Host Species Affects Bacterial Evenness, but Not Diversity: Comparison of Fecal Bacteria of Cows and Goats Offered the Same Diet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FDS2223MONIELLO - CUP J83C22000160
Fondazione di Sardegna
PubMed
36009603
PubMed Central
PMC9404439
DOI
10.3390/ani12162011
PII: ani12162011
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial community, bacterial diversity, cows, diet, fecal bacteria, goats, high-throughput sequencing, ruminant species,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to compare the diversity and composition of fecal bacteria in goats and cows offered the same diet and to evaluate the influence of animal species on the gut microbiome. A total of 17 female goats (Blond Adamellan) and 16 female cows (Brown Swiss) kept on an organic farm were fed pasture and hay. Bacterial structure in feces was examined by high-throughput sequencing using the V4-V5 region of the 16S rRNA gene. The Alpha diversity measurements of the bacterial community showed no statistical differences in species richness and diversity between the two groups of ruminants. However, the Pielou evenness index revealed a significant difference and showed higher species evenness in cows compared to goats. Beta diversity measurements showed statistical dissimilarities and significant clustering of bacterial composition between goats and cows. Firmicutes were the dominant phylum in both goats and cows, followed by Bacteroidetes, Proteobacteria, and Spirochaetes. Linear discriminant analysis with effect size (LEfSe) showed a total of 36 significantly different taxa between goats and cows. Notably, the relative abundance of Ruminococcaceae UCG-005, Christensenellaceae R-7 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-009, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014, Ruminococcus 1, Ruminococcaceae UCG-002, Lachnospiraceae NK4A136 group, Treponema 2, Lachnospiraceae AC2044 group, and Bacillus was higher in goats compared to cows. In contrast, the relative abundance of Turicibacter, Solibacillus, Alloprevotella, Prevotellaceae UCG-001, Negativibacillus, Lachnospiraceae UCG-006, and Eubacterium hallii group was higher in cows compared with goats. Our results suggest that diet shapes the bacterial community in feces, but the host species has a significant impact on community structure, as reflected primarily in the relative abundance of certain taxa.
Zobrazit více v PubMed
Abubakar M., Iqbal A., Kabir A., Manzoor S. Ruminants-The Husbandry, Economic and Health Aspects. IntechOpen; London, UK: 2018. Introductory Chapter: Ruminants—The Husbandry, Economic, and Health Aspects; pp. 3–8. DOI
Pulina G., Francesconi A.H.D., Stefanon B., Sevi A., Calamari L., Lacetera N., Dell’Orto V., Pilla F., Marsan P.A., Mele M., et al. Sustainable ruminant production to help feed the planet. Ital. J. Anim. Sci. 2017;16:140–171. doi: 10.1080/1828051X.2016.1260500. DOI
Hodgson H.J. Role of the Dairy Cow in World Food Production. J. Dairy Sci. 1979;62:343–351. doi: 10.3168/jds.S0022-0302(79)83246-4. DOI
Mazinani M., Rude B. Population, world production and quality of sheep and goat products. Am. J. Anim. Vet. Sci. 2020;15:291–299. doi: 10.3844/ajavsp.2020.291.299. DOI
Huws S.A., Creevey C.J., Oyama L.B., Mizrahi I., Denman S.E., Popova M., Muñoz-Tamayo R., Forano E., Waters S.M., Hess M., et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Front. Microbiol. 2018;9:1–33. doi: 10.3389/fmicb.2018.02161. PubMed DOI PMC
Wang L., Zhang G., Li Y., Zhang Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals. 2020;10:223. doi: 10.3390/ani10020223. PubMed DOI PMC
