Multiple haploids, triploids, and tetraploids found in modern-day "living fossil" Ginkgo biloba
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30302259
PubMed Central
PMC6165845
DOI
10.1038/s41438-018-0055-9
PII: 55
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Ginkgo biloba, the last extant representative of a lineage of Mesozoic gymnosperms, is one of the few seed plants with an exceptionally long (~300 Myr) evolutionary history free of genome-wide duplications (polyploidy). Despite this genome conservatism, we have recently found a viable spontaneous tetraploid Ginkgo sapling during routine screening of several plants, demonstrating that natural polyploidy is possible in Ginkgo. Here we provide a much wider flow cytometry survey of ploidy in some European Ginkgo collections, and own seedlings (>2200 individuals and ~200 cultivars). We found a surprisingly high level of ploidy variation in modern-day Ginkgo and documented altogether 13 haploid, 3 triploid, and 10 tetraploid Ginkgo plants or cultivars, most of them being morphologically distinct from common diploids. Haploids frequently produced polyploid (dihaploid) buds or branches. Tetraploids showed some genome size variation. The surveyed plants provide a unique resource for future Ginkgo research and breeding, and they might be used to accelerate the modern diversification of this nearly extinct plant lineage.
Botanical Garden of Eötvös University Illés utca 25 Budapest Hungary
Department of Botany and Zoology Masaryk University Koltlářská 2 CZ 61137 Brno Czech Republic
Herrenkamper Gärten Herrenkamp 1 DE 27254 Siedenburg Germany
Zobrazit více v PubMed
Zhou Z. An overview of fossil Ginkgoales. Palaeoworld. 2009;18:1–22. doi: 10.1016/j.palwor.2009.01.001. DOI
Taylor, T. S., Taylor, E. L. & Krings, M. Paleobotany (Academic Press, Singapore, 2009).
Tralau H. The phytogeographic evolution of the genus Ginkgo L. Bot. Notiser. 1967;120:409–422.
Bego BMB. Nature's miracle. Ginkgo biloba L. 1771. 2011;1:2.
Crane, P. R. Ginkgo: The Tree that Time Forgot (Yale University Press, New Haven, CT, USA and London, UK, 2013).
Gong W, Chen C, Dobes C, Fu CX, Koch MA. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Mol. Phyl. Evol. 2008;48:1095–1105. doi: 10.1016/j.ympev.2008.05.003. PubMed DOI
Santamour FS, He S, McArdle AJ. Checklist of cultivated Ginkgo. J. Arboric. 1983;9:88–92.
Dieck, H. Ginkgo: Das Sortenbuch (Herrenkamper Gärten, Siedenburg, Germany, 2010).
Levin, D. A. The Role of Chromosomal Change in Plant Evolution (Oxford University Press, Oxford, UK, 2002).
Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131:452–462. doi: 10.1016/j.cell.2007.10.022. PubMed DOI
Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017;18:411–424. doi: 10.1038/nrg.2017.26. PubMed DOI
Fawcett JA, Maere S, Van de Peer Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. USA. 2009;106:5737–5742. doi: 10.1073/pnas.0900906106. PubMed DOI PMC
Soltis DE, et al. Polyploidy and angiosperm diversification. Am. J. Bot. 2009;96:336–348. doi: 10.3732/ajb.0800079. PubMed DOI
Vanneste K, Baele G, Maere S, Van de Peer Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Res. 2014;24:1334–1347. doi: 10.1101/gr.168997.113. PubMed DOI PMC
Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 2016;30:159–165. doi: 10.1016/j.pbi.2016.03.015. PubMed DOI
Sax K, Sax HJ. Chromosome number and morphology in conifers. J. Arnold Arbor. 1933;14:356–375. doi: 10.5962/bhl.part.9959. DOI
Khoshoo TN. Polyploidy in gymnosperms. Evolution. 1959;13:24–39. doi: 10.1111/j.1558-5646.1959.tb02991.x. DOI
Ahuja MR. Polyploidy in gymnosperms: revisited. Silvae Genet. 2005;54:59–69. doi: 10.1515/sg-2005-0010. DOI
Leitch AR, Leitch IJ. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 2012;194:629–646. doi: 10.1111/j.1469-8137.2012.04105.x. PubMed DOI
Husband, B. C., Baldwin, S. J. & Suda, J. in Plant Genome Diversity, Vol. 2. (eds Leitch, I. J., Greilhuber, J., Dolezel, J. & Wendel, J.) pp 255–276 (Springer, Vienna, Austria, 2013).
