High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
31971648
National Natural Science Foundation of China
202108320301
China Scholarship Council
PubMed
36012222
PubMed Central
PMC9409250
DOI
10.3390/ijms23168958
PII: ijms23168958
Knihovny.cz E-zdroje
- Klíčová slova
- gene dosage, ginkgo, haploid, mechanism, transcriptome,
- MeSH
- flavonoidy metabolismus MeSH
- genová dávka MeSH
- Ginkgo biloba * genetika MeSH
- haploidie MeSH
- listy rostlin metabolismus MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavonoidy MeSH
As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features and mechanisms of haploid ginkgo following this significant discovery. In this study, we conducted a homogenous garden experiment on haploid and diploid ginkgo to explore the differences in growth, physiology and biochemistry between the two. Additionally, a high-depth transcriptome database of both was established to reveal their transcriptional differences. The results showed that haploid ginkgo exhibited weaker growth potential, lower photosynthesis and flavonoid accumulation capacity. Although the up-regulated expression of DEGs in haploid ginkgo reached 46.7% of the total DEGs in the whole transcriptome data, the gene sets of photosynthesis metabolic, glycolysis/gluconeogenesis and flavonoid biosynthesis pathways, which were significantly related to these differences, were found to show a significant down-regulated expression trend by gene set enrichment analysis (GSEA). We further found that the major metabolic pathways in the haploid ginkgo transcriptional database were down-regulated in expression compared to the diploid. This study reveals for the first time the phenotypic, growth and physiological differences in haploid ginkgos, and demonstrates their transcriptional patterns based on high-depth transcriptomic data, laying the foundation for subsequent in-depth studies of haploid ginkgos.
Zobrazit více v PubMed
Wendel J.F. Genome evolution in polyploids. Plant Mol. Biol. 2000;42:225–249. doi: 10.1023/A:1006392424384. PubMed DOI
Chung M.Y., Kim C.Y., Min J.S., Lee D.-J., Naing A.H., Chung J.D., Kim C.K. In vitro induction of tetraploids in an interspecific hybrid of Calanthe (Calanthe discolor x Calanthe sieboldii) through colchicine and oryzalin treatments. Plant Biotechnol. Rep. 2014;8:251–257. doi: 10.1007/s11816-014-0317-4. DOI
Li Y., Yang J., Song L., Qi Q., Du K., Han Q., Kang X. Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucommia triploids. Trees-Struct. Funct. 2019;33:817–826. doi: 10.1007/s00468-019-01818-5. DOI
Hu Y., Sun D., Hu H., Zuo X., Xia T., Xie J. A comparative study on morphological and fruit quality traits of diploid and polyploid carambola (Averrhoa carambola L.) genotypes. Sci. Hortic. 2021;277:109843. doi: 10.1016/j.scienta.2020.109843. DOI
Zhang W., Hao H., Ma L., Zhao C., Yu X. Tetraploid muskmelon alters morphological characteristics and improves fruit quality. Sci. Hortic. 2010;125:396–400. doi: 10.1016/j.scienta.2010.04.038. DOI
Guo H., Mendrikahy J.N., Xie L., Deng J., Lu Z., Wu J., Li X., Shahid M.Q., Liu X. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci. Rep. 2017;7:40139. doi: 10.1038/srep40139. PubMed DOI PMC
Luo G., Xue L., Xu W., Zhao J., Wang J., Ding Y., Luan K., Lei J. Breeding decaploid strawberry with improved cold resistance and fruit quality. Sci. Hortic. 2019;251:1–8. doi: 10.1016/j.scienta.2019.03.001. DOI
Weber D.F. Today’s Use of Haploids in Corn Plant Breeding. In: Spark D.L., editor. Advances in Agronomy. Volume 123. Elsevier; Amsterdam, The Netherlands: 2014. pp. 123–144.
Dwivedi S.L., Britt A.B., Tripathi L., Sharma S., Upadhyaya H.D., Rodomiro O. Haploids: Constraints and opportunities in plant breeding. Biotechnol. Adv. Int. Rev. J. 2015;33:812–829. doi: 10.1016/j.biotechadv.2015.07.001. PubMed DOI
Dunwell J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010;8:377–424. doi: 10.1111/j.1467-7652.2009.00498.x. PubMed DOI
Isakov Y.N., Butorina A.K., Muraya L.S. Discovery of spontaneous haploids in pinus silvestris and the prospects of their using in forest genetics and selection. Genetika. 1981;17:701–707.
Blakeslee A.F., Belling J., Farnham M.E., Bergner A.D. A Haploid Mutant in the Jimson Weed, “Datura Stramonium”. Science. 1922;55:646–647. doi: 10.1126/science.55.1433.646. PubMed DOI
Von Dassow P., Ogata H., Probert I., Wincker P., Da Silva C., Audic S., Claverie J.M., de Vargas C. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 2009;10:R114. doi: 10.1186/gb-2009-10-10-r114. PubMed DOI PMC
Li Y., Wei H., Yang J., Du K., Li J., Zhang Y., Qiu T., Liu Z., Ren Y., Song L., et al. High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis. Hortic. Res. 2020;7:183. doi: 10.1038/s41438-020-00406-w. PubMed DOI PMC
Zhou Q., Tang D., Huang W., Yang Z., Zhang Y., Hamilton J.P., Visser R.G.F., Bachem C.W.B., Robin Buell C., Zhang Z., et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 2020;52:1018–1023. doi: 10.1038/s41588-020-0699-x. PubMed DOI PMC
Kelliher T., Starr D., Richbourg L., Chintamanani S., Delzer B., Nuccio M.L., Green J., Chen Z., McCuiston J., Wang W., et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature. 2017;542:105–109. doi: 10.1038/nature20827. PubMed DOI
Wang N., Xia X., Jiang T., Li L., Zhang P., Niu L., Cheng H., Wang K., Lin H. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol. J. 2022;20:22–24. doi: 10.1111/pbi.13740. PubMed DOI PMC
Zhong Y., Chen B., Wang D., Zhu X., Li M., Zhang J., Chen M., Wang M., Riksen T., Liu J., et al. In vivo maternal haploid induction in tomato. Plant Biotechnol. J. 2022;20:250–252. doi: 10.1111/pbi.13755. PubMed DOI PMC
Sun Y.H., Wang Y.R., Li Y.Y., Jiang J.Z., Yang N., Niu C., Li Y. Effects of colchicine treatment on the microtubule cytoskeleton and total protein during microsporogenesis in Ginkgo biloba L. Pak. J. Bot. 2015;47:159–170.
Zhao Y., Paule J., Fu C., Koch M.A. Out of China: Distribution history of Ginkgo biloba L. Taxon. 2010;59:495–504. doi: 10.1002/tax.592014. DOI
McElwain J.C. Ginkgo The Tree That Time Forgot. Science. 2013;340:812–813. doi: 10.1126/science.1237432. DOI
Efferth T., Koch E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr. Drug Targets. 2011;12:122–132. doi: 10.2174/138945011793591626. PubMed DOI
Zhao J., Yang J., Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019;570:118642. doi: 10.1016/j.ijpharm.2019.118642. PubMed DOI
Wu D., Feng J., Lai M., Ouyang D., Yu W., Wang G., Cao F., Jacobs D.F., Zeng S. Combined application of bud and leaf growth fertilizer improves leaf flavonoids yield of Ginkgo biloba. Ind. Crops Prod. 2020;150:112379. doi: 10.1016/j.indcrop.2020.112379. DOI
Jun N., Juan H., Zhifang J., Xiaori Z., Lixiang D., Xiuli Y., Zhehang S., Wenya X., Zhikun W., Maojun X. NaCl Induces Flavonoid Biosynthesis through a Putative Novel Pathway in Post-harvest Ginkgo Leaves. Front. Plant Sci. 2017;8:920. PubMed PMC
Wang G., Cao F., Chang L., Guo X., Wang J. Temperature has more effects than soil moisture on biosynthesis of flavonoids in Ginkgo (Ginkgo biloba L.) leaves. New For. 2014;45:797–812. doi: 10.1007/s11056-014-9437-5. DOI
Xu Y., Wang G., Cao F., Zhu C., Wang G., El-Kassaby Y.A. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.) New For. 2014;45:765–776. doi: 10.1007/s11056-014-9435-7. DOI
Ying G., Cga B., Mwa B., Fffa B., Ek C., Tw C., Gwa B. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions—ScienceDirect. Ind. Crops Prod. 2020;158:112963.
Ni J., Dong L., Jiang Z., Yang X., Chen Z., Wu Y., Xu M. Comprehensive transcriptome analysis and flavonoid profiling of Ginkgo leaves reveals flavonoid content alterations in day–night cycles. PLoS ONE. 2018;13:e0193897. doi: 10.1371/journal.pone.0193897. PubMed DOI PMC
Wu Y., Guo J., Qi Z., Xin Y., Wang G., Xu L.A. De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis, transport and regulation in Ginkgo biloba. Ind. Crops Prod. 2018;124:226–235. doi: 10.1016/j.indcrop.2018.07.060. DOI
Smarda P., Vesely P., Smerda J., Bures P., Knapek O., Chytra M. Polyploidy in a “living fossil’ Ginkgo biloba. New Phytol. 2016;212:11–14. doi: 10.1111/nph.14062. PubMed DOI
Smarda P., Horova L., Knapek O., Dieck H., Dieck M., Razna K., Hrubik P., Orloci L., Papp L., Vesela K., et al. Multiple haploids, triploids, and tetraploids found in modern-day “living fossil” Ginkgo biloba. Hortic. Res. 2018;5:55. doi: 10.1038/s41438-018-0055-9. PubMed DOI PMC
Lin Z., Pu H., Duan Z., Li Y., Liu B., Zhang Q., Li W., Jean-David R., Liu L., Peng L. Nucleus-Encoded Protein BFA1 Promotes Efficient Assembly of the Chloroplast ATP Synthase Coupling Factor 1. Plant Cell. 2018;30:1770–1788. PubMed PMC
Tamayo P., Steinhardt G., Liberzon A., Mesirov J.P. The limitations of simple gene set enrichment analysis assuming gene independence. Stat. Methods Med. Res. 2016;25:472–487. doi: 10.1177/0962280212460441. PubMed DOI PMC
Tilford C.A., Siemers N.O. Gene Set Enrichment Analysis. In: Nikolsky Y., Bryant J., editors. Protein Networks and Pathway Analysis. Volume 563. Methods in Molecular Biology; New York, NY, USA: 2009. pp. 99–121. PubMed
Chen T.T., Sheng Y., Hao Z.D., Long X.F., Fu F.F., Liu Y., Tang Z.H., Ali A., Peng Y., Lu L., et al. Transcriptome and proteome analysis suggest enhanced photosynthesis in tetraploid Liriodendron sino-americanum. Tree Physiol. 2021;41:1953–1971. doi: 10.1093/treephys/tpab039. PubMed DOI PMC
Tokumoto Y., Kajiura H., Takeno S., Harada Y., Suzuki N., Hosaka T., Gyokusen K., Nakazawa Y. Induction of tetraploid hardy rubber tree, Eucommia ulmoides, and phenotypic differences from diploid. Plant Biotechnol. 2016;33:51–57. doi: 10.5511/plantbiotechnology.15.1219a. DOI
Wu Y., Sun Y., Sun S., Li G., Wang J., Wang B., Lin X.Y., Huang M., Gong Z.Y., Sanguinet K.A., et al. Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. Theor. Appl. Genet. 2018;131:1273–1285. doi: 10.1007/s00122-018-3077-7. PubMed DOI PMC
Mo L., Chen J.H., Chen F., Xu Q.W., Tong Z.K., Huang H.H., Dong R.H., Lou X.Z., Lin E.P. Induction and characterization of polyploids from seeds of Rhododendron fortunei Lindl. J. Integr. Agric. 2020;19:2016–2026. doi: 10.1016/S2095-3119(20)63210-5. DOI
Shmeit Y.H., Fernandez E., Novy P., Kloucek P., Orosz M., Kokoska L. Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci. Hortic. 2020;263 doi: 10.1016/j.scienta.2019.109095. DOI
Ma Y., Xue H., Zhang L., Zhang F., Ou C.Q., Wang F., Zhang Z.H. Involvement of Auxin and Brassinosteroid in Dwarfism of Autotetraploid Apple (Malus x domestica) Sci. Rep. 2016;6:26719. doi: 10.1038/srep26719. PubMed DOI PMC
Allario T., Brumos J., Colmenero-Flores J.M., Tadeo F., Froelicher Y., Talon M., Navarro L., Ollitrault P., Morillon R. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J. Exp. Bot. 2011;62:2507–2519. doi: 10.1093/jxb/erq467. PubMed DOI
Adams K.L. Evolution of duplicate gene expression in polyploid and hybrid plants. J. Hered. 2007;98:136–141. doi: 10.1093/jhered/esl061. PubMed DOI
Udall J.A., Wendel J.F. Polyploidy and crop improvement. Crop Sci. 2006;46:S3–S14. doi: 10.2135/cropsci2006.07.0489tpg. DOI
Kashkush K., Feldman M., Levy A.A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 2003;33:102–106. doi: 10.1038/ng1063. PubMed DOI
Nakagami H., Pitzschke A., Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 2005;10:339–346. doi: 10.1016/j.tplants.2005.05.009. PubMed DOI
Liu H., Wang X., Wang G., Cui P., Wu S., Ai C., Hu N., Li A., He B., Shao X., et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat. Plants. 2021;7:748–756. doi: 10.1038/s41477-021-00933-x. PubMed DOI
Hasing T., Tang H., Brym M., Khazi F., Huang T., Chambers A.H. A phased Vanilla planifolia genome enables genetic improvement of flavour and production. Nat. Food. 2020;1:811–819. doi: 10.1038/s43016-020-00197-2. PubMed DOI
Tian Y., Thrimawithana A., Ding T., Guo J., Gleave A., Chagne D., Ampomah-Dwamena C., Ireland H.S., Schaffer R.J., Luo Z., et al. Transposon insertions regulate genome-wide allele-specific expression and underpin flower colour variations in apple (Malus spp.) Plant Biotechnol. J. 2022;20:1285–1297. doi: 10.1111/pbi.13806. PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Kim D., Langmead B., Salzberg S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Pertea M., Pertea G.M., Antonescu C.M., Chang T.-C., Mendell J.T., Salzberg S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC
Pertea M., Kim D., Pertea G.M., Leek J.T., Salzberg S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016;11:1650–1667. doi: 10.1038/nprot.2016.095. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Chinese Pharmacopoeia Commission. 2015. [(accessed on 15 September 2021)]. Available online: http://www.chp.org.cn.
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2013;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Zhou T., Yang X., Fu F., Wang G., Cao F. se1ection of suitab1e reference genes based on transcriptomic data in ginkgo bi1oba under different experimenta1 conditions. Forests. 2020;11:1217. doi: 10.3390/f11111217. DOI
Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars