Phytoremediation of Soil Contaminated by Organochlorine Pesticides and Toxic Trace Elements: Prospects and Limitations of Paulownia tomentosa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
OR11465435
Ministry of Education and Science of the Republic of Kazakhstan
PubMed
36006144
PubMed Central
PMC9415570
DOI
10.3390/toxics10080465
PII: toxics10080465
Knihovny.cz E-zdroje
- Klíčová slova
- Paulownia tomentosa, bioconcentration factor, organochlorine pesticides, phytoremediation, toxic trace elements, translocation factor,
- Publikační typ
- časopisecké články MeSH
Paulownia tomentosa (Thunb.) Steud is a drought-resistant, low-maintenance and fast-growing energy crop that can withstand a wide range of climatic conditions, provides a high biomass yield (approximately 50 t DM ha-1 yr-1), and develops successfully in contaminated sites. In Kazakhstan, there are many historically contaminated sites polluted by a mixture of xenobiotics of organic and inorganic origin that need to be revitalised. Pilot-scale research evaluated the potential of P. tomentosa for the phytoremediation of soils historically contaminated with organochlorine pesticides (OCPs) and toxic trace elements (TTEs) to minimise their impact on the environment. Targeted soils from the obsolete pesticide stockpiles located in three villages of Talgar district, Almaty region, Kazakhstan, i.e., Amangeldy (soil A), Beskainar (soil B), and Kyzylkairat (soil K), were subjected to research. Twenty OCPs and eight TTEs (As, Cr, Co, Ni, Cu, Zn, Cd, and Pb) were detected in the soils. The phytoremediation potential of P. tomentosa was investigated for OCPs whose concentrations in the soils were significantly different (aldrin, endosulfans, endrin aldehyde, HCB, heptachlor, hexabromobenzene, keltan, methoxychlor, and γ-HCH) and for TTEs (Cu, Zn, and Cd) whose concentrations exceeded maximum permissible concentrations. Bioconcentration (BCF) and translocation (TLF) factors were used as indicators of the phytoremediation process. It was ensured that the uptake and translocation of contaminants by P. tomentosa was highly variable and depended on their properties and concentrations in soil. Besides the ability to bioconcentrate Cr, Ni, and Cu, P. tomentosa demonstrated very encouraging results in the accumulation of endosulfans, keltan, and methoxychlor and the phytoextraction of γ-HCH (TLFs of 1.9-9.9) and HCB (BCFs of 197-571). The results of the pilot trials support the need to further investigate the potential of P. tomentosa for phytoremediation on a field scale.
Zobrazit více v PubMed
Cameselle C., Gouveia S. Phytoremediation of Mixed Contaminated Soil Enhanced with Electric Current. J. Hazard. Mater. 2019;361:95–102. doi: 10.1016/j.jhazmat.2018.08.062. PubMed DOI
Li Y., Xie T., Zha Y., Du W., Yin Y., Guo H. Urea-Enhanced Phytoremediation of Cadmium with Willow in Pyrene and Cadmium Contaminated Soil. J. Hazard. Mater. 2021;405:124257. doi: 10.1016/j.jhazmat.2020.124257. PubMed DOI
Macci C., Peruzzi E., Doni S., Masciandaro G. Monitoring of a Long Term Phytoremediation Process of a Soil Contaminated by Heavy Metals and Hydrocarbons in Tuscany. Environ. Sci. Pollut. Res. 2020;27:424–437. doi: 10.1007/s11356-019-06836-x. PubMed DOI
Baubekova A., Akindykova A., Mamirova A., Dumat C., Jurjanz S. Evaluation of Environmental Contamination by Toxic Trace Elements in Kazakhstan Based on Reviews of Available Scientific Data. Environ. Sci. Pollut. Res. 2021;28:43315–43328. doi: 10.1007/s11356-021-14979-z. PubMed DOI
Nurzhanova A., Kulakow P., Rubin E., Rakhimbayev I., Sedlovskiy A., Zhambakin K., Kalugin S., Kolysheva E., Erickson L. Obsolete Pesticides Pollution and Phytoremediation of Contaminated Soil in Kazakhstan. In: Kulakow P.A., Pidlisnyuk V.V., editors. Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination. Springer; Dordrecht, The Netherlands: 2010. pp. 87–111. (NATO Science for Peace and Security Series C: Environmental Security).
