The Effect of 3-Week Betaine Supplementation on Blood Biomarkers of Cardiometabolic Health in Young Physically Active Males
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2017/27/N/NZ9/00750
National Science Center
PubMed
36005603
PubMed Central
PMC9415743
DOI
10.3390/metabo12080731
PII: metabo12080731
Knihovny.cz E-zdroje
- Klíčová slova
- MTHFR, betaine, blood lipids, cardiometabolic health, homocysteine, physical activity,
- Publikační typ
- časopisecké články MeSH
Betaine (BET) supplementation decreases homocysteine concentration in plasma, but it may also have an adverse effect on health by increasing blood lipid concentrations, at least in overweight and obese individuals. The aim of this study was to evaluate the effect of BET supplementation on the lipid profile and concentrations of homocysteine, inflammatory cytokines, and liver enzymes in physically active, healthy males. This was a randomized, placebo (PL)-controlled, double-blinded, crossover trial. BET (2.5 or 5.0 g/d) was administered for 21 days. Before and after supplementation with BET or PL, anthropometric measurements and blood were collected in a fasted state. Our results show that BET supplementation significantly decreased homocysteine concentration (from 17.1 ± 4.0 μmol/L before BET to 15.6 ± 3.5 μmol/L after BET, p = 0.009, η2 = 0.164). However, the intervention had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerol, interleukins 1β and 6, and tumour necrosis factor α concentrations, or alanine and aspartate activities. In addition, there were no interactions between the MTHFR genotype and BET dose. In conclusion, BET supplementation may be beneficial for homocysteine concentration in healthy, physically active males, with no detrimental effect on lipid profile.
Department of Human Nutrition and Dietetics Poznan University of Life Sciences 60 624 Poznan Poland
Department of Sports Dietetics Poznan University of Physical Education 61 871 Poznan Poland
Zobrazit více v PubMed
Olthof M.R., van Vliet T., Boelsma E., Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J. Nutr. 2003;133:4135–4138. doi: 10.1093/jn/133.12.4135. PubMed DOI
Schaffer A., Verdoia M., Cassetti E., Marino P., Suryapranata H., De Luca G., Novara Atherosclerosis Study Group (NAS) Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb. Res. 2014;134:288–293. doi: 10.1016/j.thromres.2014.05.025. PubMed DOI
Lehotský J., Tothová B., Kovalská M., Dobrota D., Beňová A., Kalenská D., Kaplán P. Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front. Neurosci. 2016;10:538. doi: 10.3389/fnins.2016.00538. PubMed DOI PMC
Setién-Suero E., Suárez-Pinilla M., Suárez-Pinilla P., Crespo-Facorro B., Ayesa-Arriola R. Homocysteine and cognition: A systematic review of 111 studies. Neurosci. Biobehav. Rev. 2016;69:280–298. doi: 10.1016/j.neubiorev.2016.08.014. PubMed DOI
Sharma M., Tiwari M., Tiwari R.K. Hyperhomocysteinemia: Impact on neurodegenerative diseases. Basic Clin. Pharmacol. Toxicol. 2015;117:287–296. doi: 10.1111/bcpt.12424. PubMed DOI
Behera J., Bala J., Nuru M., Tyagi S.C., Tyagi N. Homocysteine as a Pathological Biomarker for Bone Disease. J. Cell. Physiol. 2017;232:2704–2709. doi: 10.1002/jcp.25693. PubMed DOI PMC
Nasri K., Ben Fradj M.K., Touati A., Aloui M., Ben Jemaa N., Masmoudi A., Elmay M.V., Omar S., Feki M., Kaabechi N., et al. Association of maternal homocysteine and vitamins status with the risk of neural tube defects in Tunisia: A case-control study. Birth Defects Res. Part A Clin. Mol. Teratol. 2015;103:1011–1020. doi: 10.1002/bdra.23418. PubMed DOI
Wang C., Ma C., Gong L., Dai S., Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur. J. Pharm. 2021;912:174604. doi: 10.1016/j.ejphar.2021.174604. PubMed DOI
Olthof M.R., van Vliet T., Verhoef P., Zock P.L., Katan M.B. Effect of homocysteine-lowering nutrients on blood lipids: Results from four randomised, placebo-controlled studies in healthy humans. PLoS Med. 2005;2:e135. doi: 10.1371/journal.pmed.0020135. PubMed DOI PMC
Zawieja E.E., Zawieja B., Chmurzynska A. Betaine Supplementation Moderately Increases Total Cholesterol Levels: A Systematic Review and Meta-Analysis. J. Diet. Suppl. 2021;18:105–117. doi: 10.1080/19390211.2019.1699223. PubMed DOI
Zeisel S.H. Betaine supplementation and blood lipids: Fact or artifact? Nutr. Rev. 2006;64:77–79. doi: 10.1111/j.1753-4887.2006.tb00190.x. PubMed DOI
Ashtary-Larky D., Bagheri R., Ghanavati M., Asbaghi O., Tinsley G.M., Mombaini D., Kooti W., Kashkooli S., Wong A. Effects of BET supplementation on cardiovascular markers: A systematic review and Meta-analysis. Crit. Rev. Food Sci. Nutr. 2021;25:6516–6533. PubMed
Soysal P., Arik F., Smith L., Jackson S.E., Isik A.T. Inflammation, Frailty and Cardiovascular Disease. Adv. Exp. Med. Biol. 2020;1216:55–64. PubMed
Xia Y., Chen S., Zhu G., Huang R., Yin Y., Ren W. BET Inhibits Interleukin-1β Production and Release: Potential Mechanisms. Front. Immunol. 2018;9:2670. doi: 10.3389/fimmu.2018.02670. PubMed DOI PMC
Kim D.H., Kim S.M., Lee B., Lee E.K., Chung K.W., Moon K.M., An H.J., Kim K.M., Yu B.P., Chung H.Y. Effect of betaine on hepatic insulin resistance through FOXO1-induced NLRP3 inflammasome. J. Nutr. Biochem. 2017;45:104–114. doi: 10.1016/j.jnutbio.2017.04.014. PubMed DOI
Zhao G., He F., Wu C., Li P., Li N., Deng J., Zhu G., Ren W., Peng Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018;9:1070. doi: 10.3389/fimmu.2018.01070. PubMed DOI PMC
Yan J., Wang W., Gregory J.F., III, Malysheva O., Brenna J.T., Stabler S.P., Allen R.H., Caudill M.A. MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-choline. Am. J. Clin. Nutr. 2011;93:348–355. doi: 10.3945/ajcn.110.005975. PubMed DOI PMC
Durkalec-Michalski K., Zawieja E.E., Zawieja B.E., Podgórski T. Evaluation of the repeatability and reliability of the cross-training specific Fight Gone Bad workout and its relation to aerobic fitness. Sci. Rep. 2021;11:7263. doi: 10.1038/s41598-021-86660-x. PubMed DOI PMC
McRae M.P. Betaine supplementation decreases plasma homocysteine in healthy adult participants: A meta-analysis. J. Chiropr. Med. 2013;12:20–25. doi: 10.1016/j.jcm.2012.11.001. PubMed DOI PMC
Li M.N., Wang H.J., Zhang N.R., Xuan L., Shi X.J., Zhou T., Chen B., Zhang J., Li H. MTHFR C677T gene polymorphism and the severity of coronary lesions in acute coronary syndrome. Medicine. 2017;96:e9044. doi: 10.1097/MD.0000000000009044. PubMed DOI PMC
Moretti R., Giuffré M., Caruso P., Gazzin S., Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int. J. Mol. Sci. 2021;22:2051. doi: 10.3390/ijms22042051. PubMed DOI PMC
McGregor D.O., Dellow W.J., Robson R.A., Lever M., George P.M., Chambers S.T. Betaine supplementation decreases post-methionine hyperhomocysteinemia in chronic renal failure. Kidney Int. 2002;61:1040–1046. doi: 10.1046/j.1523-1755.2002.00199.x. PubMed DOI
Schwab U., Törrönen A., Toppinen L., Alfthan G., Saarinen M., Aro A., Uusitupa M. Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am. J. Clin. Nutr. 2002;76:961–967. doi: 10.1093/ajcn/76.5.961. PubMed DOI
Tiihonen K., Saarinen M.T., Alhoniemi E., Mitsuya N., Yamaki G. Effect of dietary betaine on metabolic syndrome risk factors in Asian males with mild fatty liver. J. Diabetes Metab. 2016;7:692. doi: 10.4172/2155-6156.1000692. DOI
Grizales A.M., Patti M.E., Lin A.P., Beckman J.A., Sahni V.A., Cloutier E., Fowler K.M., Dreyfuss J.M., Pan H., Kozuka C., et al. Metabolic Effects of Betaine: A Randomized Clinical Trial of Betaine Supplementation in Prediabetes. J. Clin. Endocrinol. Metab. 2018;103:3038–3049. doi: 10.1210/jc.2018-00507. PubMed DOI PMC
Rehman A., Mehta K.J. Betaine in ameliorating alcohol-induced hepatic steatosis. Eur. J. Nutr. 2022;61:1167–1176. doi: 10.1007/s00394-021-02738-2. PubMed DOI PMC
Luo Z., Lu Z., Muhammad I., Chen Y., Chen Q., Zhang J., Song Y. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: A systematic review and updated meta-analysis. Lipids Health Dis. 2018;17:191. doi: 10.1186/s12944-018-0837-y. PubMed DOI PMC
Ito H., Nakasuga K., Ohshima A., Sakai Y., Maruyama T., Kaji Y., Harada M., Jingu S., Sakamoto M. Excess accumulation of body fat is related to dyslipidemia in normal-weight subjects. Int. J. Obes. 2004;28:242–247. doi: 10.1038/sj.ijo.0802528. PubMed DOI
Slow S., Lever M., Chambers S.T., George P.M. Plasma dependent and independent accumulation of betaine in male and female rat tissues. Physiol. Res. 2009;58:403–410. doi: 10.33549/physiolres.931569. PubMed DOI
Abdelmalek M.F., Sanderson S.O., Angulo P., Soldevila-Pico C., Liu C., Peter J., Keach J., Cave M., Chen T., McClain C.J., et al. Betaine for nonalcoholic fatty liver disease: Results of a randomized placebo-controlled trial. Hepatology. 2009;50:1818–1826. doi: 10.1002/hep.23239. PubMed DOI
Lala V., Goyal A., Minter D.A. Liver Function Tests. Stat Pearls Publisher; Treasure Island, FL, USA: 2021.
Nobari H., Cholewa J.M., Pérez-Gómez J., Castillo-Rodríguez A. Effects of 14-weeks betaine supplementation on pro-inflammatory cytokines and hematology status in professional youth soccer players during a competition season: A double blind, randomized, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2021;18:42. doi: 10.1186/s12970-021-00441-5. PubMed DOI PMC