Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System

. 2022 Jul 31 ; 10 (8) : . [epub] 20220731

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36009391

Grantová podpora
1/0035/19 VEGA
20-0421 APVV

Odkazy

PubMed 36009391
PubMed Central PMC9405404
DOI 10.3390/biomedicines10081844
PII: biomedicines10081844
Knihovny.cz E-zdroje

This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation.

Zobrazit více v PubMed

Simko F., Pechanova O. Remodelling of the Heart and Vessels in Experimental Hypertension: Advances in Protection. J. Hypertens. 2010;28((Suppl. 1)):S1–S6. doi: 10.1097/01.hjh.0000388487.43460.db. PubMed DOI

Weber K.T. Fibrosis and Hypertensive Heart Disease. Curr. Opin. Cardiol. 2000;15:264–272. doi: 10.1097/00001573-200007000-00010. PubMed DOI

Simko F., Simko J. The Potential Role of Nitric Oxide in the Hypertrophic Growth of the Left Ventricle. Physiol. Res. 2000;49:37–46. PubMed

McMurray J.J.V. Neprilysin Inhibition to Treat Heart Failure: A Tale of Science, Serendipity, and Second Chances. Eur. J. Heart Fail. 2015;17:242–247. doi: 10.1002/ejhf.250. PubMed DOI

Simko F., Dukat A. Inhibition of Neprilysin—New Horizon in Heart Failure Therapy. Cardiol. Lett. 2016;25:273–276.

Packer M., McMurray J.J.V., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin Receptor Neprilysin Inhibition Compared with Enalapril on the Risk of Clinical Progression in Surviving Patients with Heart Failure. Circulation. 2015;131:54–61. doi: 10.1161/CIRCULATIONAHA.114.013748. PubMed DOI

Pieske B., Wachter R., Shah S.J., Baldridge A., Szeczoedy P., Ibram G., Shi V., Zhao Z., Cowie M.R., PARALLAX Investigators and Committee members Effect of Sacubitril/Valsartan vs Standard Medical Therapies on Plasma NT-ProBNP Concentration and Submaximal Exercise Capacity in Patients with Heart Failure and Preserved Ejection Fraction: The PARALLAX Randomized Clinical Trial. JAMA. 2021;326:1919–1929. doi: 10.1001/jama.2021.18463. PubMed DOI PMC

Swedberg K., Komajda M., Böhm M., Borer J.S., Ford I., Dubost-Brama A., Lerebours G., Tavazzi L., SHIFT Investigators Ivabradine and Outcomes in Chronic Heart Failure (SHIFT): A Randomised Placebo-Controlled Study. Lancet. 2010;376:875–885. doi: 10.1016/S0140-6736(10)61198-1. PubMed DOI

Burnett J.C., Granger J.P., Opgenorth T.J. Effects of Synthetic Atrial Natriuretic Factor on Renal Function and Renin Release. Am. J. Physiol. 1984;247:F863–F866. doi: 10.1152/ajprenal.1984.247.5.F863. PubMed DOI

Reddy G.K., Enwemeka C.S. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Basu R., Poglitsch M., Yogasundaram H., Thomas J., Rowe B.H., Oudit G.Y. Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J. Am. Coll. Cardiol. 2017;69:805–819. doi: 10.1016/j.jacc.2016.11.064. PubMed DOI

Pavo N., Goliasch G., Wurm R., Novak J., Strunk G., Gyöngyösi M., Poglitsch M., Säemann M.D., Hülsmann M. Low- and High-Renin Heart Failure Phenotypes with Clinical Implications. Clin. Chem. 2018;64:597–608. doi: 10.1373/clinchem.2017.278705. PubMed DOI

Guo Z., Poglitsch M., Cowley D., Domenig O., McWhinney B.C., Ungerer J.P.J., Wolley M., Stowasser M. Effects of Ramipril on the Aldosterone/Renin Ratio and the Aldosterone/Angiotensin II Ratio in Patients with Primary Aldosteronism. Hypertension. 2020;76:488–496. doi: 10.1161/HYPERTENSIONAHA.120.14871. PubMed DOI

Burrello J., Buffolo F., Domenig O., Tetti M., Pecori A., Monticone S., Poglitsch M., Mulatero P. Renin-Angiotensin-Aldosterone System Triple-A Analysis for the Screening of Primary Aldosteronism. Hypertension. 2020;75:163–172. doi: 10.1161/HYPERTENSIONAHA.119.13772. PubMed DOI

Liu J., Rigel D.F. Cardiovascular Genomics: Methods and Protocols. Volume 573. Humana; Totowa, NJ, USA: 2009. Echocardiographic Examination in Rats and Mice; pp. 139–155. (Methods in Molecular Biology Series). PubMed DOI

Bernatova I., Conde M.V., Kopincova J., González M.C., Puzserova A., Arribas S.M. Endothelial Dysfunction in Spontaneously Hypertensive Rats: Focus on Methodological Aspects. J. Hypertens. Suppl. 2009;27:S27–S31. doi: 10.1097/01.hjh.0000358834.18311.fc. PubMed DOI

Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednarova K., Adamcova M., Paulis L. Effect of Melatonin, Captopril, Spironolactone and Simvastatin on Blood Pressure and Left Ventricular Remodelling in Spontaneously Hypertensive Rats. J. Hypertens. Suppl. 2009;27:S5–S10. doi: 10.1097/01.hjh.0000358830.95439.e8. PubMed DOI

Stoyell-Conti F.F., Chabbra A., Puthentharayil J., Rigatto K., Speth R.C. Chronic Administration of Pharmacological Doses of Angiotensin 1-7 and Iodoangiotensin 1-7 Has Minimal Effects on Blood Pressure, Heart Rate, and Cognitive Function of Spontaneously Hypertensive Rats. Physiol. Rep. 2021;9:e14812. doi: 10.14814/phy2.14812. PubMed DOI PMC

Zhang F., Tang H., Sun S., Luo Y., Ren X., Chen A., Xu Y., Li P., Han Y. Angiotensin-(1-7) Induced Vascular Relaxation in Spontaneously Hypertensive Rats. Nitric Oxide Biol. Chem. 2019;88:1–9. doi: 10.1016/j.niox.2019.03.007. PubMed DOI

Jing Y., Hu J., Zhao J., Yang J., Huang N., Song P., Xu J., Zhang M., Li P., Yin Y. Experimental Study of Blood Pressure and Its Impact on Spontaneous Hypertension in Rats with Xin Mai Jia. Biomed. Pharmacother. 2019;112:108689. doi: 10.1016/j.biopha.2019.108689. PubMed DOI

Wang X., Zhu Y., Wang S., Wang Z., Sun H., He Y., Yao W. Effects of Eplerenone on Cerebral Aldosterone Levels and Brain Lesions in Spontaneously Hypertensive Rats. Clin. Exp. Hypertens. 2020;42:531–538. doi: 10.1080/10641963.2020.1723615. PubMed DOI

Tanaka S., Ueno T., Tsunemi A., Nagura C., Tahira K., Fukuda N., Soma M., Abe M. The Adrenal Gland Circadian Clock Exhibits a Distinct Phase Advance in Spontaneously Hypertensive Rats. Hypertens. Res. 2019;42:165–173. doi: 10.1038/s41440-018-0148-8. PubMed DOI

Sun Z., Zhang Z. Historic Perspectives and Recent Advances in Major Animal Models of Hypertension. Acta Pharmacol. Sin. 2005;26:295–301. doi: 10.1111/j.1745-7254.2005.00054.x. PubMed DOI

Qin F., Li J., Dai Y.-F., Zhong X.-G., Pan Y.-J. Renal Denervation Inhibits the Renin-Angiotensin-Aldosterone System in Spontaneously Hypertensive Rats. Clin. Exp. Hypertens. 2022;44:83–92. doi: 10.1080/10641963.2021.1996587. PubMed DOI

Wang M., Han W., Zhang M., Fang W., Zhai X., Guan S., Qu X. Long-Term Renal Sympathetic Denervation Ameliorates Renal Fibrosis and Delays the Onset of Hypertension in Spontaneously Hypertensive Rats. Am. J. Transl. Res. 2018;10:4042–4053. PubMed PMC

Lee Y.H., Kim Y.G., Moon J.-Y., Kim J.S., Jeong K.-H., Lee T.W., Ihm C.-G., Lee S.H. Genetic Variations of Tyrosine Hydroxylase in the Pathogenesis of Hypertension. Electrolyte Blood Press. EBP. 2016;14:21–26. doi: 10.5049/EBP.2016.14.2.21. PubMed DOI PMC

Brocca M.E., Pietranera L., de Kloet E.R., De Nicola A.F. Mineralocorticoid Receptors, Neuroinflammation and Hypertensive Encephalopathy. Cell. Mol. Neurobiol. 2019;39:483–492. doi: 10.1007/s10571-018-0610-9. PubMed DOI PMC

Liu J., Zheng X., Zhang C., Zhang C., Bu P. Lcz696 Alleviates Myocardial Fibrosis after Myocardial Infarction through the SFRP-1/Wnt/β-Catenin Signaling Pathway. Front. Pharmacol. 2021;12:724147. doi: 10.3389/fphar.2021.724147. PubMed DOI PMC

Kompa A.R., Lu J., Weller T.J., Kelly D.J., Krum H., von Lueder T.G., Wang B.H. Angiotensin Receptor Neprilysin Inhibition Provides Superior Cardioprotection Compared to Angiotensin Converting Enzyme Inhibition after Experimental Myocardial Infarction. Int. J. Cardiol. 2018;258:192–198. doi: 10.1016/j.ijcard.2018.01.077. PubMed DOI

von Lueder T.G., Wang B.H., Kompa A.R., Huang L., Webb R., Jordaan P., Atar D., Krum H. Angiotensin Receptor Neprilysin Inhibitor LCZ696 Attenuates Cardiac Remodeling and Dysfunction after Myocardial Infarction by Reducing Cardiac Fibrosis and Hypertrophy. Circ. Heart Fail. 2015;8:71–78. doi: 10.1161/CIRCHEARTFAILURE.114.001785. PubMed DOI

Suematsu Y., Miura S.-I., Goto M., Matsuo Y., Arimura T., Kuwano T., Imaizumi S., Iwata A., Yahiro E., Saku K. LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Improves Cardiac Function with the Attenuation of Fibrosis in Heart Failure with Reduced Ejection Fraction in Streptozotocin-Induced Diabetic Mice. Eur. J. Heart Fail. 2016;18:386–393. doi: 10.1002/ejhf.474. PubMed DOI

Tashiro K., Kuwano T., Ideishi A., Morita H., Idemoto Y., Goto M., Suematsu Y., Miura S.-I. Sacubitril/Valsartan Inhibits Cardiomyocyte Hypertrophy in Angiotensin II-Induced Hypertensive Mice Independent of a Blood Pressure-Lowering Effect. Cardiol. Res. 2020;11:376–385. doi: 10.14740/cr1137. PubMed DOI PMC

Zhang W., Liu J., Fu Y., Ji H., Fang Z., Zhou W., Fan H., Zhang Y., Liao Y., Yang T., et al. Sacubitril/Valsartan Reduces Fibrosis and Alleviates High-Salt Diet-Induced HFpEF in Rats. Front. Pharmacol. 2020;11:600953. doi: 10.3389/fphar.2020.600953. PubMed DOI PMC

Rubattu S., Cotugno M., Forte M., Stanzione R., Bianchi F., Madonna M., Marchitti S., Volpe M. Effects of Dual Angiotensin Type 1 Receptor/Neprilysin Inhibition vs. Angiotensin Type 1 Receptor Inhibition on Target Organ Injury in the Stroke-Prone Spontaneously Hypertensive Rat. J. Hypertens. 2018;36:1902–1914. doi: 10.1097/HJH.0000000000001762. PubMed DOI

Wang Y., Zhou R., Lu C., Chen Q., Xu T., Li D. Effects of the Angiotensin-Receptor Neprilysin Inhibitor on Cardiac Reverse Remodeling: Meta-Analysis. J. Am. Heart Assoc. 2019;8:e012272. doi: 10.1161/JAHA.119.012272. PubMed DOI PMC

Steckelings U.M., Sumners C. Correcting the Imbalanced Protective RAS in COVID-19 with Angiotensin AT2-Receptor Agonists. Clin. Sci. 2020;134:2987–3006. doi: 10.1042/CS20200922. PubMed DOI

Hrenak J., Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2020;21:8038. doi: 10.3390/ijms21218038. PubMed DOI PMC

Simko F., Baka T. Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers: Potential Allies in the COVID-19 Pandemic Instead of a Threat? Clin. Sci. 2021;135:1009–1014. doi: 10.1042/CS20210182. PubMed DOI PMC

Simko F., Hrenak J., Adamcova M., Paulis L. Renin-Angiotensin-Aldosterone System: Friend or Foe-The Matter of Balance. Insight on History, Therapeutic Implications and COVID-19 Interactions. Int. J. Mol. Sci. 2021;22:3217. doi: 10.3390/ijms22063217. PubMed DOI PMC

Wang K., Basu R., Poglitsch M., Bakal J.A., Oudit G.Y. Elevated Angiotensin 1-7/Angiotensin II Ratio Predicts Favorable Outcomes in Patients with Heart Failure. Circ. Heart Fail. 2020;13:e006939. doi: 10.1161/CIRCHEARTFAILURE.120.006939. PubMed DOI

Mulrow P.J. Angiotensin II and Aldosterone Regulation. Regul. Pept. 1999;80:27–32. doi: 10.1016/S0167-0115(99)00004-X. PubMed DOI

Rebuffat P., Malendowicz L.K., Nussdorfer G.G., Mazzocchi G. Stimulation of Endogenous Nitric Oxide Production Is Involved in the Inhibitory Effect of Adrenomedullin on Aldosterone Secretion in the Rat. Peptides. 2001;22:923–926. doi: 10.1016/S0196-9781(01)00418-1. PubMed DOI

Repova K., Aziriova S., Krajcirovicova K., Simko F. Cardiovascular Therapeutics: A New Potential for Anxiety Treatment? Med. Res. Rev. 2022;42:1202–1245. doi: 10.1002/med.21875. PubMed DOI PMC

Simko F., Baka T., Paulis L., Reiter R.J. Elevated Heart Rate and Nondipping Heart Rate as Potential Targets for Melatonin: A Review. J. Pineal Res. 2016;61:127–137. doi: 10.1111/jpi.12348. PubMed DOI

Simko F., Baka T. Ivabradine and Blood Pressure Reduction: Underlying Pleiotropic Mechanisms and Clinical Implications. Front. Cardiovasc. Med. 2021;8:607998. doi: 10.3389/fcvm.2021.607998. PubMed DOI PMC

Yu Y., Hu Z., Li B., Wang Z., Chen S. Ivabradine Improved Left Ventricular Function and Pressure Overload-Induced Cardiomyocyte Apoptosis in a Transverse Aortic Constriction Mouse Model. Mol. Cell. Biochem. 2019;450:25–34. doi: 10.1007/s11010-018-3369-x. PubMed DOI

Simko F., Baka T., Repova K., Aziriova S., Krajcirovicova K., Paulis L., Adamcova M. Ivabradine Improves Survival and Attenuates Cardiac Remodeling in Isoproterenol-Induced Myocardial Injury. Fundam. Clin. Pharmacol. 2021;35:744–748. doi: 10.1111/fcp.12620. PubMed DOI PMC

Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC

Ondicova K., Hegedusova N., Tibensky M., Mravec B. Ivabradine Reduces Baseline and Stress-Induced Increase of Heart Rate and Blood Pressure and Modulates Neuroendocrine Stress Response in Rats Depending on Stressor Intensity. Gen. Physiol. Biophys. 2019;38:165–173. doi: 10.4149/gpb_2018046. PubMed DOI

El-Naggar A.E., El-Gowilly S.M., Sharabi F.M. Possible Ameliorative Effect of Ivabradine on the Autonomic and Left Ventricular Dysfunction Induced by Doxorubicin in Male Rats. J. Cardiovasc. Pharmacol. 2018;72:22–31. doi: 10.1097/FJC.0000000000000586. PubMed DOI

Böhm M., Borer J.S., Camm J., Ford I., Lloyd S.M., Komajda M., Tavazzi L., Talajic M., Lainscak M., Reil J.-C., et al. Twenty-Four-Hour Heart Rate Lowering with Ivabradine in Chronic Heart Failure: Insights from the SHIFT Holter Substudy. Eur. J. Heart Fail. 2015;17:518–526. doi: 10.1002/ejhf.258. PubMed DOI

van Thiel B.S., Góes Martini A., Te Riet L., Severs D., Uijl E., Garrelds I.M., Leijten F.P.J., van der Pluijm I., Essers J., Qadri F., et al. Brain Renin-Angiotensin System: Does It Exist? Hypertension. 2017;69:1136–1144. doi: 10.1161/HYPERTENSIONAHA.116.08922. PubMed DOI

Raizada V., Skipper B., Luo W., Griffith J. Intracardiac and Intrarenal Renin-Angiotensin Systems: Mechanisms of Cardiovascular and Renal Effects. J. Investig. Med. 2007;55:341–359. doi: 10.2310/6650.2007.00020. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...