Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0035/19
VEGA
20-0421
APVV
PubMed
36009391
PubMed Central
PMC9405404
DOI
10.3390/biomedicines10081844
PII: biomedicines10081844
Knihovny.cz E-zdroje
- Klíčová slova
- ARNI, SHR, angiotensin 1-7, angiotensin II, cardiac dysfunction, fibrosis, ivabradine, remodelling, renin–angiotensin–aldosterone system, sacubitril/valsartan,
- Publikační typ
- časopisecké články MeSH
This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation.
Attoquant Diagnostics 1110 Vienna Austria
Institute of Pathophysiology Faculty of Medicine Comenius University 81108 Bratislava Slovakia
Zobrazit více v PubMed
Simko F., Pechanova O. Remodelling of the Heart and Vessels in Experimental Hypertension: Advances in Protection. J. Hypertens. 2010;28((Suppl. 1)):S1–S6. doi: 10.1097/01.hjh.0000388487.43460.db. PubMed DOI
Weber K.T. Fibrosis and Hypertensive Heart Disease. Curr. Opin. Cardiol. 2000;15:264–272. doi: 10.1097/00001573-200007000-00010. PubMed DOI
Simko F., Simko J. The Potential Role of Nitric Oxide in the Hypertrophic Growth of the Left Ventricle. Physiol. Res. 2000;49:37–46. PubMed
McMurray J.J.V. Neprilysin Inhibition to Treat Heart Failure: A Tale of Science, Serendipity, and Second Chances. Eur. J. Heart Fail. 2015;17:242–247. doi: 10.1002/ejhf.250. PubMed DOI
Simko F., Dukat A. Inhibition of Neprilysin—New Horizon in Heart Failure Therapy. Cardiol. Lett. 2016;25:273–276.
Packer M., McMurray J.J.V., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin Receptor Neprilysin Inhibition Compared with Enalapril on the Risk of Clinical Progression in Surviving Patients with Heart Failure. Circulation. 2015;131:54–61. doi: 10.1161/CIRCULATIONAHA.114.013748. PubMed DOI
Pieske B., Wachter R., Shah S.J., Baldridge A., Szeczoedy P., Ibram G., Shi V., Zhao Z., Cowie M.R., PARALLAX Investigators and Committee members Effect of Sacubitril/Valsartan vs Standard Medical Therapies on Plasma NT-ProBNP Concentration and Submaximal Exercise Capacity in Patients with Heart Failure and Preserved Ejection Fraction: The PARALLAX Randomized Clinical Trial. JAMA. 2021;326:1919–1929. doi: 10.1001/jama.2021.18463. PubMed DOI PMC
Swedberg K., Komajda M., Böhm M., Borer J.S., Ford I., Dubost-Brama A., Lerebours G., Tavazzi L., SHIFT Investigators Ivabradine and Outcomes in Chronic Heart Failure (SHIFT): A Randomised Placebo-Controlled Study. Lancet. 2010;376:875–885. doi: 10.1016/S0140-6736(10)61198-1. PubMed DOI
Burnett J.C., Granger J.P., Opgenorth T.J. Effects of Synthetic Atrial Natriuretic Factor on Renal Function and Renin Release. Am. J. Physiol. 1984;247:F863–F866. doi: 10.1152/ajprenal.1984.247.5.F863. PubMed DOI
Reddy G.K., Enwemeka C.S. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI
Basu R., Poglitsch M., Yogasundaram H., Thomas J., Rowe B.H., Oudit G.Y. Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J. Am. Coll. Cardiol. 2017;69:805–819. doi: 10.1016/j.jacc.2016.11.064. PubMed DOI
Pavo N., Goliasch G., Wurm R., Novak J., Strunk G., Gyöngyösi M., Poglitsch M., Säemann M.D., Hülsmann M. Low- and High-Renin Heart Failure Phenotypes with Clinical Implications. Clin. Chem. 2018;64:597–608. doi: 10.1373/clinchem.2017.278705. PubMed DOI
Guo Z., Poglitsch M., Cowley D., Domenig O., McWhinney B.C., Ungerer J.P.J., Wolley M., Stowasser M. Effects of Ramipril on the Aldosterone/Renin Ratio and the Aldosterone/Angiotensin II Ratio in Patients with Primary Aldosteronism. Hypertension. 2020;76:488–496. doi: 10.1161/HYPERTENSIONAHA.120.14871. PubMed DOI
