Anabolic Steroids in Fattening Food-Producing Animals-A Review
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
QK1910311
National Agency for Agricultural Research
PubMed
36009705
PubMed Central
PMC9405261
DOI
10.3390/ani12162115
PII: ani12162115
Knihovny.cz E-resources
- Keywords
- anabolic steroids, histological structure, pigs, skeletal muscle, testes,
- Publication type
- Journal Article MeSH
- Review MeSH
Anabolic steroids are chemically synthetic derivatives of the male sex hormone testosterone. They are used in medicine for their ability to support muscle growth and healing and by athletes for esthetic purposes and to increase sports performance, but another major use is in fattening animals to increase meat production. The more people there are on Earth, the greater the need for meat production and anabolic steroids accelerate the growth of animals and, most importantly, increase the amount of muscle mass. Anabolic steroids also have proven side effects that affect all organs and tissues, such as liver and kidney parenchymal damage, heart muscle degeneration, organ growth, coagulation disorders, and increased risk of muscle and tendon rupture. Anabolic steroids also have a number of harmful effects on the developing brain, such as brain atrophy and changes in gene expression with consequent changes in the neural circuits involved in cognitive functions. Behavioral changes such as aggression, irritability, anxiety and depression are related to changes in the brain. In terms of long-term toxicity, the greatest impact is on the reproductive system, i.e., testicular shrinkage and infertility. Therefore, their abuse can be considered a public health problem. In many countries around the world, such as the United States, Canada, China, Argentina, Australia, and other large meat producers, the use of steroids is permitted but in all countries of the European Union there is a strict ban on the use of anabolic steroids in fattening animals. Meat from a lot of countries must be carefully inspected and monitored for steroids before export to Europe. Gas or liquid chromatography methods in combination with mass spectrometry detectors and immunochemical methods are most often used for the analysis of these substances. These methods have been considered the most modern for decades, but can be completely ineffective if they face new synthetic steroid derivatives and want to meet meat safety requirements. The problem of last years is the application of "cocktails" of anabolic substances with very low concentrations, which are difficult to detect and are difficult to quantify using conventional detection methods. This is the reason why scientists are trying to find new methods of detection, mainly based on changes in the structure of tissues and cells and their metabolism. This review gathered this knowledge into a coherent form and its findings could help in finding such a combination of changes in tissues that would form a typical picture for evidence of anabolic misuse.
See more in PubMed
Medvei V.C. A History of Endocrinology. MTP Press; Hingham, MA, USA: 1982.
Cole T.J., Short K.L., Hooper S.B. The science of steroids. Semin. Fetal Neonatal Med. 2019;24:170–175. doi: 10.1016/j.siny.2019.05.005. PubMed DOI
Echeverria P.C., Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta Mol. Cell Res. 2010;1803:641–649. doi: 10.1016/j.bbamcr.2009.11.012. PubMed DOI
Lösel R., Wehling M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 2003;4:46–55. doi: 10.1038/nrm1009. PubMed DOI
Kuhn C.M. Anabolic Steroids. Recent Prog. Horm. Res. 2002;57:411–434. doi: 10.1210/rp.57.1.411. PubMed DOI
Kreutzer K.V., Turk J.R., Casteel S.W. Clinical Biochemistry in Toxicology. In: Kaneko J.J., Harvey J.W., Bruss M.L., editors. Clinical Biochemistry of Domestic Animals. 6th ed. Academic Press; Cambridge, MA, USA: 2008. pp. 821–838.
Johnson B.J., White M.E., Hathaway M.R., Christians C.J., Dayton W.R. Effect of a combined trenbolone acetate and estradiol implant on steady-state IGF-I mRNA con-centrations in the liver of wethers and the longissimus muscle of steers. J. Anim. Sci. 1998;76:491–497. doi: 10.2527/1998.762491x. PubMed DOI
Becker C.h., Riedmaier I., Reiter M., Tichopad A., Pflaffl M.W., Meyer H.H.D. Effect of trenbolone acetate plus estradiol on transcriptional regulation of metabolism path-ways in bovine liver. Horm. Mol. Biol. Clin. Investig. 2010;2:257–265. PubMed
Smith Z.K., Johnson B.J. Mechanisms of steroidal implants to improve beef cattle growth: A review. J. Appl. Anim. Res. 2020;48:133–141. doi: 10.1080/09712119.2020.1751642. DOI
Yoshida E.M., Erb S.R., Scudamore C.H., Owen D.A. Severe Cholestasis and Jaundice Secondary to an Esterified Testosterone, a Non-C17 Alkylated Anabolic Steroid. J. Clin. Gastroenterol. 1994;18:268–269. doi: 10.1097/00004836-199404000-00036. PubMed DOI
Webb M.J., Pendell D.L., Harty A.A., Salverson R.R., Rotz C.A., Underwood K.R., Olson K.C., Blair A.D. Influence of Growth Promoting Technologies on Animal Per-formance, Production, Economics, Environmental Impacts and Carcass Characteristics of Beef. Meat Muscle Biol. 2017;1:23–24. doi: 10.22175/rmc2017.022. DOI
Capper J.L., De Carvalho T.B., Hancock A.S., Filho O.G.S., Odeyemi I., Bartram D.J. Modeling the effects of steroid implant use on the environmental and economic sus-tainability of Brazilian beef production. Transl. Anim. Sci. 2021;5:txab144. doi: 10.1093/tas/txab144. PubMed DOI PMC
Capper J.L. The environmental and economic impact of steroid implant and be-ta-adrenergic agonist use within U.S. beef production; Proceedings of the ADSA-ASAS Joint Annual Meeting; Indianapolis, IN, USA. 8–12 July January 2013.
Dotson J.L., Brown R.T. The History of the Development of Anabolic-Androgenic Steroids. Pediatric Clin. N. Am. 2007;54:761–769. doi: 10.1016/j.pcl.2007.04.003. PubMed DOI
Fourcroy J. History of androgens and anabolic steroids: Use, abuse, and identification. J. Urol. 2010;183:e433. doi: 10.1016/j.juro.2010.02.2316. DOI
Zhao S., Zhu W., Xue S., Han D. Testicular defense systems: Immune privilege and innate immunity. Cell. Mol. Immunol. 2014;11:428–437. doi: 10.1038/cmi.2014.38. PubMed DOI PMC
Nieschlag E., Nieschlag S. Testosterone deficiency: A historical perspective. Asian J. Androl. 2014;16:161–168. doi: 10.4103/1008-682X.122358. PubMed DOI PMC
Soma K.K. Testosterone and Aggression: Berthold, Birds and Beyond. J. Neuroendocrinol. 2006;18:543–551. doi: 10.1111/j.1365-2826.2006.01440.x. PubMed DOI PMC
Lukas S.E. Current perspectives on anabolic-androgenic steroid abuse. Trends Pharmacol. Sci. 1993;14:61–68. doi: 10.1016/0165-6147(93)90032-F. PubMed DOI
Dinusson W.E., Andrews F.N., Beenson W.M. The effects of stilbestrol, testosterone, thyroid alteration and spaying on the growth and fattening of beef heifers. J. Anim. Sci. 1950;9:321–330. doi: 10.2527/jas1950.93321x. PubMed DOI
Ronquillo M.G., Hernandez J.C.A. Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control. 2017;72:255–267. doi: 10.1016/j.foodcont.2016.03.001. DOI
Yeh S., Lovitt S., Schuster M.W. Usage of megestrol acetate in the treatment of ano-rexia-cachexia syndrome in the elderly. J. Nutr. Health Aging. 2009;13:448–454. doi: 10.1007/s12603-009-0082-1. PubMed DOI
Verbeke R. Senstitive multi-residue method for detection of anabolics in urine and in tissues of slaughtered animals. J. Chromatogr. A. 1979;177:69–84. doi: 10.1016/S0021-9673(00)92600-1. PubMed DOI
Brunetti A., Manfioletti G. Hormone receptorsand breast cancer. Front. Endocrinol. 2019;10:205. doi: 10.3389/fendo.2019.00205. PubMed DOI PMC
Reig M., Toldrá F. Veterinary drug residuesin meat: Concerns and rapid methods for detection. Meat Sci. 2008;78:60–67. doi: 10.1016/j.meatsci.2007.07.029. PubMed DOI
Official Journal of the European Union, L12523/05/1996 . Council Directive 96/22/EC of 29 April 1996 Concerning the Prohibition on the Use in Stockfarming of Certain Substances Having a Hormonal or Thyrostatic Action and of Beta-Agonists, and Repealing Directives 81/602/EEC, 88/146/EEC and 88/299/EEC. European Commission; Brussels, Belgium: 1996.
Official Journal of the European Union, L125, 23/05/1996 . Council Directive 96/23/EC of 29 April 1996 on Measures to Monitor Certain Substances and Residues Thereof in Live Animals and Animal Products and Repealing Directives 85/358/EEC and 86/469/EEC and Decision 89/187/EEC and 91/664/EEC. European Commission; Brussels, Belgium: 1996.
Official Journal of the European Union, L 95/1 . Council Regulation (EU) 2017/625 Of The European Parliament And Of The Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed, Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products, Amending. European Commission; Brussels, Belgium: 2017.
Nachman K.E., Smith T.J. Hormone use in food animal production:assessing potential dietary exposures and breast cancer risk. Curr. Environ. Health Rep. 2015;2:1–14. doi: 10.1007/s40572-014-0042-8. PubMed DOI
Official Journal of the European Union, L22418 August 1990 . Council Regulation 2377/90/EC of 26 June 1990 Laying Down a Community Procedure for the Establishment of Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin. European Commission; Brussels, Belgium: 1990.
Official Journal of the European Communities L221 . Commission Decision (2002/657/EC) of 12 August 2002. European Commission; Brussels, Belgium: 2002.
Official Journal of the European Union, L 180/84 . Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as well as on the Methods to be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC. European Commission; Brussels, Belgium: 2021.
Official Journal of the European Union, L 262/17 . Directive 2003/74/EC of The Europe-An Parliament and of the Council of 22 September 2003 Amending Council Directive 96/22/EC Concerning the Prohibition on the Use in Stockfarming of Certain Substances Having a Hormonal or Thyrostatic Action and of Beta-Agonists. European Commission; Brussels, Belgium: 2003.
Karg H., Vogt K. Control of Hormone Treatment in Animals and Residues in Meat—Regulatory Aspects and Approaches in Methodology. J. Assoc. Off. Anal. Chem. 2020;61:1201–1208. doi: 10.1093/jaoac/61.5.1201. PubMed DOI
National Research Council (US) Committee to Study the Human Health Effects of Subtherapeutic Antibiotic Use in Animal Feeds . The Effects on Human Health of Sub-Therapeutic Use of Antimicrobials in Animal Feeds. National Academies Press (US); Washington, DC, USA: 1980. PubMed
FOOD AND DRUG ADMINISTRATION: Steroid Hormone Implants Used for Growth in Food-Producing Animals [Online] [(accessed on 13 March 2022)]; Available online: https://www.fda.gov/animal-veterinary/product-safety-information/steroid-hormone-implants-used-growth-food-producing-animals.
Stackhouse K.R., Rotz C.A., Oltjen J.W., Mitloehner F.M. Growth promoting technologies reduce the carbon footprint, ammonia emissions, and costs of California beef production systems. J. Anim. Sci. 2012;90:4656–4665. doi: 10.2527/jas.2011-4654. PubMed DOI
Webb M.J., Block J.J., Harty A.A., Salverson R.R., Daly R.F., Jaeger J.R., Underwood K.R., Funston R.N., Pendell D.P., Rotz C.A., et al. Cattle and carcass performance, and life cycle assessment of production systems utilizing additive combinations of growth promotant technologies. Transl. Anim. Sci. 2020;4:txaa216. doi: 10.1093/tas/txaa216. PubMed DOI PMC
CANADIAN ANIMAL HEALTH INSTITUTE: Hormones [Online] [(accessed on 14 March 2022)]. Available online: https://www.cahi-icsa.ca/hormones.
Sundlof S.F. Drug and chemical residues in livestock. Vet. Clin. N. Am. Food Anim. Pract. 1989;5:411–449. doi: 10.1016/S0749-0720(15)30984-1. PubMed DOI
Yongmin B. The Challenges for Food Safety in China. China Perspect. 2004;53 doi: 10.4000/chinaperspectives.819. DOI
Zeng Z., Yang F., Wang L. Food Safety in China. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2017. Veterinary Drug Residues in China: Science, Technology, Management and Regulation; pp. 219–235.
MOA Regulation on Administration of Veterinary Drugs. [(accessed on 26 April 2022)];2004 Available online: http://www.gov.cn/gongbao/content/2004/content_62760.htm.
MOA Measures for Registration of Veterinary Drugs. [(accessed on 13 March 2022)];2012 Available online: http://www.moa.gov.cn/fwllm/zxbs/xzxk/bszl/syj/201204/t20120426_2612402.htm.
Wu H., Weng C. Certified Veterinarian and Certified Veterinarian System. Chin. J. Vet. Drug. 2010;55:29–33.
Wang X., Liu Y., Su Y., Yang J., Bian K., Wang Z., He L. High-throughput screening and confirmation of 22 banned veterinary drugs in feedstuffs using LC-MS/MS and high-resolution Orbitrap mass spectrometry. J. Agric. Food Chem. 2014;62:516–527. doi: 10.1021/jf404501j. PubMed DOI
Passantino A. Steroid Hormones in Food Producing Animals. In: Perez-Marin C.C., editor. A Bird’s-Eye View of Veterinary Medicine. InTech; Córdoba, Spain: 2012.
Aslam M.H., Hashem M.A., Hossain M.M., Islam M.S., Rana M.S., Habibullah M. Present status on the use of anabolic steroids and feed additives in small scale cattle fattening in Bangladesh. Progress. Agric. 2012;23:1–13. doi: 10.3329/pa.v23i1-2.16553. DOI
Al-Amri I., Kadim I.T., Alkindi A., Hamaed A., Al-Magbali R., Khalaf S., Al-Hosni K., Mabood F. Determination of residues of pesticides, anabolic steroids, antibiotics, and antibacterial compounds in meat products in Oman by liquid chromatography/mass spectrometry and enzyme-linked immunosorbent assay. Vet. World. 2021;14:709–720. doi: 10.14202/vetworld.2021.709-720. PubMed DOI PMC
APVMA Australian Pesticides and Veterinary Medicines Authority. Substances Not Permitted for Use on Food-Producing Animals in Australia. [(accessed on 30 April 2022)]; Available online: https://apvma.gov.au/node/11626.
Aroeira C.N., Feddern V., Gressler V., Contreras-Castillo C.F., Hopkins D.L. Growth Promoters in Cattle and Pigs: A Review of Legislation and Implications for Human Health. Food Rev. Int. 2021;38:1–23. doi: 10.1080/87559129.2021.1961268. DOI
Patrick S.M., Aneck-Hahn N.H., Wyk S.V., Van Zilj M.C., Huma M., Jager C.H. Veterinary growth promoters in cattle feedlot runoff: Estrogenic activity and potential effects on the rat male reproductive systém. Environ. Sci. Pollut. Res. 2020;27:13939–13948. doi: 10.1007/s11356-020-07966-3. PubMed DOI
Mitema E.S. Improved management of drugs, hormones and pesticides in Africa. Onderstepoort J. Vet. Res. 2009;76:155–159. doi: 10.4102/ojvr.v76i1.80. PubMed DOI
De Brabander H.F., Poelmans S., Schilt R., Stephany R.W., Le Bizec B., Draisci R., Sterk S.S., Ginkel L.A., Courtheyn D., Van Hoof N., et al. Presence and metabolism of the anabolic steroid boldenone in various animal species: A review. Food Addit. Contam. 2004;21:515–525. doi: 10.1080/02652030410001687717. PubMed DOI
Behairy A., Mohamed W.A.M., Ebraheim L.L.M., Soliman M.M., Abd-Elhakim Y.M., El-Sharkawy N.I., Saber T.M., El Deib M.M. Boldenone Undecylenate-Mediated Hepatorenal Impairment by Oxidative Damage and Dysregulation of Heat Shock Protein 90 and Androgen Receptors Expressions: Vitamin C Preventive Role. Front. Pharmacol. 2021;12:651497. doi: 10.3389/fphar.2021.651497. PubMed DOI PMC
Saber T.M., Omran B.H.F., El Deib M.M., El-Sharkawy N.I., Metwally M.M.M., Abd-Elhakim Y.M. Early postmortem biochemical, histological, and immunohistochemical alterations in skeletal muscles of rats exposed to boldenone undecylenate: Forensic implication. J. Forensic Leg. Med. 2021;83:102248. doi: 10.1016/j.jflm.2021.102248. PubMed DOI
Elmajdoub A., Garbaj A., Abolghait S., El-Mahmoudy A. Evaluation of boldenone as a growth promoter in broilers: Safety and meat quality aspects. J. Food Drug Anal. 2016;24:284–292. doi: 10.1016/j.jfda.2015.12.001. PubMed DOI PMC
Aly M.A.S., El-Shamarka M.E., Soliman T.N., Elgabry M.A.E. Protective effect of nanoencapsulated curcumin against boldenone-induced testicular toxicity and oxidative stress in male albino rats. Egypt. Pharm. J. 2021;20:72–81.
Rossi C.A.S., Arioli F., Bassini A., Chiesa L.M., Dell’orto V., Montana M., Pompa G. Evidence for false-positive results for boldenone testing of veal urine due to faecal cross-contamination during sampling. Food Addit. Contam. 2004;21:756–762. PubMed
Groot M.J., Lasaroms J.J.P., Bennekom E.O., Meijer T., Vinyeta E., Klis J.D., Nielen M.W. Illegal treatment of barrows with nandrolone ester: Effect on growth, histology and residue levels in urine and hair. Food Addit. Contam. Part A. 2012;29:727–735. doi: 10.1080/19440049.2011.647097. PubMed DOI
De Wasch K., Poelmans S., Verslycke T., Janssen C., Van Hoof N., De Brabander H.F. Alternative to vertebrate animal experiments in the study of metabolism of illegal growth promotors and veterinary drugs. Anal. Chim. Acta. 2002;473:59–69. doi: 10.1016/S0003-2670(02)00933-9. DOI
Gallina G., Ferretti G., Merlanti R., Civitareale C., Capolongo F., Draisci R., Montesissa C. Boldenone, Boldione, and Milk Replacers in the Diet of Veal Calves: The Effects of Phytosterol Content on the Urinary Excretion of Boldenone Metabolites. J. Agric. Food Chem. 2007;55:8275–8283. doi: 10.1021/jf071097c. PubMed DOI
Verheyden K., Noppe H., Zorn H., Van Immerssel F., Bussche J.V., Wille K., Bekaert K., Janssen C.R., De Brabander H.F., Vanhaecke L. Endogenous boldenone-formation in cattle: Alternative invertebrate organisms to elucidate the enzymatic pathway and the potential role of edible fungi on cattle’s feed. J. Steroid Biochem. Mol. Biol. 2010;119:161–170. doi: 10.1016/j.jsbmb.2010.02.020. PubMed DOI
Nielen M.W.F., Rutgers P., Bennekom E.O., Lasaroms J.J.P., Rhinj J.A. Confirmatory analysis of 17β-boldenone, 17α-boldenone and androsta-1,4-diene-3,17-dione in bovine urine, faeces, feed and skin swab samples by liquid chromatography–electrospray ionisation tandem mass spektrometry. J. Chromatogr. B. 2004;801:273–283. doi: 10.1016/j.jchromb.2003.11.026. PubMed DOI
Viljanto M., Kaabia Z., Taylor P., Muir T., Habershon-butcher J., Bailly-Chouriberry L., Scarth J. Differentiation of boldenone administration from ex vivo transformation in the urine of castrated male horses. Drug Test. Anal. 2022;14:887–901. doi: 10.1002/dta.3240. PubMed DOI
Decloedt A., Van Landschoot A., Vanhaecke L. Mass Spectrometry. InTech; London, UK: 2016. Mass Spectrometry for the Detection of Endogenous Steroids and Steroid Abuse in (Race) Horses and Human Athletes. DOI
Leund G.N.W., Ho E.N.M., Leung D.K.K., Tang F.P.W., Wan T.S.M., Yeung J.H.K., Wong H.N.C. Metabolic Studies of Clostebol Acetate in Horses. Chromatographia. 2005;61:397.
Rahnema C.D., Crosnoe L.E., Kim E.D. Designer steroids–over-the-counter supplements and their androgenic component: Review of an increasing problem. Andrology. 2015;3:150–155. doi: 10.1111/andr.307. PubMed DOI
Leyssens L., Royackers E., Gielen B., Missotten M., Schoofs J., Czech J., Noben J.P., Hendriks L., Raus J. Metabolites of 4-chlorotestosterone acetate in cattle urine as diagnostic markers for its illegal use. J. Chromatogr. B. 1994;654:43–54. doi: 10.1016/0378-4347(94)00009-3. PubMed DOI
Le Bizec B., Montrade M., Monteau F., Gaudin I., Andre F. 4-Chlorotestosterone acetate metabolites in cattle after intramuscular and oral administrations. Clin. Chem. 1998;44:973–984. doi: 10.1093/clinchem/44.5.973. PubMed DOI
Crabbe P., Meyer U.J., Zhi Z., Pieraccini G., O’keeffe M., Van Peteghem C. Screening of Clostebol and its Metabolites in Bovine Urine with ELISA and Comparison with GC-MS Results in an Interlaboratory Study. J. Anal. Toxicol. 2003;27:213–220. doi: 10.1093/jat/27.4.213. PubMed DOI
Jiafeng Y., Decheng S., Xiaoyong L., Guangyu L., Min B.S. Multiresidue determina-tion of 19 anabolic steroids in animal oil using enhanced matrix removal lipid cleanup and ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal. Ical Methods. 2021;13:2374–2383. doi: 10.1039/D1AY00437A. PubMed DOI
Pan M.M., Kovac J.R. Beyond testosterone cypionate: Evidence behind the use of nandrolone in male health and wellness. Transl. Androl. Urol. 2016;5:213–219. doi: 10.21037/tau.2016.03.03. PubMed DOI PMC
Sauer M.J., Samuels T.P.W., Howells L.G., Seymour M.A., Nedderman A., Houghton E., Bellworthy S.J., Andersons S., Coldham N.G. Residues and metabolism of 19-nortestosterone laureate in steers. Analyst. 1998;123:2653–2660. doi: 10.1039/a805617j. PubMed DOI
Rosegger J., Schmerold I., Ahmed S., Schuch R., Eppinger G., Steiner S., Baumgartner W., Armstrong H., Schauberger G., Mcevoy J.D.G., et al. Natural occurrence and elimination of 19-nortestosterone in sheep: Pregnant ewes, male and female lambs before and after treatment. Vet. Med. Austria. 2009;96:171–183.
Houghton E., Dumasia M.C. Studies related to the metabolism of anabolic steroids in the horse: The identification of some 16-oxygenated metabolites of 19- nortestosterone. Xenobiotica. 1980;10:381–390. doi: 10.3109/00498258009033771. PubMed DOI
Dehennin L., Silberzahn P., Reiffsteck A., Zwain I. 19-norandrostenedione and 19-nortestosterone in human and equine follicular fluid incidence on the accuracy of radioimmunoassay of some androgens. Pathol. Biol. 1984;32:828–829.
Poelmans S., De Wasch K., Noppe H., Van Hoof N., Van Cruchten S., Le Bizec B., Deceuninck Y., Sterk S., Van Rossum H.J., Hoffman M.K., et al. Endogenous occurrence of some anabolic steroids in swine matrices. Food Addit. Contam. 2005;22:808–815. doi: 10.1080/02652030500197805. PubMed DOI
Scarth J., Akre C., Ginkel L., Le Bizec B., De Brabander H., Korth W., Points J., Teale P., Kay J. Presence and metabolism of endogenous androgenic-anabolic steroid hormones in meat-producing animals: A review. Food Addit. Contam. 2009;26:640–671. doi: 10.1080/02652030802627160. PubMed DOI
Ouzia S., Royer A., Pezzolato M., Benedetto A., Biasibetti E., Guitton Y., Le Bizec B., Bozetta E., Dervilly G. Nandrolone and estradiol biomarkers identification in bovine urine applying a liquid chromatography high-resolution mass spectrometry metabolomics approach. Drug Testind Anal. 2021;14:879–886. doi: 10.1002/dta.3126. PubMed DOI
National Center for Biotechnology Information PubChem Compound Summary for CID 25249, Stanozolol. [(accessed on 22 March 2022)];2022 Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Stanozolol.
Adamama-Moraitou K.K., Pardali D., Athanasiou L.V., Prassinos N.N., Kritsepi M., Rallis T.S. Conservative Management of Canine Tracheal Collapse with Stanozolol: A Double Blinded, Placebo Control Clinical Trial. Int. J. Immunopathol. Pharmacol. 2011;24:111–118. doi: 10.1177/039463201102400113. PubMed DOI
Martins M.C., Peffers M.J., Lee K., Rubios-Martines L.M. Effects of stanozolol on normal and IL-1β-stimulated equine chondrocytes in vitro. BMC Vet. Res. 2018;14:103. PubMed PMC
Salmani S., Rastabi H.I., Tabatabaei S.R.F., Rezaee A., Gooraninejad S., Mosallanejad B. The Effects of Stanozolol and Nandrolone Decanolate Hormones on Erytropoetin and Testosteron Serum Concentrations in Dogs. Iran. J. Vet. Med. 2021;15:325–334.
Ferchaud V., Bizec B., Montrade M.P., Maume D., Monteau F., André F. Gas chromatographic–mass spectrometric identification of main metabolites of stanozolol in cattle after oral and subcutaneous administration. J. Chromatogr. B. 1997;695:269–277. doi: 10.1016/S0378-4347(97)00124-2. PubMed DOI
Courtheyn D., Bizec B., Brambilla G., De Brabander H.F., Cobbaert E., Van De Wiele M., Vercammen J., Wasch K. Recent developments in the use and abuse of growth promoters. Anal. Chim. Acta. 2002;473:71–82. doi: 10.1016/S0003-2670(02)00753-5. DOI
Tsitsimpikou C.h., Tsarouhas K., Spandidos D.A., Tsatsakis A.M. Detection of stanozolol in the urine of athletes at a pg level: The possibility of passive exposure. Biomed. Rep. 2016;5:665–666. doi: 10.3892/br.2016.794. PubMed DOI PMC
Poelmans S., Wasch K., De Brabander H.F., Wiele M.V., Courtheyn D., Ginkel L.A., Sterk S.S., Delehaut P., Dubois M., Schilt R., et al. Analytical possibilities for the detection of stanozolol and its metabolites. Anal. Chim. Acta. 2002;473:39–47. doi: 10.1016/S0003-2670(02)00672-4. DOI
Post L.O., Bataller N., Parkhie M., Keller W.C. Clinical Veterinary Toxicology. Mosby; Maryland Heights, MO, USA: 2004. Regulatory Toxicology; pp. 28–45.
Saičic S., Spiric A., Jankovic S., Dordevic M. A trenbolone acetate/estradiol combination in feedlot simmental bulls: Meat quality and withdrawal time of trenbolone. Acta Vet. 2000;50:137–146.
Kolok A.S., Ali J.M., Rogan E.G., Bartelt-Hunt S.L. The Fate of Synthetic and Endogenous Hormones Used in the US Beef and Dairy Industries and the Potential for Human Exposure. Curr. Environ. Health Rep. 2018;5:225–232. doi: 10.1007/s40572-018-0197-9. PubMed DOI
Qaid M.M., Abdoun K.A. Safety and concerns of hormonal application in farm animal production: A review. J. Appl. Anim. Res. 2022;50:426–439. doi: 10.1080/09712119.2022.2089149. DOI
Munawaroh I.S., Rahayu P. Determination of trenbolone acetate hormone residue on imported beef meat and imported beef liver at slaughterhouse and cold storage; Proceedings of the International Seminar on Livestock Production and Veterinary Technology; Bogor, Indonesia. 6–7 September 2021; p. 31.
Widiastuti R., Murdiati T.B., Yuningsih Residu of 17-beta-trenbolon on imported calf meat and liver distributed in Jakarta (Indonesia); Proceedings of the Seminar Nasional Peternakan dan Veteriner; Bogor, Indonesia. 18–19 September 2000.
El Shahid E.Y.M.A., El Shater M.A., Hasan M.A., Ibrahim M.H. Chemical residues in burger and sausage meat products. Benha Vet. Med. J. 2021;40:161–164.
Hirpessa B.B., Ulusoy B.H., Hecer C. Hormones and Hormonal Anabolics: Residues in Animal Source Food, Potential Public Health Impacts, and Methods of Analysis. J. Food Qual. 2020;2020:5065386. doi: 10.1155/2020/5065386. DOI
Nazli B., Olgun E.O., Çakir B., Demirci M. An analytical study to determine prohibited anabolic residues in red meat tissue using LC-MS/MS system. Food Sci. Technol. 2022;42 doi: 10.1590/fst.65420. DOI
Pleadin J., Samardžija M. Hormonally active substances in the food chain from farm animals to consumers. Vet. Stanica. 2019;50:501–512.
Benedetto A., Pezzolato M., Biasibetti E., Bozzetta E. Omics applications in the fight against abuse of anabolic substances in cattle: Challenges, perspectives and opportunities. Curr. Opin. Food Sci. 2021;40:112–120. doi: 10.1016/j.cofs.2021.03.001. DOI
Perry T.C., Fox D.G., Beermann D.H. Effect of an implant of trenbolone acetate and estradiol on growth, feed efficiency, and carcass composition of Holstein and beef steers. J. Anim. Sci. 1992;69:4696–4702. doi: 10.2527/1991.69124696x. PubMed DOI
Clancy M.J., Lester J.M., Roche J.F. The Effects of Anabolic Agents and Breed on the Fibers of the Longissimus Muscle of Male Cattle. J. Anim. Sci. 1986;63:83–91. doi: 10.2527/jas1986.63183x. PubMed DOI
Guyomarda H., Bouamra-Mechemacheb Z., Chatellierc V., Delabyd L., Dé-tang-Dessendree C., Peyraudf J.L., Réquillartb V. Review: Why and how to regulate animal production and consumption: The case of the European Union. Animal. 2021;15:100283. doi: 10.1016/j.animal.2021.100283. PubMed DOI
Kellermeier J.D., Tittor A.W., Brooks J.C., Galyean M.L., Yates D.A., Hutcheson J.P., Nichols W.T., Streeter M.N., Johnson B.J., Miller M.F. Effects of zilpaterol hydrochloride with or without an estrogen-trenbolone acetate terminal implant on carcass traits, retail cutout, tenderness, and muscle fiber diameter in finishing steers. J. Anim. Sci. 2009;87:3702–3711. doi: 10.2527/jas.2009-1823. PubMed DOI
Fontana K., Campos G.E.R., Staron R.S., Cruz-Höfling M.A. Effects of Anabolic Steroids and High-Intensity Aerobic Exercise on Skeletal Muscle of Transgenic Mice. PLoS ONE. 2013;8:e80909. doi: 10.1371/journal.pone.0080909. PubMed DOI PMC
Elgendy H., Alhawary A., El-Shahat M., Ali A. Effect of Anabolic Steroids on the Cardiac and Skeletal Muscles of Adult Male Rats. Int. J. Clin. Dev. Anat. 2018;4:1–14. doi: 10.11648/j.ijcda.20180401.11. DOI
Reichhardt C.C., Ahmadpour A., Christensen R.G., Ineck N.E., Murdoch G.K., Thornton K.J. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells. Domest. Anim. Endocrinol. 2021;74:106479. doi: 10.1016/j.domaniend.2020.106479. PubMed DOI
Velders M., Diel P. How Sex Hormones Promote Skeletal Muscle Regeneration. Sports Med. 2013;43:1089–1100. doi: 10.1007/s40279-013-0081-6. PubMed DOI
Carson J.A., Manolagas S.C. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone. 2015;80:67–78. doi: 10.1016/j.bone.2015.04.015. PubMed DOI PMC
Kim J.T., Roberts K., Dunlap G., Perry R., Washington T., Wolchok J.C. Nandrolone supplementation does not improve functional recovery in an aged animal model of volumetric muscle loss injury. J. Tissue Eng. Regen. Med. 2022;16:367–379. doi: 10.1002/term.3286. PubMed DOI
Snijders T., Aussieker T., Holwerda A., Parise G., Van Loon L.J.C., Verdijk L.B. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiol. 2020;229:e13465. doi: 10.1111/apha.13465. PubMed DOI PMC
Egner I.M., Brussgaard J.C., Eftestøl E., Gundersen K. A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids. J. Physiol. 2013;591:6221–6230. doi: 10.1113/jphysiol.2013.264457. PubMed DOI PMC
Hijazi M.M., Azmi M.A., Hussain A., Naqvi S.N.H., Perveen R., Hijazi S. Androgenic Anabolic Steroidal-Based Effects on the Morphology of Testicular Structures of Albino Rats. Pak. J. Zool. 2012;44:1529–1537.