Henderson G., Cox F., Ganesh S., Jonker A., Young W., Janssen P.H., Abecia L., Angarita E., Aravena P., Arenas G.N., et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015;5:14567. doi: 10.1038/srep14567. PubMed DOI PMC
Fliegerova K.O., Podmirseg S.M., Vinzelj J., Grilli D.J., Kvasnová S., Schierová D., Sechovcová H., Mrázek J., Siddi G., Arenas G.N., et al. The effect of a high-grain diet on the rumen microbiome of goats with a special focus on anaerobic fungi. Microorganisms. 2021;9:157. doi: 10.3390/microorganisms9010157. PubMed DOI PMC
Hua C., Tian J., Tian P., Cong R., Luo Y., Geng Y., Tao S., Ni Y., Zhao R. Feeding a high concentration diet induces unhealthy alterations in the composition and metabolism of ruminal microbiota and host response in a goat model. Front. Microbiol. 2017;8:138. doi: 10.3389/fmicb.2017.00138. PubMed DOI PMC
Zhang R.Y., Liu Y.J., Yin Y.Y., Jin W., Mao S.Y., Liu J.H. Response of rumen microbiota, and metabolic profiles of rumen fluid, liver and serum of goats to high-grain diets. Animal. 2019;13:1855–1864. doi: 10.1017/S1751731118003671. PubMed DOI
Plaizier J.C., Li S., Tun H.M., Khafipour E. Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Front. Microbiol. 2017;7:2128. doi: 10.3389/fmicb.2016.02128. PubMed DOI PMC
Grilli D.J., Fliegerová K., Kopečný J., Lama S.P., Egea V., Sohaefer N., Pereyra C., Ruiz M.S., Sosa M.A., Arenas G.N., et al. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe. 2016;42:17–26. doi: 10.1016/j.anaerobe.2016.07.002. PubMed DOI
Mao S.Y., Huo W.J., Zhu W.Y. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ. Microbiol. 2016;18:525–541. doi: 10.1111/1462-2920.12724. PubMed DOI
Ferreira L.M.M., Hervás G., Belenguer A., Celaya R., Rodrigues M.A.M., García U., Frutos P., Osoro K. Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities. J. Anim. Physiol. Anim. Nutr. 2017;101:846–856. doi: 10.1111/jpn.12474. PubMed DOI
Qian W., Li Z., Ao W., Zhao G., Li G., Wu J. Bacterial community composition and fermentation in the rumen of Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and Karakul sheep (Ovis aries) Can. J. Microbiol. 2017;63:375–383. doi: 10.1139/cjm-2016-0596. PubMed DOI
Zhang T., Mu Y., Zhang D., Lin X., Wang Z., Hou Q., Wang Y., Hu Z. Determination of microbiological characteristics in the digestive tract of different ruminant species. Microbiologyopen. 2019;8:e00769. doi: 10.1002/mbo3.769. PubMed DOI PMC
Zhang K., Li B., Guo M., Liu G., Yang Y., Wang X., Chen Y., Zhang E. Maturation of the goat rumen microbiota involves three stages of microbial colonization. Animals. 2019;9:1028. doi: 10.3390/ani9121028. PubMed DOI PMC
Fonty G., Gouet P., Jouany J., Senaud J. Establishment of the Microflora and Anaerobic Fungi in the Rumen of Lambs. J. Gen. Microbiol. 1987;133:1835–1836. doi: 10.1099/00221287-133-7-1835. DOI
Dias J., Marcondes M.I., Noronha M.F., Resende R.T., Machado F.S., Mantovani H.C., Dill-McFarland K.A., Suen G. Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves. Front. Microbiol. 2017;8:1553. doi: 10.3389/fmicb.2017.01553. PubMed DOI PMC
Liu C., Meng Q., Chen Y., Xu M., Shen M., Gao R., Gan S. Role of age-related shifts in rumen bacteria and methanogens in methane production in cattle. Front. Microbiol. 2017;8:1563. doi: 10.3389/fmicb.2017.01563. PubMed DOI PMC
Zhang Z., Xu D., Wang L., Hao J., Wang J., Zhou X., Wang W., Qiu Q., Huang X., Zhou J., et al. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals. Curr. Biol. 2016;26:1873–1879. doi: 10.1016/j.cub.2016.05.012. PubMed DOI
Wallace R., Sasson G., Garnsworthy P.C., Tapio I., Gregson E., Bani P., Huhtanen P., Bayat A.R., Strozzi F., Biscarini F., et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 2019;5:8391–8394. doi: 10.1126/sciadv.aav8391. PubMed DOI PMC
Difford G.F., Plichta D.R., Løvendahl P., Lassen J., Noel S.J., Højberg O., Wright A.D.G., Zhu Z., Kristensen L., Nielsen H.B., et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 2018;14:e1007580. doi: 10.1371/journal.pgen.1007580. PubMed DOI PMC
Li F., Li C., Chen Y., Liu J., Zhang C., Irving B., Fitzsimmons C., Plastow G., Guan L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome. 2019;7:92. doi: 10.1186/s40168-019-0699-1. PubMed DOI PMC
Gruninger R.J., Ribeiro G.O., Cameron A., McAllister T.A. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal. 2019;13:1843–1854. doi: 10.1017/S1751731119000752. PubMed DOI
de Assis Lage C.F., Räisänen S.E., Melgar A., Nedelkov K., Chen X., Oh J., Fetter M.E., Indugu N., Bender J.S., Vecchiarelli B., et al. Comparison of Two Sampling Techniques for Evaluating Ruminal Fermentation and Microbiota in the Planktonic Phase of Rumen Digesta in Dairy Cows. Front. Microbiol. 2020;11:618032. doi: 10.3389/fmicb.2020.618032. PubMed DOI PMC
Gianesella M., Morgante M., Stelletta C., Ravarotto L., Giudice E., van Saun R.J. Evaluating the effects of rumenocentesis on health and performance in dairy cows. Acta. Vet. Brno. 2010;79:459–468. doi: 10.2754/avb201079030459. DOI
Hagey J.V., Laabs M., Maga E.A., DePeters E.J. Rumen sampling methods bias bacterial communities observed. PLoS ONE. 2022;17:e0258176. doi: 10.1371/journal.pone.0258176. PubMed DOI PMC
Liu J., Zhang M., Zhang R., Zhu W., Mao S. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb. Biotechnol. 2016;9:257–268. doi: 10.1111/1751-7915.12345. PubMed DOI PMC
Mohammadzadeh H., Yáñez-Ruiz D.R., Martínez-Fernandez G., Abecia L. Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. Anaerobe. 2014;29:52–58. doi: 10.1016/j.anaerobe.2013.11.012. PubMed DOI
Frey J.C., Pell A.N., Berthiaume R., Lapierre H., Lee S., Ha J.K., Mendell J.E., Angert E.R. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J. Appl. Microbiol. 2010;108:1982–1993. doi: 10.1111/j.1365-2672.2009.04602.x. PubMed DOI
Tapio I., Shingfield K.J., McKain N., Bonin A., Fischer D., Bayat A.R., Vilkki J., Taberlet P., Snelling T.J., Wallace R.J. Oral samples as non-invasive proxies for assessing the composition of the rumen microbial community. PLoS ONE. 2016;11:e0151220. doi: 10.1371/journal.pone.0151220. PubMed DOI PMC
Noel S.J., Olijhoek D.W., Mclean F., Lovendahl P., Lund P., Hojberg O. Rumen and Fecal Microbial Community Structure ofHolstein and Jersey Dairy Cows as Affected by Breed, Diet, and Residual Feed Intake. Animals. 2019;9:498. doi: 10.3390/ani9080498. PubMed DOI PMC
Callaway T.R., Dowd S.E., Edrington T.S., Anderson R.C., Krueger N., Bauer N., Kononoff P.J., Nisbet D.J. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 2010;88:3977–3983. doi: 10.2527/jas.2010-2900. PubMed DOI
Kotz A., Azevedo P.A., Khafipour E., Plaizier J.C. Effects of the dietary grain content on rumen and fecal microbiota of dairy cows. Can. J. Anim. Sci. 2021;101:274–286. doi: 10.1139/cjas-2020-0122. DOI
Zhang J., Shi H., Wang Y., Cao Z., Yang H., Li S. Effect of limit-fed diets with different forage to concentrate ratios on fecal bacterial and archaeal community composition in Holstein heifers. Front. Microbiol. 2018;9:976. doi: 10.3389/fmicb.2018.00976. PubMed DOI PMC
de Jesus-Laboy K.M., Godoy-Vitorino F., Piceno Y.M., Tom L.M., Pantoja-Feliciano I.G., Rivera-Rivera M.J., Andersen G.L., Domínguez-Bello M.G. Comparison of the fecal microbiota in feral and domestic goats. Genes. 2012;3:1–18. doi: 10.3390/genes3010001. PubMed DOI PMC
Mu Y., Lin X., Wang Z., Hou Q., Wang Y., Hu Z. High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle. Microbiologyopen. 2019;8:e00673. doi: 10.1002/mbo3.673. PubMed DOI PMC
Hennessy M.L., Indugu N., Vecchiarelli B., Bender J., Pappalardo C., Leibstein M., Toth J., Katepalli A., Garapati S., Pitta D. Temporal changes in the fecal bacterial community in Holstein dairy calves from birth through the transition to a solid diet. PLoS ONE. 2020;15:e0238882. doi: 10.1371/journal.pone.0238882. PubMed DOI PMC
Meale S.J., Li S., Azevedo P., Derakhshani H., Plaizier J.C., Khafipour E., Steele M.A. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front. Microbiol. 2016;7:582. doi: 10.3389/fmicb.2016.00582. PubMed DOI PMC
Hodgson J., Forbes T.D.A., Armstrong R.H., Beattie M.M., Hunter E.A. Comparative Studies of the Ingestive Behaviour and Herbage Intake of Sheep and Cattle Grazing Indigenous Hill Plant. Communities. J. Appl. Ecol. 1991;28:205–227. doi: 10.2307/2404126. DOI
Clark D.A., Lambert M.G., Rolston M.P., Dymock N. Diet selection by goats and sheep on hill country. Proc. New Zeal. Soc. Anim. Prod. 1985;42:155–157.
Ming L., Yi L., Siriguleng, Hasi S., He J., Hai L., Wang Z., Guo F., Qiao X. Jirimutu Comparative analysis of fecal microbial communities in cattle and Bactrian camels. PLoS ONE. 2017;12:e0173062. doi: 10.1371/journal.pone.0173062. PubMed DOI PMC
Mott A.C., Schneider D., Hünerberg M., Hummel J., Tetens J. Bovine Rumen Microbiome: Impact of DNA Extraction Methods and Comparison of Non-Invasive Sampling Sites. Ruminants. 2022;2:112–132. doi: 10.3390/ruminants2010007. DOI
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC
Vázquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience. 2013;2:16. doi: 10.1186/2047-217X-2-16. PubMed DOI PMC
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Hagey J.V., Bhatnagar S., Heguy J.M., Karle B.M., Price P.L., Meyer D., Maga E.A. Fecal microbial communities in a large representative cohort of California dairy cows. Front. Microbiol. 2019;10:1093. doi: 10.3389/fmicb.2019.01093. PubMed DOI PMC
Shanks O.C., Kelty C.A., Archibeque S., Jenkins M., Newton R.J., McLellan S.L., Huse S.M., Sogin M.L. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl. Environ. Microbiol. 2011;77:2992–3001. doi: 10.1128/AEM.02988-10. PubMed DOI PMC
Mao S., Zhang R., Wang D., Zhu W. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet. Res. 2012;8:237. doi: 10.1186/1746-6148-8-237. PubMed DOI PMC
Huang S., Ji S., Wang F., Huang J., Alugongo G.M., Li S. Dynamic changes of the fecal bacterial community in dairy cows during early lactation. AMB Express. 2020;10:167. doi: 10.1186/s13568-020-01106-3. PubMed DOI PMC
Andrade B.G.N., Bressani F.A., Cuadrat R.R.C., Tizioto P.C., De Oliveira P.S.N., Mourão G.B., Coutinho L.L., Reecy J.M., Koltes J.E., Walsh P., et al. The structure of microbial populations in Nelore GIT reveals inter-dependency of methanogens in feces and rumen. J. Anim. Sci. Biotechnol. 2020;11:6. doi: 10.1186/s40104-019-0422-x. PubMed DOI PMC
Boukerb A.M., Noël C., Quenot E., Cadiou B., Chevé J., Quintric L., Cormier A., Dantan L., Gourmelon M. Comparative Analysis of Fecal Microbiomes From Wild Waterbirds to Poultry, Cattle, Pigs, and Wastewater Treatment Plants for a Microbial Source Tracking Approach. Front. Microbiol. 2021;12:697553. doi: 10.3389/fmicb.2021.697553. PubMed DOI PMC
Guo J., Li P., Zhang K., Zhang L., Wang X., Li L., Zhang H. Distinct Stage Changes in Early-Life Colonization and Acquisition of the Gut Microbiota and Its Correlations With Volatile Fatty Acids in Goat Kids. Front. Microbiol. 2020;11:584742. doi: 10.3389/fmicb.2020.584742. PubMed DOI PMC
Li Y., Hu X., Yang S., Zhou J., Zhang T., Qi L., Sun X., Fan M., Xu S., Cha M., et al. Comparative analysis of the gut microbiota composition between captive and wild forest musk deer. Front. Microbiol. 2017;8:1705. doi: 10.3389/fmicb.2017.01705. PubMed DOI PMC
La Reau A.J., Suen G. The Ruminococci: Key symbionts of the gut ecosystem. J. Microbiol. 2018;56:199–208. doi: 10.1007/s12275-018-8024-4. PubMed DOI
Li B., Zhang K., Li C., Wang X., Chen Y., Yang Y. Characterization and Comparison of Microbiota in the Gastrointestinal Tracts of the Goat (Capra hircus) During Preweaning Development. Front. Microbiol. 2019;10:2125. doi: 10.3389/fmicb.2019.02125. PubMed DOI PMC
Gilbert M.S., Pantophlet A.J., Berends H., Pluschke A.M., Van den Borne J.J.G.C., Hendriks W.H., Schols H.A., Gerrits W.J.J. Fermentation in the small intestine contributes substantially to intestinal starch disappearance in calves. J. Nutr. 2015;145:1147–1155. doi: 10.3945/jn.114.208595. PubMed DOI
Liu J., Bian G., Sun D., Zhu W., Mao S. Starter feeding supplementation alters colonic mucosal bacterial communities and modulates mucosal immune homeostasis in newborn lambs. Front. Microbiol. 2017;8:429. doi: 10.3389/fmicb.2017.00429. PubMed DOI PMC
Abu Aboud O.A., Adaska J.M., Williams D.R., Rossitto P.V., Champagne J.D., Lehenbauer T.W., Atwill R., Li X., Aly S.S. Epidemiology of Salmonella sp. in California cull dairy cattle: Prevalence of fecal shedding and diagnostic accuracy of pooled enriched broth culture of fecal samples. PeerJ. 2016;4:e2386. doi: 10.7717/peerj.2386. PubMed DOI PMC
Shabana I.I., Albakri N.N., Bouqellah N.A. Metagenomic investigation of faecal microbiota in sheep and goats of the same ages. J. Taibah Univ. Sci. 2021;15:1–9. doi: 10.1080/16583655.2020.1864930. DOI
Khiaosa-ard R., Zebeli Q. Diet-induced inflammation: From gut to metabolic organs and the consequences for the health and longevity of ruminants. Res. Vet. Sci. 2018;120:17–27. doi: 10.1016/j.rvsc.2018.08.005. PubMed DOI
Zhang R., Ye H., Liu J., Mao S. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Appl. Microbiol. Biotechnol. 2017;101:6981–6992. doi: 10.1007/s00253-017-8427-x. PubMed DOI
Plaizier J.C., Danscher A.M., Azevedo P.A., Derakhshani H., Andersen P.H., Khafipour E. A grain-based sara challenge affects the composition of epimural and mucosa-associated bacterial communities throughout the digestive tract of dairy cows. Animals. 2021;11:1658. doi: 10.3390/ani11061658. PubMed DOI PMC
Mu Y., Qi W., Zhang T., Zhang J., Mao S. Multi-omics Analysis Revealed Coordinated Responses of Rumen Microbiome and Epithelium to High-Grain-Induced Subacute Rumen Acidosis in Lactating Dairy Cows. Msystems. 2022;7:e01490-21. doi: 10.1128/msystems.01490-21. PubMed DOI PMC
Hume I.D. Concepts of Digestive Efficiency. In: Starck J.M., Wang T., editors. Physiological Ecology. Science Publishers; Enfield, NH, USA: 2005. pp. 43–58.
Silanikove N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 2000;35:181–193. doi: 10.1016/S0921-4488(99)00096-6. DOI
Giger-Reverdin S., Domange C., Broudiscou L.P., Sauvant D., Berthelot V. Rumen function in goats, an example of adaptive capacity. J. Dairy Res. 2020;87:45–51. doi: 10.1017/S0022029920000060. PubMed DOI