Moklyachuk L., Gorodiska I., Slobodenyuk O., Petryshyna V. Phytoremediation of Soil Polluted with Obsolete Pesticides in Ukraine. In: Kulakow P.A., Pidlisnyuk V.V., editors. Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination. Springer; Dordrecht, The Netherlands: 2010. pp. 113–124. (NATO Science for Peace and Security Series C: Environmental Security).
Bogdevich O., Cadocinicov O. Elimination of Acute Risks from Obsolete Pesticides in Moldova: Phytoremediation Experiment at a Former Pesticide Storehouse. In: Kulakow P.A., Pidlisnyuk V.V., editors. Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination. Springer; Dordrecht, The Netherlands: 2010. pp. 61–85. (NATO Science for Peace and Security Series C: Environmental Security).
Kaimi E., Mukaidani T., Tamaki M. Screening of Twelve Plant Species for Phytoremediation of Petroleum Hydrocarbon-Contaminated Soil. Plant Prod. Sci. 2007;10:211–218. doi: 10.1626/pps.10.211. DOI
Rissato S.R., Galhiane M.S., Fernandes J.R., Gerenutti M., Gomes H.M., Ribeiro R., de Almeida M.V. Evaluation of Ricinus communis L. for the Phytoremediation of Polluted Soil with Organochlorine Pesticides. BioMed Res. Int. 2015;2015:549863. doi: 10.1155/2015/549863. PubMed DOI PMC
Dudai N., Tsion I., Shamir S.Z., Nitzan N., Chaimovitsh D., Shachter A., Haim A. Agronomic and Economic Evaluation of Vetiver Grass (Vetiveria zizanioides L.) as Means for Phytoremediation of Diesel Polluted Soils in Israel. J. Environ. Manag. 2018;211:247–255. doi: 10.1016/j.jenvman.2018.01.013. PubMed DOI
Huang Y., Song Y., Johnson D., Huang J., Dong R., Liu H. Selenium Enhanced Phytoremediation of Diesel Contaminated Soil by Alternanthera philoxeroides. Ecotoxicol. Environ. Saf. 2019;173:347–352. doi: 10.1016/j.ecoenv.2019.02.040. PubMed DOI
Pidlisnyuk V., Mamirova A., Pranaw K., Shapoval P.Y., Trögl J., Nurzhanova A. Potential Role of Plant Growth-Promoting Bacteria in Miscanthus × giganteus Phytotechnology Applied to the Trace Elements Contaminated Soils. Int. Biodeterior. Biodegrad. 2020;155:105103. doi: 10.1016/j.ibiod.2020.105103. DOI
Yan L., Le Q.V., Sonne C., Yang Y., Yang H., Gu H., Ma N.L., Lam S.S., Peng W. Phytoremediation of Radionuclides in Soil, Sediments and Water. J. Hazard. Mater. 2021;407:124771. doi: 10.1016/j.jhazmat.2020.124771. PubMed DOI
Mendes C.V.T., Carvalho M.G.V.S., Baptista C.M.S.G., Rocha J.M.S., Soares B.I.G., Sousa G.D.A. Valorisation of Hardwood Hemicelluloses in the Kraft Pulping Process by Using an Integrated Biorefinery Concept. Food Bioprod. Process. 2009;87:197–207. doi: 10.1016/j.fbp.2009.06.004. DOI
Rajesh Banu J., Preethi, Kavitha S., Tyagi V.K., Gunasekaran M., Karthikeyan O.P., Kumar G. Lignocellulosic Biomass Based Biorefinery: A Successful Platform towards Circular Bioeconomy. Fuel. 2021;302:121086. doi: 10.1016/j.fuel.2021.121086. DOI
Gołąb-Bogacz I., Helios W., Kotecki A., Kozak M., Jama-Rodzeńska A. The Influence of Three Years of Supplemental Nitrogen on Above- and Belowground Biomass Partitioning in a Decade-Old Miscanthus × giganteus in the Lower Silesian Voivodeship (Poland) Agriculture. 2020;10:473. doi: 10.3390/agriculture10100473. DOI
Porvaz P., Tóth Š., Marcin A. Cultivation of Chinese Silvergrass (Miscanthus sinensis Anderss.) On the East Slovak Lowland as a Potential Source of Raw Material for Energy Purposes. Agriculture. 2012;58:146–153. doi: 10.2478/v10207-012-0016-5. DOI
