in a rat model of cardiac arrest. Transl Res. 2015;165:589-598
Weil BR, Suzuki G, Zoung RF, Iyer V, Canty JM. Tropinin release and reversible left ventricular dysfunction after transient pressure overload. J Am Coll Cardiol. 2018;71:2906-2916
Shan BN, Simpson IA, Rakhit DJ. Takatsubo (apical ballooning) syndrome in the recovery period following dobutamine stress echocardiography: a first report. Eur J Echocardiogr. 2011;12:E5
Mori H, Ishikawa S, Kojima S, et al. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc Res. 1993;27:192-198
Sigh A, Storzoju T, Vallbhaneni S, Shirani J. Stress cardiomyopathy induced during dobutamine stress echocardiography. Int J Crit Illn Inj Sci. 2020;10(Suppl.1):43-48
Pickard JMJ, Burke N, Davidson SM, Yellon DM. Intrinsic cardiac ganglia and acetylcholine are important in the mechanism of ischeamic preconditioning. Basic Res Cardiol. 2017;11:1-12
Katare RG, Ando M, Kakinuma Y, et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009;137:223-231
Donato M, Buchholz B, Rodríquez M, Pérez V, Inserte J, García-Dorado D. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol. 2013;98:425-434
Picano R, Sicari R, Varga A. Dipyridamole stress echocardiography. Cardiol Clin. 1999;17:481-499
Hochgruber T, Reichlin T, Wasila M, et al. Novel insight into pathophysiology of different forms of stress testing. J Clin Biochem. 2014;47:338-343
Lippi G, Salvagno GL, Robuschi F, Scioscioli F, Ruffini L, Carvellin G. Influence of dipyridamole stress echocardiography on galectin-3, amino-terminal B-type natriuretic peptide (NT-proBNP) and high sensitivity troponin T. Acta Cardiol. 2014;69:377-383