Burrello J., Buffolo F., Domenig O., Tetti M., Pecori A., Monticone S., Poglitsch M., Mulatero P. Renin-Angiotensin-Aldosterone System Triple-A Analysis for the Screening of Primary Aldosteronism. Hypertension. 2020;75:163–172. doi: 10.1161/HYPERTENSIONAHA.119.13772. PubMed DOI
Liu J., Rigel D.F. Cardiovascular Genomics: Methods and Protocols. Volume 573. Humana; Totowa, NJ, USA: 2009. Echocardiographic Examination in Rats and Mice; pp. 139–155. (Methods in Molecular Biology Series). PubMed DOI
Bernatova I., Conde M.V., Kopincova J., González M.C., Puzserova A., Arribas S.M. Endothelial Dysfunction in Spontaneously Hypertensive Rats: Focus on Methodological Aspects. J. Hypertens. Suppl. 2009;27:S27–S31. doi: 10.1097/01.hjh.0000358834.18311.fc. PubMed DOI
Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednarova K., Adamcova M., Paulis L. Effect of Melatonin, Captopril, Spironolactone and Simvastatin on Blood Pressure and Left Ventricular Remodelling in Spontaneously Hypertensive Rats. J. Hypertens. Suppl. 2009;27:S5–S10. doi: 10.1097/01.hjh.0000358830.95439.e8. PubMed DOI
Stoyell-Conti F.F., Chabbra A., Puthentharayil J., Rigatto K., Speth R.C. Chronic Administration of Pharmacological Doses of Angiotensin 1-7 and Iodoangiotensin 1-7 Has Minimal Effects on Blood Pressure, Heart Rate, and Cognitive Function of Spontaneously Hypertensive Rats. Physiol. Rep. 2021;9:e14812. doi: 10.14814/phy2.14812. PubMed DOI PMC
Zhang F., Tang H., Sun S., Luo Y., Ren X., Chen A., Xu Y., Li P., Han Y. Angiotensin-(1-7) Induced Vascular Relaxation in Spontaneously Hypertensive Rats. Nitric Oxide Biol. Chem. 2019;88:1–9. doi: 10.1016/j.niox.2019.03.007. PubMed DOI
Jing Y., Hu J., Zhao J., Yang J., Huang N., Song P., Xu J., Zhang M., Li P., Yin Y. Experimental Study of Blood Pressure and Its Impact on Spontaneous Hypertension in Rats with Xin Mai Jia. Biomed. Pharmacother. 2019;112:108689. doi: 10.1016/j.biopha.2019.108689. PubMed DOI
Wang X., Zhu Y., Wang S., Wang Z., Sun H., He Y., Yao W. Effects of Eplerenone on Cerebral Aldosterone Levels and Brain Lesions in Spontaneously Hypertensive Rats. Clin. Exp. Hypertens. 2020;42:531–538. doi: 10.1080/10641963.2020.1723615. PubMed DOI
Tanaka S., Ueno T., Tsunemi A., Nagura C., Tahira K., Fukuda N., Soma M., Abe M. The Adrenal Gland Circadian Clock Exhibits a Distinct Phase Advance in Spontaneously Hypertensive Rats. Hypertens. Res. 2019;42:165–173. doi: 10.1038/s41440-018-0148-8. PubMed DOI
Sun Z., Zhang Z. Historic Perspectives and Recent Advances in Major Animal Models of Hypertension. Acta Pharmacol. Sin. 2005;26:295–301. doi: 10.1111/j.1745-7254.2005.00054.x. PubMed DOI
Qin F., Li J., Dai Y.-F., Zhong X.-G., Pan Y.-J. Renal Denervation Inhibits the Renin-Angiotensin-Aldosterone System in Spontaneously Hypertensive Rats. Clin. Exp. Hypertens. 2022;44:83–92. doi: 10.1080/10641963.2021.1996587. PubMed DOI
Wang M., Han W., Zhang M., Fang W., Zhai X., Guan S., Qu X. Long-Term Renal Sympathetic Denervation Ameliorates Renal Fibrosis and Delays the Onset of Hypertension in Spontaneously Hypertensive Rats. Am. J. Transl. Res. 2018;10:4042–4053. PubMed PMC
Lee Y.H., Kim Y.G., Moon J.-Y., Kim J.S., Jeong K.-H., Lee T.W., Ihm C.-G., Lee S.H. Genetic Variations of Tyrosine Hydroxylase in the Pathogenesis of Hypertension. Electrolyte Blood Press. EBP. 2016;14:21–26. doi: 10.5049/EBP.2016.14.2.21. PubMed DOI PMC
Brocca M.E., Pietranera L., de Kloet E.R., De Nicola A.F. Mineralocorticoid Receptors, Neuroinflammation and Hypertensive Encephalopathy. Cell. Mol. Neurobiol. 2019;39:483–492. doi: 10.1007/s10571-018-0610-9. PubMed DOI PMC
Liu J., Zheng X., Zhang C., Zhang C., Bu P. Lcz696 Alleviates Myocardial Fibrosis after Myocardial Infarction through the SFRP-1/Wnt/β-Catenin Signaling Pathway. Front. Pharmacol. 2021;12:724147. doi: 10.3389/fphar.2021.724147. PubMed DOI PMC
Kompa A.R., Lu J., Weller T.J., Kelly D.J., Krum H., von Lueder T.G., Wang B.H. Angiotensin Receptor Neprilysin Inhibition Provides Superior Cardioprotection Compared to Angiotensin Converting Enzyme Inhibition after Experimental Myocardial Infarction. Int. J. Cardiol. 2018;258:192–198. doi: 10.1016/j.ijcard.2018.01.077. PubMed DOI
von Lueder T.G., Wang B.H., Kompa A.R., Huang L., Webb R., Jordaan P., Atar D., Krum H. Angiotensin Receptor Neprilysin Inhibitor LCZ696 Attenuates Cardiac Remodeling and Dysfunction after Myocardial Infarction by Reducing Cardiac Fibrosis and Hypertrophy. Circ. Heart Fail. 2015;8:71–78. doi: 10.1161/CIRCHEARTFAILURE.114.001785. PubMed DOI
Suematsu Y., Miura S.-I., Goto M., Matsuo Y., Arimura T., Kuwano T., Imaizumi S., Iwata A., Yahiro E., Saku K. LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Improves Cardiac Function with the Attenuation of Fibrosis in Heart Failure with Reduced Ejection Fraction in Streptozotocin-Induced Diabetic Mice. Eur. J. Heart Fail. 2016;18:386–393. doi: 10.1002/ejhf.474. PubMed DOI
Tashiro K., Kuwano T., Ideishi A., Morita H., Idemoto Y., Goto M., Suematsu Y., Miura S.-I. Sacubitril/Valsartan Inhibits Cardiomyocyte Hypertrophy in Angiotensin II-Induced Hypertensive Mice Independent of a Blood Pressure-Lowering Effect. Cardiol. Res. 2020;11:376–385. doi: 10.14740/cr1137. PubMed DOI PMC
Zhang W., Liu J., Fu Y., Ji H., Fang Z., Zhou W., Fan H., Zhang Y., Liao Y., Yang T., et al. Sacubitril/Valsartan Reduces Fibrosis and Alleviates High-Salt Diet-Induced HFpEF in Rats. Front. Pharmacol. 2020;11:600953. doi: 10.3389/fphar.2020.600953. PubMed DOI PMC
Rubattu S., Cotugno M., Forte M., Stanzione R., Bianchi F., Madonna M., Marchitti S., Volpe M. Effects of Dual Angiotensin Type 1 Receptor/Neprilysin Inhibition vs. Angiotensin Type 1 Receptor Inhibition on Target Organ Injury in the Stroke-Prone Spontaneously Hypertensive Rat. J. Hypertens. 2018;36:1902–1914. doi: 10.1097/HJH.0000000000001762. PubMed DOI
Wang Y., Zhou R., Lu C., Chen Q., Xu T., Li D. Effects of the Angiotensin-Receptor Neprilysin Inhibitor on Cardiac Reverse Remodeling: Meta-Analysis. J. Am. Heart Assoc. 2019;8:e012272. doi: 10.1161/JAHA.119.012272. PubMed DOI PMC
Steckelings U.M., Sumners C. Correcting the Imbalanced Protective RAS in COVID-19 with Angiotensin AT2-Receptor Agonists. Clin. Sci. 2020;134:2987–3006. doi: 10.1042/CS20200922. PubMed DOI
Hrenak J., Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2020;21:8038. doi: 10.3390/ijms21218038. PubMed DOI PMC
Simko F., Baka T. Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers: Potential Allies in the COVID-19 Pandemic Instead of a Threat? Clin. Sci. 2021;135:1009–1014. doi: 10.1042/CS20210182. PubMed DOI PMC
Simko F., Hrenak J., Adamcova M., Paulis L. Renin-Angiotensin-Aldosterone System: Friend or Foe-The Matter of Balance. Insight on History, Therapeutic Implications and COVID-19 Interactions. Int. J. Mol. Sci. 2021;22:3217. doi: 10.3390/ijms22063217. PubMed DOI PMC
Wang K., Basu R., Poglitsch M., Bakal J.A., Oudit G.Y. Elevated Angiotensin 1-7/Angiotensin II Ratio Predicts Favorable Outcomes in Patients with Heart Failure. Circ. Heart Fail. 2020;13:e006939. doi: 10.1161/CIRCHEARTFAILURE.120.006939. PubMed DOI
Mulrow P.J. Angiotensin II and Aldosterone Regulation. Regul. Pept. 1999;80:27–32. doi: 10.1016/S0167-0115(99)00004-X. PubMed DOI
Rebuffat P., Malendowicz L.K., Nussdorfer G.G., Mazzocchi G. Stimulation of Endogenous Nitric Oxide Production Is Involved in the Inhibitory Effect of Adrenomedullin on Aldosterone Secretion in the Rat. Peptides. 2001;22:923–926. doi: 10.1016/S0196-9781(01)00418-1. PubMed DOI
Repova K., Aziriova S., Krajcirovicova K., Simko F. Cardiovascular Therapeutics: A New Potential for Anxiety Treatment? Med. Res. Rev. 2022;42:1202–1245. doi: 10.1002/med.21875. PubMed DOI PMC
Simko F., Baka T., Paulis L., Reiter R.J. Elevated Heart Rate and Nondipping Heart Rate as Potential Targets for Melatonin: A Review. J. Pineal Res. 2016;61:127–137. doi: 10.1111/jpi.12348. PubMed DOI
Simko F., Baka T. Ivabradine and Blood Pressure Reduction: Underlying Pleiotropic Mechanisms and Clinical Implications. Front. Cardiovasc. Med. 2021;8:607998. doi: 10.3389/fcvm.2021.607998. PubMed DOI PMC
Yu Y., Hu Z., Li B., Wang Z., Chen S. Ivabradine Improved Left Ventricular Function and Pressure Overload-Induced Cardiomyocyte Apoptosis in a Transverse Aortic Constriction Mouse Model. Mol. Cell. Biochem. 2019;450:25–34. doi: 10.1007/s11010-018-3369-x. PubMed DOI
Simko F., Baka T., Repova K., Aziriova S., Krajcirovicova K., Paulis L., Adamcova M. Ivabradine Improves Survival and Attenuates Cardiac Remodeling in Isoproterenol-Induced Myocardial Injury. Fundam. Clin. Pharmacol. 2021;35:744–748. doi: 10.1111/fcp.12620. PubMed DOI PMC
Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC
Ondicova K., Hegedusova N., Tibensky M., Mravec B. Ivabradine Reduces Baseline and Stress-Induced Increase of Heart Rate and Blood Pressure and Modulates Neuroendocrine Stress Response in Rats Depending on Stressor Intensity. Gen. Physiol. Biophys. 2019;38:165–173. doi: 10.4149/gpb_2018046. PubMed DOI
El-Naggar A.E., El-Gowilly S.M., Sharabi F.M. Possible Ameliorative Effect of Ivabradine on the Autonomic and Left Ventricular Dysfunction Induced by Doxorubicin in Male Rats. J. Cardiovasc. Pharmacol. 2018;72:22–31. doi: 10.1097/FJC.0000000000000586. PubMed DOI
Böhm M., Borer J.S., Camm J., Ford I., Lloyd S.M., Komajda M., Tavazzi L., Talajic M., Lainscak M., Reil J.-C., et al. Twenty-Four-Hour Heart Rate Lowering with Ivabradine in Chronic Heart Failure: Insights from the SHIFT Holter Substudy. Eur. J. Heart Fail. 2015;17:518–526. doi: 10.1002/ejhf.258. PubMed DOI
van Thiel B.S., Góes Martini A., Te Riet L., Severs D., Uijl E., Garrelds I.M., Leijten F.P.J., van der Pluijm I., Essers J., Qadri F., et al. Brain Renin-Angiotensin System: Does It Exist? Hypertension. 2017;69:1136–1144. doi: 10.1161/HYPERTENSIONAHA.116.08922. PubMed DOI
Raizada V., Skipper B., Luo W., Griffith J. Intracardiac and Intrarenal Renin-Angiotensin Systems: Mechanisms of Cardiovascular and Renal Effects. J. Investig. Med. 2007;55:341–359. doi: 10.2310/6650.2007.00020. PubMed DOI