Li Z, et al. Early genome duplications in conifers and other seed plants. Sci. Adv. 2015;1:e1501084. doi: 10.1126/sciadv.1501084. PubMed DOI PMC
Roodt D, et al. Evidence for an ancient whole genome duplication in the cycad lineage. PLoS ONE. 2017;12:e0184454. doi: 10.1371/journal.pone.0184454. PubMed DOI PMC
Tulecke WR. A tissue derived from the pollen of Ginkgo biloba. Science. 1953;117:599–600. doi: 10.1126/science.117.3048.599. PubMed DOI
Trémouillaux-Guiller, J., Laurain, D. & Chénieux, J. C. in In Vitro Haploid Production in Higher Plants, Vol. 3. Important Selected Plants (eds Mohan, J., Sopory, S. K. & Veilleux, R. E.) 277–295 (Springer, Dordrecht, Neederlands, 1996).
Sun Y, et al. Effect of colchicine treatment on the microtubule cytoskeleton and total protein during microsporogenesis in Ginkgo biloba L. Pak. J. Bot. 2015;47:159–170.
Šmarda P, et al. Polyploidy in a “living fossil” Ginkgo biloba. New Phytol. 2016;212:11–14. doi: 10.1111/nph.14062. PubMed DOI
Ražná, K. & Hrubík, P. Ginkgo dvojlaločné (Ginkgo biloba L.)—genomická štúdia a kultúrne rozšírenie na Slovensku [Maidenhair tree (Ginkgo biloba L.)—Genomic Study and Cultural Distribution in Slovakia] (Slovenská poľnohospodárská univerzita v Nitre, Nitra, Slovakia, 2016).
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content estimation in plants. Physiol. Plant. 1992;85:625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x. DOI
Veselý P, Bureš P, Šmarda P, Pavlíček T. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann. Bot. 2012;109:65–75. doi: 10.1093/aob/mcr267. PubMed DOI PMC
Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 1990;33:105–110. doi: 10.1016/S0091-679X(08)60516-6. PubMed DOI
Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science. 1994;264:421–424. doi: 10.1126/science.264.5157.421. PubMed DOI
Hodgson JG, et al. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann. Bot. 2010;105:573–584. doi: 10.1093/aob/mcq011. PubMed DOI PMC
Zhao Y, Paule J, Fu C, Koch MA. Out of China: distribution history of Ginkgo biloba L. Taxon. 2010;59:495–504.
Cao, F. S. An Illustrated Monograph of Ginkgo biloba L. Cultivars in China (Science Press, Bejing, China, 2011).
Isakov YN, Butorina AK, Muraya LS. Discovery of spontaneous haploids in Pinus silvestris and the prospects of their using in forest genetics and selection. Genetika. 1981;17:701–707.
Andersen, S. B. in Haploids in Crop Improvement (eds Palmer, C. E., Keller, W. A. & Kasha, K. J.) pp 243–257 (Springer, Berlin, Heidelberg, Germany, 2005).
Dunwell JM. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 2010;8:377–424. doi: 10.1111/j.1467-7652.2009.00498.x. PubMed DOI
Chen, R. Y., Song, W. Q. & Li, X. L. in Proceedings of Sino-Japan Symposium on Plant Chromosome Research (ed Hong, D.) pp 381–386 (Organizing Committee of the Symposium, Bejing, China, 1989).
Lan T, et al. Microdissection and painting of the W chromosome in Ginkgo biloba showed different labelling patterns. Bot. Stud. 2008;49:33–37.
