High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage

. 2022 Aug 11 ; 23 (16) : . [epub] 20220811

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36012222

Grantová podpora
31971648 National Natural Science Foundation of China
202108320301 China Scholarship Council

As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features and mechanisms of haploid ginkgo following this significant discovery. In this study, we conducted a homogenous garden experiment on haploid and diploid ginkgo to explore the differences in growth, physiology and biochemistry between the two. Additionally, a high-depth transcriptome database of both was established to reveal their transcriptional differences. The results showed that haploid ginkgo exhibited weaker growth potential, lower photosynthesis and flavonoid accumulation capacity. Although the up-regulated expression of DEGs in haploid ginkgo reached 46.7% of the total DEGs in the whole transcriptome data, the gene sets of photosynthesis metabolic, glycolysis/gluconeogenesis and flavonoid biosynthesis pathways, which were significantly related to these differences, were found to show a significant down-regulated expression trend by gene set enrichment analysis (GSEA). We further found that the major metabolic pathways in the haploid ginkgo transcriptional database were down-regulated in expression compared to the diploid. This study reveals for the first time the phenotypic, growth and physiological differences in haploid ginkgos, and demonstrates their transcriptional patterns based on high-depth transcriptomic data, laying the foundation for subsequent in-depth studies of haploid ginkgos.

Zobrazit více v PubMed

Wendel J.F. Genome evolution in polyploids. Plant Mol. Biol. 2000;42:225–249. doi: 10.1023/A:1006392424384. PubMed DOI

Chung M.Y., Kim C.Y., Min J.S., Lee D.-J., Naing A.H., Chung J.D., Kim C.K. In vitro induction of tetraploids in an interspecific hybrid of Calanthe (Calanthe discolor x Calanthe sieboldii) through colchicine and oryzalin treatments. Plant Biotechnol. Rep. 2014;8:251–257. doi: 10.1007/s11816-014-0317-4. DOI

Li Y., Yang J., Song L., Qi Q., Du K., Han Q., Kang X. Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucommia triploids. Trees-Struct. Funct. 2019;33:817–826. doi: 10.1007/s00468-019-01818-5. DOI

Hu Y., Sun D., Hu H., Zuo X., Xia T., Xie J. A comparative study on morphological and fruit quality traits of diploid and polyploid carambola (Averrhoa carambola L.) genotypes. Sci. Hortic. 2021;277:109843. doi: 10.1016/j.scienta.2020.109843. DOI

Zhang W., Hao H., Ma L., Zhao C., Yu X. Tetraploid muskmelon alters morphological characteristics and improves fruit quality. Sci. Hortic. 2010;125:396–400. doi: 10.1016/j.scienta.2010.04.038. DOI

Guo H., Mendrikahy J.N., Xie L., Deng J., Lu Z., Wu J., Li X., Shahid M.Q., Liu X. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci. Rep. 2017;7:40139. doi: 10.1038/srep40139. PubMed DOI PMC

Luo G., Xue L., Xu W., Zhao J., Wang J., Ding Y., Luan K., Lei J. Breeding decaploid strawberry with improved cold resistance and fruit quality. Sci. Hortic. 2019;251:1–8. doi: 10.1016/j.scienta.2019.03.001. DOI

Weber D.F. Today’s Use of Haploids in Corn Plant Breeding. In: Spark D.L., editor. Advances in Agronomy. Volume 123. Elsevier; Amsterdam, The Netherlands: 2014. pp. 123–144.

Dwivedi S.L., Britt A.B., Tripathi L., Sharma S., Upadhyaya H.D., Rodomiro O. Haploids: Constraints and opportunities in plant breeding. Biotechnol. Adv. Int. Rev. J. 2015;33:812–829. doi: 10.1016/j.biotechadv.2015.07.001. PubMed DOI

Dunwell J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010;8:377–424. doi: 10.1111/j.1467-7652.2009.00498.x. PubMed DOI

Isakov Y.N., Butorina A.K., Muraya L.S. Discovery of spontaneous haploids in pinus silvestris and the prospects of their using in forest genetics and selection. Genetika. 1981;17:701–707.

Blakeslee A.F., Belling J., Farnham M.E., Bergner A.D. A Haploid Mutant in the Jimson Weed, “Datura Stramonium”. Science. 1922;55:646–647. doi: 10.1126/science.55.1433.646. PubMed DOI

Von Dassow P., Ogata H., Probert I., Wincker P., Da Silva C., Audic S., Claverie J.M., de Vargas C. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 2009;10:R114. doi: 10.1186/gb-2009-10-10-r114. PubMed DOI PMC

Li Y., Wei H., Yang J., Du K., Li J., Zhang Y., Qiu T., Liu Z., Ren Y., Song L., et al. High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis. Hortic. Res. 2020;7:183. doi: 10.1038/s41438-020-00406-w. PubMed DOI PMC

Zhou Q., Tang D., Huang W., Yang Z., Zhang Y., Hamilton J.P., Visser R.G.F., Bachem C.W.B., Robin Buell C., Zhang Z., et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 2020;52:1018–1023. doi: 10.1038/s41588-020-0699-x. PubMed DOI PMC