Zachar M., Lieskovský M., Majlingová A., Mitterová I. Comparison of Thermal Properties of the Fast-Growing Tree Species and Energy Crop Species to Be Used as a Renewable and Energy-Efficient Resource. J. Therm. Anal. Calorim. 2018;134:543–548. doi: 10.1007/s10973-018-7194-y. DOI
Barbosa B., Boléo S., Sidella S., Costa J., Duarte M.P., Mendes B., Cosentino S.L., Fernando A.L. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. BioEnergy Res. 2015;8:1500–1511. doi: 10.1007/s12155-015-9688-9. DOI
Ge X., Xu F., Vasco-Correa J., Li Y. Giant Reed: A Competitive Energy Crop in Comparison with Miscanthus. Renew. Sustain. Energy Rev. 2016;54:350–362. doi: 10.1016/j.rser.2015.10.010. DOI
Hauptvogl M., Kotrla M., Prčík M., Pauková Ž., Kováčik M., Lošák T. Phytoremediation Potential of Fast-Growing Energy Plants: Challenges and Perspectives—A Review. Pol. J. Environ. Stud. 2019;29:505–516. doi: 10.15244/pjoes/101621. DOI
Pogrzeba M., Rusinowski S., Sitko K., Krzyżak J., Skalska A., Małkowski E., Ciszek D., Werle S., McCalmont J.P., Mos M., et al. Relationships between Soil Parameters and Physiological Status of Miscanthus × giganteus Cultivated on Soil Contaminated with Trace Elements under NPK Fertilisation vs. Microbial Inoculation. Environ. Pollut. 2017;225:163–174. doi: 10.1016/j.envpol.2017.03.058. PubMed DOI
Nurzhanova A., Pidlisnyuk V., Abit K., Nurzhanov C., Kenessov B., Stefanovska T., Erickson L. Comparative Assessment of Using Miscanthus × giganteus for Remediation of Soils Contaminated by Heavy Metals: A Case of Military and Mining Sites. Environ. Sci. Pollut. Res. 2019;26:13320–13333. doi: 10.1007/s11356-019-04707-z. PubMed DOI
Zgorelec Z., Bilandzija N., Knez K., Galic M., Zuzul S. Cadmium and Mercury Phytostabilization from Soil Using Miscanthus × giganteus. Sci. Rep. 2020;10:6685. doi: 10.1038/s41598-020-63488-5. PubMed DOI PMC
Pidlisnyuk V., Hettiarachchi G.M., Zgorelec Z., Prelac M., Bilandžija N., Davis L.C., Erickson L.E. Phytotechnologies for Site Remediation. In: Erickson L.E., Pidlisnyuk V., editors. Phytotechnology with Biomass Production: Sustainable Management of Contaminated Sites. CRC Press Taylor & Francis Group; Boca Raton, FL, USA: 2021. pp. 5–36.
El-Ramady H.R., Abdalla N., Alshaal T., Elhenawy A.S., Shams M.S., Faizy S.E.-D.A., Belal E.-S.B., Shehata S.A., Ragab M.I., Amer M.M., et al. Giant Reed for Selenium Phytoremediation under Changing Climate. Environ. Chem. Lett. 2015;13:359–380. doi: 10.1007/s10311-015-0523-5. DOI
Nurzhanova A., Pidlisnyuk V., Sailaukhanuly Y., Kenessov B., Trogl J., Aligulova R., Kalugin S., Nurmagambetova A., Abit K., Stefanovska T. Phytoremediation of Military Soil Contaminated by Metals and Organochlorine Pesticides Using Miscanthus. Commun. Agric. Appl. Biol. Sci. 2017;82:61–68.
GISD Global Invasive Species Database. [(accessed on 27 April 2021)]. Available online: http://www.iucngisd.org/gisd/search.php.
Prabakaran K., Li J., Anandkumar A., Leng Z., Zou C.B., Du D. Managing Environmental Contamination through Phytoremediation by Invasive Plants: A Review. Ecol. Eng. 2019;138:28–37. doi: 10.1016/j.ecoleng.2019.07.002. DOI
Jiménez L., Rodríguez A., Ferrer J., Pérez A., Angulo V. La Paulownia: Una Planta de Rápido Crecimiento como Materia Prima para la Fabricación de Papel. Afinidad. 2005;62:100–105.
López F., Pérez A., Zamudio M.A.M., De Alva H.E., García J.C. Paulownia as Raw Material for Solid Biofuel and Cellulose Pulp. Biomass Bioenergy. 2012;45:77–86. doi: 10.1016/j.biombioe.2012.05.010. DOI
Kajba D., Andrić I. Selection of Willows (Salix sp.) for Biomass Production. SEEFOR. 2014;5:145–151. doi: 10.15177/seefor.14-14. DOI
Marsal F., Thevathasan N.V., Guillot S., Mann J., Gordon A.M., Thimmanagari M., Deen W., Silim S., Soolanayakanahally R., Sidders D. Biomass Yield Assessment of Five Potential Energy Crops Grown in Southern Ontario, Canada. Agrofor. Syst. 2016;90:773–783. doi: 10.1007/s10457-016-9893-3. DOI
El-Showk S., El-Showk N. An Alternative for Sustainable Forestry. Crop Development; Rabat, Morocco: 2003. The Paulownia Tree; pp. 1–8.
Ye X., Zhang Z., Chen Y., Cheng J., Tang Z., Hu Y. Physico-Chemical Pretreatment Technologies of Bioconversion Efficiency of Paulownia tomentosa (Thunb.) Steud. Ind. Crops Prod. 2016;87:280–286. doi: 10.1016/j.indcrop.2016.04.045. DOI
Buzan R.L., Maxim A., Odagiu A., Balint C., Hărțăgan R.M. Paulownia sp. Used as an Energetic Plant, for the Phytoremediation of Soils and in Agroforestry Systems. ProEnviron. Promed. 2018;11:76–85.
Doumett S., Lamperi L., Checchini L., Azzarello E., Mugnai S., Mancuso S., Petruzzelli G., Del Bubba M. Heavy Metal Distribution between Contaminated Soil and Paulownia tomentosa, in a Pilot-Scale Assisted Phytoremediation Study: Influence of Different Complexing Agents. Chemosphere. 2008;72:1481–1490. doi: 10.1016/j.chemosphere.2008.04.083. PubMed DOI
Doumett S., Fibbi D., Azzarello E., Mancuso S., Mugnai S., Petruzzelli G., Bubba M.D. Influence of the Application Renewal of Glutamate and Tartrate on Cd, Cu, Pb and Zn Distribution Between Contaminated Soil and Paulownia tomentosa in a Pilot-Scale Assisted Phytoremediation Study. Int. J. Phytoremediat. 2010;13:1–17. doi: 10.1080/15226510903567455. PubMed DOI
Bahri N.B., Laribi B., Soufi S., Rezgui S., Bettaieb T. Growth Performance, Photosynthetic Status and Bioaccumulation of Heavy Metals by Paulownia tomentosa (Thunb.) Steud Growing on Contaminated Soils. Int. J. Agron. Agric. Res. 2015;6:32–43.
Bahri N.B., Rezgui S., Bettaieb T. Physiological Responses of Paulownia tomentosa (Thunb.) Steud Grown on Contaminated Soils with Heavy Metals. J. New Sci. 2015;23:1064–1070.
Grama M., Adams F., Siretanu L., Cincilei A., Bulmaga P. Analytical Study of Obsolete Pesticides Stockpiles in the Republic of Moldova into NATO Science for Peace Project “Clean-Up Chemicals—Moldova”. In: Simeonov L.I., Macaev F.Z., Simeonova B.G., editors. Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe. Springer; Dordrecht, The Netherlands: 2013. pp. 381–395. (NATO Science for Peace and Security Series C: Environmental Security).
Nurzhanova A., Kalugin S., Zhambakin K. Obsolete Pesticides and Application of Colonizing Plant Species for Remediation of Contaminated Soil in Kazakhstan. Environ. Sci. Pollut. Res. 2013;20:2054–2063. doi: 10.1007/s11356-012-1111-x. PubMed DOI
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC
Soil, Treated Biowaste and Sludge—Determination of pH. ISO; Bern, Switzerland: 2021. p. 8. ISO/TC 190/SC 3 Chemical and Physical Characterization.
FAO . World Reference Base for Soil Resources 2014: International Soil Classification Systems for Naming Soils and Creating Legends for Soil Maps (Update 2015) World Soil Resources; Rome, Italy: 2014.
Soil. Determination of Humus by the Tyurin Method. GosStandard; Moscow, Russia: 1991.
Soil. Determination of the Mobile Compounds of Phosphorus and Potassium by Kirsanov Method, Modified by CRIAAS. GosStandard; Moscow, Russia: 1991.
Methods for Determination of Electrical Conductivity, pH of Salt Regime and Solid Residue of Salt Extract. GosStandard; Moscow, Russia: 1985.