Coder, K. D. Selected Ginkgo Forms and Cultivars (University of Georgia, Georgia, USA, 2003).
Murovec, J. & Bohanec, B. in Plant Breeding (ed. Abdurakhmonov, I.) pp 87–106 (inTech, Rijeka, Croatia, 2012).
Kasha, K. J. in Haploids in Crop Improvement II (eds Palmer, C. E., Keller, W. A. & Kasha, K. J.) pp 123–152 (Springer, Heidelberg, Germany, 2005).
Kimber G, Riley R. Haploid angiosperms. Bot. Rev. 1963;29:480–531. doi: 10.1007/BF02860814. DOI
Cook MT. Polyembryony in Ginkgo. Bot. Gaz. 1903;36:142. doi: 10.1086/328386. DOI
Illies ZM. Auftreten haploider Keimlinge bei Picea abies. Naturwissenschaften. 1964;51:442. doi: 10.1007/BF00603294. DOI
Dwivedi SL, et al. Haploids: constraints and opportunities in plant breeding. Biotechnol. Adv. 2015;33:812–829. doi: 10.1016/j.biotechadv.2015.07.001. PubMed DOI
Neale DB, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15:1–13. doi: 10.1186/gb-2014-15-3-r59. PubMed DOI PMC
Harkess A, et al. The asparagus genome shed light on the origin and evolution of a young Y chromosome. Nat. Commun. 2017;18:1279. doi: 10.1038/s41467-017-01064-8. PubMed DOI PMC
Guan R, et al. Draft genome of the living fossil Ginkgo biloba. Gigascience. 2016;5:49. doi: 10.1186/s13742-016-0154-1. PubMed DOI PMC
Abraham A, Mathew PM. Cytology of Encephalartos hildebrandtii A. Br. et Bouche. Ann. Bot. 1966;30:239–241. doi: 10.1093/oxfordjournals.aob.a084071. DOI
Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann. Rev. Ecol. Syst. 1998;29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467. DOI
Johnsson H. Observations on induced polyploidy in some conifers. Silvae Genet. 1975;24:62–68.
Christiansen H. A tetraploid Larix decidua Miller. Det. K. Dan. Vidensk. Selsk. Biol. Medd. 1950;18:1–8.
Libby WJ, Stettler RF, Seitz FW. Forest genetics and forest tree breeding. Ann. Rev. Genet. 1969;3:469–494. doi: 10.1146/annurev.ge.03.120169.002345. DOI
Nagata T, Hasebe M, Toriba T, Taneda H, Crane PR. Sex conversion in Ginkgo biloba (Ginkgoaceae) J. Jpn. Bot. 2016;91(Suppl.):120–127.
Ming R, Bendahmane S, Renner SS. Sex chromosomes in land plants. Ann. Rev. Plant Biol. 2011;62:485–514. doi: 10.1146/annurev-arplant-042110-103914. PubMed DOI
Charlesworth D. Plant sex chromosome evolution. J. Exp. Bot. 2013;64:405–420. doi: 10.1093/jxb/ers322. PubMed DOI
Akagi T, Henry IM, Tao R, Comai L. A Y-chromosome-encoded small RNA acts as sex determinant in persimmons. Science. 2014;346:646–650. doi: 10.1126/science.1257225. PubMed DOI
Osborn TC, et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 2003;19:141–147. doi: 10.1016/S0168-9525(03)00015-5. PubMed DOI
Jackson S, Chen ZJ. Genomic and expression plasticity of polyploidy. Curr. Opin. Plant. Biol. 2010;13:153–159. doi: 10.1016/j.pbi.2009.11.004. PubMed DOI PMC
Westergaard M. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 1958;9:217–281. PubMed
Richards, A. J. Plant Breeding Systems (Chapman & Hall, London, UK, 1997).
Pannell JR, Obbard DJ, Buggs RJA. Polyploidy and the sexual system: what can we learn from Mercurialis annua. Biol. J. Linn. