Gum Hydrocolloids Reinforced Silver Nanoparticle Sponge for Catalytic Degradation of Water Pollutants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA19091
Ministry of Education Youth and Sports
PubMed
35956636
PubMed Central
PMC9370489
DOI
10.3390/polym14153120
PII: polym14153120
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradation, biosponge, catalysis, green synthesis, silver nanoparticles, tree gum kondagogu,
- Publikační typ
- časopisecké články MeSH
The accumulation of organic contaminants including dyes in aquatic systems is of significant environmental concern, necessitating the development of affordable and sustainable materials for the treatment/elimination of these hazardous pollutants. Here, a green synthesis strategy has been used to develop a self-assembled gum kondagogu-sodium alginate bioconjugate sponge adorned with silver nanoparticles, for the first time. The properties of the nanocomposite sponge were then analyzed using FTIR, TGA, SEM, and MicroCT. The ensued biobased sponge exhibited hierarchical microstructure, open cellular pores, good shape memory, and mechanical properties. It merges the attributes of an open cellular porous structure with metal nanoparticles and are envisaged to be deployed as a sustainable catalytic system for reducing contaminants in the aqueous environment. This nanocomposite sponge showed enhanced catalytic effectiveness (km values up to 37 min-1 g-1 and 44 min-1 g-1 for methylene blue and 4-nitrophenol, respectively), antibacterial properties, reusability, and biodegradability (65% biodegradation in 28 days).
Zobrazit více v PubMed
Wacławek S., Lutze H.V., Grübel K., Padil V.V.T., Černík M., Dionysiou D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017;330:44–62. doi: 10.1016/j.cej.2017.07.132. DOI
Yaqoob A.A., Parveen T., Umar K., Nasir M., Nasir I. Role of Nanomaterials in the Treatment of waste water. Water. 2020;12:495. doi: 10.3390/w12020495. DOI
Adeola A.O., Nomngongo P.N. Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers. 2022;14:2462. doi: 10.3390/polym14122462. PubMed DOI PMC
Choi W.S., Lee H.-J. Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers. 2022;14:2183. doi: 10.3390/polym14112183. PubMed DOI PMC
Kudaibergenov S.E., Dzhardimalieva G.I. Flow-through catalytic reactors based on metal nanoparticles immobilized within porous polymeric gels and surfaces/hollows of polymeric membranes. Polymers. 2020;12:572. doi: 10.3390/polym12030572. PubMed DOI PMC
Nghiem T.L., Coban D., Tjaberings S., Gröschel A.H. Recent advances in the synthesis and application of polymer compartments for catalysis. Polymers. 2020;12:2190. doi: 10.3390/polym12102190. PubMed DOI PMC
Yaqoob A.A., Ahmad H., Parveen T., Ahmad A., Oves M., Ismail I.M.I., Qari H.A., Umar K., Mohamad Ibrahim M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020;8:1–23. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC
Ali A., Khalid Y., Mohamad U., Mohamad N. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020;10:1369–1378.
Cao H., Liu C., Cai F., Qiao X. In situ immobilization of ultra- fine AgNPs onto magnetic Ag@RF@Fe3O4 core-satellite nanocomposites for the rapid catalytic reduction of nitrophenols. Water Res. 2020;179:115882. doi: 10.1016/j.watres.2020.115882. PubMed DOI
Umar K., Yaqoob A.A., Ibrahim M.N.M., Parveen T., Safian M.T.U. Smart Polymer Nanocomposites Biomedical and Environmental Applications. Woodhead Publishing; Cambridge, UK: 2021. Environmental applications of smart polymer composites; pp. 295–312.