Tousson E., El-Moghazy M., Massoud A., Akel A. Histopathological and Immunohistochemical Changes in the Testes of Rabbits After Injection With the Growth Promoter Boldenone. Reprod. Sci. 2012;19:253–259. doi: 10.1177/1933719111418126. PubMed DOI
Kahal A., Allem R. Reversible effects of anabolic steroid abuse on cyto-architectures of the heart, kidneys and testis in adult male mice. Biomed. Pharmacother. 2018;106:917–922. doi: 10.1016/j.biopha.2018.07.038. PubMed DOI
Yarrow J.F., Conover C.F., McCoy S.C., Lipinska J.A., Santillana C.A., Hance J.M., Cannady D.F., VanPelt T.D., Sanchez J., Conrad B.P., et al. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone) exhibits tissue selective anabolic activity: Effects on muscle, bone, adiposity, hemoglobin, and prostate. Am. J. Physiol. Endocrinol. Metab. 2011;300:E650–E660. doi: 10.1152/ajpendo.00440.2010. PubMed DOI PMC
Salerno M., Cascio O., Bertozzi G., Sessa F., Messina A., Monda V., Cipolloni L., Biondi A., Daniele A., Pomara C. Anabolic androgenic steroids and carcinogenicity focusing on Leydig cell: A literature review. Oncotarget. 2018;9:19415–19426. doi: 10.18632/oncotarget.24767. PubMed DOI PMC
Kumar P., Lindberg L., Thirkill T.L., Ji J.W., Martsching L., Douglas G.C. The MUC1 Extracellular Domain Subunit Is Found in Nuclear Speckles and Associates with Spliceosomes. PLoS ONE. 2012;7:e42712. doi: 10.1371/annotation/bb4082f7-5f88-4d64-8cab-f2e9c89b86eb. PubMed DOI PMC
Seara F.A.C., Barbosa R.A.Q., Oliveira D.F., Silva D.L.S.G., Carvalho A.B., Ferreira A.C.F., Nascimento J.H.M., Olivares E.L. Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. Mol. Biol. 2017;171:34–42. doi: 10.1016/j.jsbmb.2017.01.012. PubMed DOI
Aljeboori K.H., Majhool A.B. Pathological and Immunological changes induced in male rats treated with therapeutic doses of sustanon. Al-Anbar J. Vet. Sci. 2017;10:52–57.
Mohammed A.R.S., Al-Galad G.M., Abd-Elgayd A.A., Mwaheb M.A., Al-Hamboly H.M. Effect of Nandrolone Decanoate (Anabolic Steroid) on the Liver and Kidney of Male Albino Rats and the Role of Antioxidant (Antox-Silymarin) as Adjuvant Therapy. J. Drug Metab. Toxicol. 2017;8:224. doi: 10.4172/2157-7609.1000224. DOI
Cho J., Izumi K., Huang C.h.K. Androgen and Androgen Receptor in Kidney Cancer. Nephrol. Open J. 2015;1:e7–e8. doi: 10.17140/NPOJ-1-e003. DOI
Hartung R., Gerth J., Fünfstück R., Gröne H.J., Stein G. End-stage renal disease in a bodybuilder: A multifactorial process or simply doping? Nephrol. Dial. Transplant. 2001;16:163–165. doi: 10.1093/ndt/16.1.163. PubMed DOI
Navarro V.J., Khan I., Björnsson E., Seeff L.B., Serrano J., Hoofnagle J.H. Liver injury from herbal and dietary supplements. Hepatology. 2017;65:363–373. doi: 10.1002/hep.28813. PubMed DOI PMC
Guimarães A.P.F.G.M., Butezloff M.M., Zamarioli A., Assa J.P.M., Volpon J.B. Nandrolone decanoate appears to increase bone callus formation in young adult rats after a complete femoral fracture. Acta Cirúrgica Bras. 2017;32:924–934. doi: 10.1590/s0102-865020170110000004. PubMed DOI
Souza D.B., Brasil F.B., Marchon R.G., Félix-Patrício B. Effects of nandrolone decanoate on femur morphology. Experimental study. Acta Cirúrgica Bras. 2021;36:e360507. doi: 10.1590/acb360507. PubMed DOI PMC
Marchi P.N., Sueur Vieira A.N.L., Ribeiro J.F.A., Geraldes S.S.G., Ramos P.R.R., Malchert A., Guimarães-Okamoto P.T.C. Use of Nandrolone Decanoate in Treatment of Pure Red Cell Aplasia Secondary to Diclofenac Administration: A Case Report. Top. Companion Anim. Med. 2017;32:44–47. doi: 10.1053/j.tcam.2017.05.007. PubMed DOI
Spadari A., Romagnoli N., Predieri P.G., Borghetti P., Cantoni A.M., Corradi A. Effects of intraarticular treatment with stanozolol on synovial membrane and cartilage in an ovine model of osteoarthritis. Res. Vet. Sci. 2013;3:379–387. doi: 10.1016/j.rvsc.2012.11.020. PubMed DOI
Falanga V., Greenberg A.S., Zhou L., Ochoa S.M., Roberts A.B., Falabella A., Yamaguchi Y. Stimulation of Collagen Synthesis by the Anabolic Steroid Stanozolol. J. Investig. Dermatol. 1998;6:1193–1197. doi: 10.1046/j.1523-1747.1998.00431.x. PubMed DOI