Nature Protection. Soils. General Requirement for Sampling. GosStandard; Moscow, Russia: 2019.
Soil Quality. Determination of Organochlorine Pesticides and Polychlorinated Biphenyls Content. Gas Chromatographic Method with Electron Capture Detection. GosStandard; Astana, Kazakhstan: 2012.
Water, Food, Feed and Tobacco. Determination of Organochlorine Pesticides by Chromatographic Methods. GosStandard; Astana, Kazakhstan: 2010.
Mamirova A., Pidlisnyuk V., Amirbekov A., Ševců A., Nurzhanova A. Phytoremediation Potential of Miscanthus sinensis And. in Organochlorine Pesticides Contaminated Soil Amended by Tween 20 and Activated Carbon. Environ. Sci. Pollut. Res. 2021;28:16092–16106. doi: 10.1007/s11356-020-11609-y. PubMed DOI
Soil Quality. Determination of the Content of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc in Soil Extracts in Aqua Regia. Spectrophotometric Methods of Atomic Absorption in a Flame and with Electrothermal Spray. GosStandard; Astana, Kazakhstan: 2008. p. 52. ICS 13.080 Soil Quality; “Sonar Consulting and Trading Company Ltd” LPP.
Iron Ores, Concentrates, Agglomerates and Pellets. Methods for the Determination of Arsenic Content. GosStandard; Moscow, Russia: 1981. p. 12. ICS 73.060.10 Iron Ores.
Raw Material and Food-Stuffs. Method for Determination of Arsenic. GosStandard; Moscow, Russia: 1987. p. 6. ICS 67.050 General Methods of Inspection and Analysis of Food.
Raw Material and Food-Stuffs. Atomic Absorption Method for Determination of Toxic Elements. GosStandard; Moscow, Russia: 1996. p. 11. ICS 67.050 General Methods of Inspection and Analysis of Food.
Zayed A., Gowthaman S., Terry N. Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed. J. Environ. Qual. 1998;27:715–721. doi: 10.2134/jeq1998.00472425002700030032x. DOI
Yanqun Z., Yuan L., Jianjun C., Haiyan C., Li Q., Schvartz C. Hyperaccumulation of Pb, Zn and Cd in Herbaceous Grown on Lead–Zinc Mining Area in Yunnan, China. Environ. Int. 2005;31:755–762. doi: 10.1016/j.envint.2005.02.004. PubMed DOI
MHRK and MEPRK Standards for Maximum Permissible Concentrations of Harmful Substances, Pests and Other Biological Substances Polluting the Soil, Approved by a Joint Order of the Ministry of Health of the Republic of Kazakhstan Dated January 30, 2004 No. 99 and the Ministry of Environmental Protection of the Republic of Kazakhstan Dated January 27, 2004 No. 21-P. Ministry of Environmental Protection; Nur-Sultan, Kazakhstan: 2004.
KSES Kazakh Standard for Environmental Safety. Approval of Hygienic Standards for Environmental Safety (Soil). Order of the Minister of Health of the Republic of Kazakhstan Dated April 21, 2021 No. 452. Registered with the Ministry of Justice of the Republic of Kazakhstan on April 22, 2021 No. 22595. Ministry of Justice; Nur-Sultan, Kazakhstan: 2021. p. 5.
Gannon N., Decker G.C. The Conversion of Heptachlor to Its Epoxide on Plants. J. Econ. Entomol. 1958;51:3–7. doi: 10.1093/jee/51.1.3. DOI
NCBI PubChem Annotation Record for Hexabromobenzene. [(accessed on 2 August 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/2912#section=LogP.
Blaylock B.L. Aldrin. In: Wexler P., editor. Encyclopedia of Toxicology. 2nd ed. Elsevier; New York, NY, USA: 2005. pp. 66–68.
Sojinu O.S., Sonibare O.O., Ekundayo O.O., Zeng E.Y. Assessment of Organochlorine Pesticides Residues in Higher Plants from Oil Exploration Areas of Niger Delta, Nigeria. Sci. Total Environ. 2012;433:169–177. doi: 10.1016/j.scitotenv.2012.06.043. PubMed DOI
Peterson P.J. Unusual Accumulations of Elements by Plants and Animals. Sci. Prog. 1971;59:505–526.
Baker A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C. Phytoremediation of Contaminated Soil and Water. CRC Press; Boca Raton, FL, USA: 2000. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils.
Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. CRC Press; Boca Raton, FL, USA: 2010.