Sumitha N.S., Prakash P., Nair B.N., Sailaja G.S. Degradation-Dependent Controlled Delivery of Doxorubicin by Glyoxal Cross-Linked Magnetic and Porous Chitosan Microspheres. ACS Omega. 2021;6:21472–21484. doi: 10.1021/acsomega.1c02303. PubMed DOI PMC
Sumitha N.S., Sreeja S., Varghese P.J.G., Sailaja G.S. A dual functional superparamagnetic system with pH-dependent drug release and hyperthermia potential for chemotherapeutic applications. Mater. Chem. Phys. 2021;273:125108. doi: 10.1016/j.matchemphys.2021.125108. DOI
Kumar A., Ahuja M. Carboxymethyl gum kondagogu: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr. Polym. 2012;90:637–643. doi: 10.1016/j.carbpol.2012.05.089. PubMed DOI
Vinod V.T.P., Sashidhar R.B., Sarma V.U.M., Vijaya Saradhi U.V.R. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): A tree gum from India. J. Agric. Food Chem. 2008;56:2199–2207. doi: 10.1021/jf072766p. PubMed DOI
Janaki B., Sashidhar R.B. Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): A potential food additive. Food Chem. 1998;61:2–7. doi: 10.1016/S0308-8146(97)00089-7. DOI
Akshay Kumar K.P., Ramakrishnan R.K., Cerník M., Padil V.V.T. Micro and Nano Technologies. Elesvier; Amsterdam, The Netherlands: 2022. Tree gum-based nanostructures and their biomedical applications; pp. 383–407.
Ramakrishnan R.K., Cernik M., Padil V.V.T., Wacławek S. Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. Int. J. Biol. Macromol. 2021;177:526–534. doi: 10.1016/j.ijbiomac.2021.02.156. PubMed DOI
Ngece K., Aderibigbe B.A., Ndinteh D.T., Fonkui Y.T., Kumar P. Alginate-gum acacia based sponges as potential wound dressings for exuding and bleeding wounds. Int. J. Biol. Macromol. 2021;172:350–359. doi: 10.1016/j.ijbiomac.2021.01.055. PubMed DOI
Ramakrishnan R.K., Padil V.V.T., Škodová M., Wacławek S., Černík M., Agarwal S. Hierarchically Porous Bio-Based Sustainable Conjugate Sponge for Highly Selective Oil/Organic Solvent Absorption. Adv. Funct. Mater. 2021;31:2100640. doi: 10.1002/adfm.202100640. DOI
Liu N., Zhang W., Li X., Qu R., Zhang Q., Wei Y., Feng L., Jiang L. Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and: In situ catalytic reduction of aromatic dyes. J. Mater. Chem. A. 2017;5:15822–15827. doi: 10.1039/C7TA05257J. DOI
Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotný V., Nguyen N.H.A., Ševců A., Padil V.V.T., Müllerová J., Stuchlík M., et al. A poly(3-hydroxybutyrate)-chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI
Padil V.V.T.T., Senan C., Waclawek S., Černík M., Agarwal S., Varma R.S. Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustain. Chem. Eng. 2019;7:5900–5911. doi: 10.1021/acssuschemeng.8b05896. DOI
Stepczyńska M., Rytlewski P. Enzymatic degradation of flax-fibers reinforced polylactide. Int. Biodeterior. Biodegrad. 2018;126:160–166. doi: 10.1016/j.ibiod.2017.11.001. DOI
Yu Z., Hu C., Guan L., Zhang W., Gu J. Green Synthesis of Cellulose Nanofibrils Decorated with Ag Nanoparticles and Their Application in Colorimetric Detection of l-Cysteine. ACS Sustain. Chem. Eng. 2020;8:12713–12721. doi: 10.1021/acssuschemeng.0c04842. DOI
Yang Y., Chen Z., Wu X., Zhang X., Yuan G. Nanoporous cellulose membrane doped with silver for continuous catalytic decolorization of organic dyes. Cellulose. 2018;25:2547–2558. doi: 10.1007/s10570-018-1710-x. DOI
Song J.Y., Kim B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009;32:79–84. doi: 10.1007/s00449-008-0224-6. PubMed DOI
Zhang L., Lu H., Chu J., Ma J., Fan Y., Wang Z., Ni Y. Lignin-Directed Control of Silver Nanoparticles with Tunable Size in Porous Lignocellulose Hydrogels and Their Application in Catalytic Reduction. ACS Sustain. Chem. Eng. 2020;8:12655–12663. doi: 10.1021/acssuschemeng.0c04298. DOI
Kora A.J., Sashidhar R.B., Arunachalam J. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr. Polym. 2010;82:670–679. doi: 10.1016/j.carbpol.2010.05.034. DOI
Zhao X.H., Li Q., Ma X.M., Xiong Z., Quan F.Y., Xia Y.Z. Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol. RSC Adv. 2015;5:49534–49540. doi: 10.1039/C5RA07821K. DOI
Garibo D., Borbón-Nuñez H.A., de León J.N.D., García Mendoza E., Estrada I., Toledano-Magaña Y., Tiznado H., Ovalle-Marroquin M., Soto-Ramos A.G., Blanco A., et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020;10:12805. doi: 10.1038/s41598-020-69606-7. PubMed DOI PMC
Jeeva K., Thiyagarajan M., Elangovan V., Geetha N., Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod. 2014;52:714–720. doi: 10.1016/j.indcrop.2013.11.037. DOI
Kumar V., Yadav S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2009;84:151–157. doi: 10.1002/jctb.2023. DOI
Zhou S., Wang M., Chen X., Xu F. Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties. ACS Sustain. Chem. Eng. 2015;3:3346–3354. doi: 10.1021/acssuschemeng.5b01020. DOI
Guo M., Zhang Y., Du F., Wu Y., Zhang Q., Jiang C. Silver nanoparticles/polydopamine coated polyvinyl alcohol sponge as an effective and recyclable catalyst for reduction of 4-nitrophenol. Mater. Chem. Phys. 2019;225:42–49. doi: 10.1016/j.matchemphys.2018.12.049. DOI
Moghim M.H., Keshavarz M., Zebarjad S.M. Effect of SiO2 nanoparticles on compression behavior of flexible polyurethane foam. Polym. Bull. 2019;76:227–239. doi: 10.1007/s00289-018-2384-0. DOI
Venkatesan J., Lee J.Y., Kang D.S., Anil S., Kim S.K., Shim M.S., Kim D.G. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int. J. Biol. Macromol. 2017;98:515–525. doi: 10.1016/j.ijbiomac.2017.01.120. PubMed DOI
Lv P., Tang X., Zheng R., Ma X., Yu K., Wei W. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode. Nanoscale Res. Lett. 2017;12:630. doi: 10.1186/s11671-017-2395-z. PubMed DOI PMC
Silvestri D., Wacławek S., Venkateshaiah A., Krawczyk K., Sobel B., Padil V.V.T., Černík M., Varma R.S. Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic activity. Carbohydr. Polym. 2020;232:115806. doi: 10.1016/j.carbpol.2019.115806. PubMed DOI
Subhan F., Aslam S., Yan Z., Yaseen M. Unusual Pd nanoparticle dispersion in microenvironment for p-nitrophenol and methylene blue catalytic reduction. J. Colloid Interface Sci. 2020;578:37–46. doi: 10.1016/j.jcis.2020.05.093. PubMed DOI
Baruah B., Gabriel G.J., Akbashev M.J., Booher M.E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir. 2013;29:4225–4234. doi: 10.1021/la305068p. PubMed DOI
An Q., Yu M., Zhang Y., Ma W., Guo J., Wang C. Fe3O4@carbon microsphere supported Ag-Au bimetallic nanocrystals with the enhanced catalytic activity and selectivity for the reduction of nitroaromatic compounds. J. Phys. Chem. C. 2012;116:22432–22440. doi: 10.1021/jp307629m. DOI
Kamal T., Asiri A.M., Ali N. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;261:120019. doi: 10.1016/j.saa.2021.120019. PubMed DOI
Virk K., Sharma K., Kapil S., Kumar V., Sharma V., Pandey S., Kumar V. Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity. J. Polym. Res. 2022;29:118. doi: 10.1007/s10965-022-02978-8. DOI
Praveen, Suzuki S., Carson C.F., Saunders M., Clode P.L., Myers M., Chirila T.V., Baker M.V. Poly(2-Hydroxyethyl Methacrylate) Sponges Doped with Ag Nanoparticles as Antibacterial Agents. ACS Appl. Nano Mater. 2020;3:1630–1639. doi: 10.1021/acsanm.9b02384. DOI