Kelliher T., Starr D., Richbourg L., Chintamanani S., Delzer B., Nuccio M.L., Green J., Chen Z., McCuiston J., Wang W., et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature. 2017;542:105–109. doi: 10.1038/nature20827. PubMed DOI

Wang N., Xia X., Jiang T., Li L., Zhang P., Niu L., Cheng H., Wang K., Lin H. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol. J. 2022;20:22–24. doi: 10.1111/pbi.13740. PubMed DOI PMC

Zhong Y., Chen B., Wang D., Zhu X., Li M., Zhang J., Chen M., Wang M., Riksen T., Liu J., et al. In vivo maternal haploid induction in tomato. Plant Biotechnol. J. 2022;20:250–252. doi: 10.1111/pbi.13755. PubMed DOI PMC

Sun Y.H., Wang Y.R., Li Y.Y., Jiang J.Z., Yang N., Niu C., Li Y. Effects of colchicine treatment on the microtubule cytoskeleton and total protein during microsporogenesis in Ginkgo biloba L. Pak. J. Bot. 2015;47:159–170.

Zhao Y., Paule J., Fu C., Koch M.A. Out of China: Distribution history of Ginkgo biloba L. Taxon. 2010;59:495–504. doi: 10.1002/tax.592014. DOI

McElwain J.C. Ginkgo The Tree That Time Forgot. Science. 2013;340:812–813. doi: 10.1126/science.1237432. DOI

Efferth T., Koch E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr. Drug Targets. 2011;12:122–132. doi: 10.2174/138945011793591626. PubMed DOI

Zhao J., Yang J., Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019;570:118642. doi: 10.1016/j.ijpharm.2019.118642. PubMed DOI

Wu D., Feng J., Lai M., Ouyang D., Yu W., Wang G., Cao F., Jacobs D.F., Zeng S. Combined application of bud and leaf growth fertilizer improves leaf flavonoids yield of Ginkgo biloba. Ind. Crops Prod. 2020;150:112379. doi: 10.1016/j.indcrop.2020.112379. DOI

Jun N., Juan H., Zhifang J., Xiaori Z., Lixiang D., Xiuli Y., Zhehang S., Wenya X., Zhikun W., Maojun X. NaCl Induces Flavonoid Biosynthesis through a Putative Novel Pathway in Post-harvest Ginkgo Leaves. Front. Plant Sci. 2017;8:920. PubMed PMC

Wang G., Cao F., Chang L., Guo X., Wang J. Temperature has more effects than soil moisture on biosynthesis of flavonoids in Ginkgo (Ginkgo biloba L.) leaves. New For. 2014;45:797–812. doi: 10.1007/s11056-014-9437-5. DOI

Xu Y., Wang G., Cao F., Zhu C., Wang G., El-Kassaby Y.A. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.) New For. 2014;45:765–776. doi: 10.1007/s11056-014-9435-7. DOI

Ying G., Cga B., Mwa B., Fffa B., Ek C., Tw C., Gwa B. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions—ScienceDirect. Ind. Crops Prod. 2020;158:112963.

Ni J., Dong L., Jiang Z., Yang X., Chen Z., Wu Y., Xu M. Comprehensive transcriptome analysis and flavonoid profiling of Ginkgo leaves reveals flavonoid content alterations in day–night cycles. PLoS ONE. 2018;13:e0193897. doi: 10.1371/journal.pone.0193897. PubMed DOI PMC

Wu Y., Guo J., Qi Z., Xin Y., Wang G., Xu L.A. De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis, transport and regulation in Ginkgo biloba. Ind. Crops Prod. 2018;124:226–235. doi: 10.1016/j.indcrop.2018.07.060. DOI

Smarda P., Vesely P., Smerda J., Bures P., Knapek O., Chytra M. Polyploidy in a “living fossil’ Ginkgo biloba. New Phytol. 2016;212:11–14. doi: 10.1111/nph.14062. PubMed DOI

Smarda P., Horova L., Knapek O., Dieck H., Dieck M., Razna K., Hrubik P., Orloci L., Papp L., Vesela K., et al. Multiple haploids, triploids, and tetraploids found in modern-day “living fossil” Ginkgo biloba. Hortic. Res. 2018;5:55. doi: 10.1038/s41438-018-0055-9. PubMed DOI PMC

Lin Z., Pu H., Duan Z., Li Y., Liu B., Zhang Q., Li W., Jean-David R., Liu L., Peng L. Nucleus-Encoded Protein BFA1 Promotes Efficient Assembly of the Chloroplast ATP Synthase Coupling Factor 1. Plant Cell. 2018;30:1770–1788. PubMed PMC

Tamayo P., Steinhardt G., Liberzon A., Mesirov J.P. The limitations of simple gene set enrichment analysis assuming gene independence. Stat. Methods Med. Res. 2016;25:472–487. doi: 10.1177/0962280212460441. PubMed DOI PMC

Tilford C.A., Siemers N.O. Gene Set Enrichment Analysis. In: Nikolsky Y., Bryant J., editors. Protein Networks and Pathway Analysis. Volume 563. Methods in Molecular Biology; New York, NY, USA: 2009. pp. 99–121. PubMed

Chen T.T., Sheng Y., Hao Z.D., Long X.F., Fu F.F., Liu Y., Tang Z.H., Ali A., Peng Y., Lu L., et al. Transcriptome and proteome analysis suggest enhanced photosynthesis in tetraploid Liriodendron sino-americanum. Tree Physiol. 2021;41:1953–1971. doi: 10.1093/treephys/tpab039. PubMed DOI PMC

Tokumoto Y., Kajiura H., Takeno S., Harada Y., Suzuki N., Hosaka T., Gyokusen K., Nakazawa Y. Induction of tetraploid hardy rubber tree, Eucommia ulmoides, and phenotypic differences from diploid. Plant Biotechnol. 2016;33:51–57. doi: 10.5511/plantbiotechnology.15.1219a. DOI

Wu Y., Sun Y., Sun S., Li G., Wang J., Wang B., Lin X.Y., Huang M., Gong Z.Y., Sanguinet K.A., et al. Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. Theor. Appl. Genet. 2018;131:1273–1285. doi: 10.1007/s00122-018-3077-7. PubMed DOI PMC

Mo L., Chen J.H., Chen F., Xu Q.W., Tong Z.K., Huang H.H., Dong R.H., Lou X.Z., Lin E.P. Induction and characterization of polyploids from seeds of Rhododendron fortunei Lindl. J. Integr. Agric. 2020;19:2016–2026. doi: 10.1016/S2095-3119(20)63210-5. DOI

Shmeit Y.H., Fernandez E., Novy P., Kloucek P., Orosz M., Kokoska L. Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci. Hortic. 2020;263 doi: 10.1016/j.scienta.2019.109095. DOI

Ma Y., Xue H., Zhang L., Zhang F., Ou C.Q., Wang F., Zhang Z.H. Involvement of Auxin and Brassinosteroid in Dwarfism of Autotetraploid Apple (Malus x domestica) Sci. Rep. 2016;6:26719. doi: 10.1038/srep26719. PubMed DOI PMC

Allario T., Brumos J., Colmenero-Flores J.M., Tadeo F., Froelicher Y., Talon M., Navarro L., Ollitrault P., Morillon R. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J. Exp. Bot. 2011;62:2507–2519. doi: 10.1093/jxb/erq467. PubMed DOI

Adams K.L. Evolution of duplicate gene expression in polyploid and hybrid plants. J. Hered. 2007;98:136–141. doi: 10.1093/jhered/esl061. PubMed DOI

Udall J.A., Wendel J.F. Polyploidy and crop improvement. Crop Sci. 2006;46:S3–S14. doi: 10.2135/cropsci2006.07.0489tpg. DOI

Kashkush K., Feldman M., Levy A.A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 2003;33:102–106. doi: 10.1038/ng1063. PubMed DOI

Nakagami H., Pitzschke A., Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 2005;10:339–346. doi: 10.1016/j.tplants.2005.05.009. PubMed DOI

Liu H., Wang X., Wang G., Cui P., Wu S., Ai C., Hu N., Li A., He B., Shao X., et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat. Plants. 2021;7:748–756. doi: 10.1038/s41477-021-00933-x. PubMed DOI

Hasing T., Tang H., Brym M., Khazi F., Huang T., Chambers A.H. A phased Vanilla planifolia genome enables genetic improvement of flavour and production. Nat. Food. 2020;1:811–819. doi: 10.1038/s43016-020-00197-2. PubMed DOI

Tian Y., Thrimawithana A., Ding T., Guo J., Gleave A., Chagne D., Ampomah-Dwamena C., Ireland H.S., Schaffer R.J., Luo Z., et al. Transposon insertions regulate genome-wide allele-specific expression and underpin flower colour variations in apple (Malus spp.) Plant Biotechnol. J. 2022;20:1285–1297. doi: 10.1111/pbi.13806. PubMed DOI PMC

Chen S., Zhou Y., Chen Y., Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Kim D., Langmead B., Salzberg S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Pertea M., Pertea G.M., Antonescu C.M., Chang T.-C., Mendell J.T., Salzberg S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC

Pertea M., Kim D., Pertea G.M., Leek J.T., Salzberg S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016;11:1650–1667. doi: 10.1038/nprot.2016.095. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Chinese Pharmacopoeia Commission. 2015. [(accessed on 15 September 2021)]. Available online: http://www.chp.org.cn.

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2013;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Zhou T., Yang X., Fu F., Wang G., Cao F. se1ection of suitab1e reference genes based on transcriptomic data in ginkgo bi1oba under different experimenta1 conditions. Forests. 2020;11:1217. doi: 10.3390/f11111217. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars

. 2023 Aug ; 10 (8) : uhad136. [epub] 20230711

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace