Gum Hydrocolloids Reinforced Silver Nanoparticle Sponge for Catalytic Degradation of Water Pollutants

. 2022 Jul 31 ; 14 (15) : . [epub] 20220731

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35956636

Grantová podpora
LTAUSA19091 Ministry of Education Youth and Sports

The accumulation of organic contaminants including dyes in aquatic systems is of significant environmental concern, necessitating the development of affordable and sustainable materials for the treatment/elimination of these hazardous pollutants. Here, a green synthesis strategy has been used to develop a self-assembled gum kondagogu-sodium alginate bioconjugate sponge adorned with silver nanoparticles, for the first time. The properties of the nanocomposite sponge were then analyzed using FTIR, TGA, SEM, and MicroCT. The ensued biobased sponge exhibited hierarchical microstructure, open cellular pores, good shape memory, and mechanical properties. It merges the attributes of an open cellular porous structure with metal nanoparticles and are envisaged to be deployed as a sustainable catalytic system for reducing contaminants in the aqueous environment. This nanocomposite sponge showed enhanced catalytic effectiveness (km values up to 37 min-1 g-1 and 44 min-1 g-1 for methylene blue and 4-nitrophenol, respectively), antibacterial properties, reusability, and biodegradability (65% biodegradation in 28 days).

Zobrazit více v PubMed

Wacławek S., Lutze H.V., Grübel K., Padil V.V.T., Černík M., Dionysiou D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017;330:44–62. doi: 10.1016/j.cej.2017.07.132. DOI

Yaqoob A.A., Parveen T., Umar K., Nasir M., Nasir I. Role of Nanomaterials in the Treatment of waste water. Water. 2020;12:495. doi: 10.3390/w12020495. DOI

Adeola A.O., Nomngongo P.N. Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers. 2022;14:2462. doi: 10.3390/polym14122462. PubMed DOI PMC

Choi W.S., Lee H.-J. Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers. 2022;14:2183. doi: 10.3390/polym14112183. PubMed DOI PMC

Kudaibergenov S.E., Dzhardimalieva G.I. Flow-through catalytic reactors based on metal nanoparticles immobilized within porous polymeric gels and surfaces/hollows of polymeric membranes. Polymers. 2020;12:572. doi: 10.3390/polym12030572. PubMed DOI PMC

Nghiem T.L., Coban D., Tjaberings S., Gröschel A.H. Recent advances in the synthesis and application of polymer compartments for catalysis. Polymers. 2020;12:2190. doi: 10.3390/polym12102190. PubMed DOI PMC

Yaqoob A.A., Ahmad H., Parveen T., Ahmad A., Oves M., Ismail I.M.I., Qari H.A., Umar K., Mohamad Ibrahim M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020;8:1–23. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC

Ali A., Khalid Y., Mohamad U., Mohamad N. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020;10:1369–1378.

Cao H., Liu C., Cai F., Qiao X. In situ immobilization of ultra- fine AgNPs onto magnetic Ag@RF@Fe3O4 core-satellite nanocomposites for the rapid catalytic reduction of nitrophenols. Water Res. 2020;179:115882. doi: 10.1016/j.watres.2020.115882. PubMed DOI

Umar K., Yaqoob A.A., Ibrahim M.N.M., Parveen T., Safian M.T.U. Smart Polymer Nanocomposites Biomedical and Environmental Applications. Woodhead Publishing; Cambridge, UK: 2021. Environmental applications of smart polymer composites; pp. 295–312.

Sumitha N.S., Prakash P., Nair B.N., Sailaja G.S. Degradation-Dependent Controlled Delivery of Doxorubicin by Glyoxal Cross-Linked Magnetic and Porous Chitosan Microspheres. ACS Omega. 2021;6:21472–21484. doi: 10.1021/acsomega.1c02303. PubMed DOI PMC

Sumitha N.S., Sreeja S., Varghese P.J.G., Sailaja G.S. A dual functional superparamagnetic system with pH-dependent drug release and hyperthermia potential for chemotherapeutic applications. Mater. Chem. Phys. 2021;273:125108. doi: 10.1016/j.matchemphys.2021.125108. DOI

Kumar A., Ahuja M. Carboxymethyl gum kondagogu: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr. Polym. 2012;90:637–643. doi: 10.1016/j.carbpol.2012.05.089. PubMed DOI

Vinod V.T.P., Sashidhar R.B., Sarma V.U.M., Vijaya Saradhi U.V.R. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): A tree gum from India. J. Agric. Food Chem. 2008;56:2199–2207. doi: 10.1021/jf072766p. PubMed DOI

Janaki B., Sashidhar R.B. Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): A potential food additive. Food Chem. 1998;61:2–7. doi: 10.1016/S0308-8146(97)00089-7. DOI

Akshay Kumar K.P., Ramakrishnan R.K., Cerník M., Padil V.V.T. Micro and Nano Technologies. Elesvier; Amsterdam, The Netherlands: 2022. Tree gum-based nanostructures and their biomedical applications; pp. 383–407.

Ramakrishnan R.K., Cernik M., Padil V.V.T., Wacławek S. Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. Int. J. Biol. Macromol. 2021;177:526–534. doi: 10.1016/j.ijbiomac.2021.02.156. PubMed DOI

Ngece K., Aderibigbe B.A., Ndinteh D.T., Fonkui Y.T., Kumar P. Alginate-gum acacia based sponges as potential wound dressings for exuding and bleeding wounds. Int. J. Biol. Macromol. 2021;172:350–359. doi: 10.1016/j.ijbiomac.2021.01.055. PubMed DOI

Ramakrishnan R.K., Padil V.V.T., Škodová M., Wacławek S., Černík M., Agarwal S. Hierarchically Porous Bio-Based Sustainable Conjugate Sponge for Highly Selective Oil/Organic Solvent Absorption. Adv. Funct. Mater. 2021;31:2100640. doi: 10.1002/adfm.202100640. DOI

Liu N., Zhang W., Li X., Qu R., Zhang Q., Wei Y., Feng L., Jiang L. Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and: In situ catalytic reduction of aromatic dyes. J. Mater. Chem. A. 2017;5:15822–15827. doi: 10.1039/C7TA05257J. DOI

Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotný V., Nguyen N.H.A., Ševců A., Padil V.V.T., Müllerová J., Stuchlík M., et al. A poly(3-hydroxybutyrate)-chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI

Padil V.V.T.T., Senan C., Waclawek S., Černík M., Agarwal S., Varma R.S. Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustain. Chem. Eng. 2019;7:5900–5911. doi: 10.1021/acssuschemeng.8b05896. DOI

Stepczyńska M., Rytlewski P. Enzymatic degradation of flax-fibers reinforced polylactide. Int. Biodeterior. Biodegrad. 2018;126:160–166. doi: 10.1016/j.ibiod.2017.11.001. DOI

Yu Z., Hu C., Guan L., Zhang W., Gu J. Green Synthesis of Cellulose Nanofibrils Decorated with Ag Nanoparticles and Their Application in Colorimetric Detection of l-Cysteine. ACS Sustain. Chem. Eng. 2020;8:12713–12721. doi: 10.1021/acssuschemeng.0c04842. DOI

Yang Y., Chen Z., Wu X., Zhang X., Yuan G. Nanoporous cellulose membrane doped with silver for continuous catalytic decolorization of organic dyes. Cellulose. 2018;25:2547–2558. doi: 10.1007/s10570-018-1710-x. DOI

Song J.Y., Kim B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009;32:79–84. doi: 10.1007/s00449-008-0224-6. PubMed DOI

Zhang L., Lu H., Chu J., Ma J., Fan Y., Wang Z., Ni Y. Lignin-Directed Control of Silver Nanoparticles with Tunable Size in Porous Lignocellulose Hydrogels and Their Application in Catalytic Reduction. ACS Sustain. Chem. Eng. 2020;8:12655–12663. doi: 10.1021/acssuschemeng.0c04298. DOI

Kora A.J., Sashidhar R.B., Arunachalam J. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr. Polym. 2010;82:670–679. doi: 10.1016/j.carbpol.2010.05.034. DOI

Zhao X.H., Li Q., Ma X.M., Xiong Z., Quan F.Y., Xia Y.Z. Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol. RSC Adv. 2015;5:49534–49540. doi: 10.1039/C5RA07821K. DOI

Garibo D., Borbón-Nuñez H.A., de León J.N.D., García Mendoza E., Estrada I., Toledano-Magaña Y., Tiznado H., Ovalle-Marroquin M., Soto-Ramos A.G., Blanco A., et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020;10:12805. doi: 10.1038/s41598-020-69606-7. PubMed DOI PMC

Jeeva K., Thiyagarajan M., Elangovan V., Geetha N., Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod. 2014;52:714–720. doi: 10.1016/j.indcrop.2013.11.037. DOI

Kumar V., Yadav S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2009;84:151–157. doi: 10.1002/jctb.2023. DOI

Zhou S., Wang M., Chen X., Xu F. Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties. ACS Sustain. Chem. Eng. 2015;3:3346–3354. doi: 10.1021/acssuschemeng.5b01020. DOI

Guo M., Zhang Y., Du F., Wu Y., Zhang Q., Jiang C. Silver nanoparticles/polydopamine coated polyvinyl alcohol sponge as an effective and recyclable catalyst for reduction of 4-nitrophenol. Mater. Chem. Phys. 2019;225:42–49. doi: 10.1016/j.matchemphys.2018.12.049. DOI

Moghim M.H., Keshavarz M., Zebarjad S.M. Effect of SiO2 nanoparticles on compression behavior of flexible polyurethane foam. Polym. Bull. 2019;76:227–239. doi: 10.1007/s00289-018-2384-0. DOI

Venkatesan J., Lee J.Y., Kang D.S., Anil S., Kim S.K., Shim M.S., Kim D.G. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int. J. Biol. Macromol. 2017;98:515–525. doi: 10.1016/j.ijbiomac.2017.01.120. PubMed DOI

Lv P., Tang X., Zheng R., Ma X., Yu K., Wei W. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode. Nanoscale Res. Lett. 2017;12:630. doi: 10.1186/s11671-017-2395-z. PubMed DOI PMC

Silvestri D., Wacławek S., Venkateshaiah A., Krawczyk K., Sobel B., Padil V.V.T., Černík M., Varma R.S. Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic activity. Carbohydr. Polym. 2020;232:115806. doi: 10.1016/j.carbpol.2019.115806. PubMed DOI

Subhan F., Aslam S., Yan Z., Yaseen M. Unusual Pd nanoparticle dispersion in microenvironment for p-nitrophenol and methylene blue catalytic reduction. J. Colloid Interface Sci. 2020;578:37–46. doi: 10.1016/j.jcis.2020.05.093. PubMed DOI

Baruah B., Gabriel G.J., Akbashev M.J., Booher M.E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir. 2013;29:4225–4234. doi: 10.1021/la305068p. PubMed DOI

An Q., Yu M., Zhang Y., Ma W., Guo J., Wang C. Fe3O4@carbon microsphere supported Ag-Au bimetallic nanocrystals with the enhanced catalytic activity and selectivity for the reduction of nitroaromatic compounds. J. Phys. Chem. C. 2012;116:22432–22440. doi: 10.1021/jp307629m. DOI

Kamal T., Asiri A.M., Ali N. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;261:120019. doi: 10.1016/j.saa.2021.120019. PubMed DOI

Virk K., Sharma K., Kapil S., Kumar V., Sharma V., Pandey S., Kumar V. Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity. J. Polym. Res. 2022;29:118. doi: 10.1007/s10965-022-02978-8. DOI

Praveen, Suzuki S., Carson C.F., Saunders M., Clode P.L., Myers M., Chirila T.V., Baker M.V. Poly(2-Hydroxyethyl Methacrylate) Sponges Doped with Ag Nanoparticles as Antibacterial Agents. ACS Appl. Nano Mater. 2020;3:1630–1639. doi: 10.1021/acsanm.9b02384. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...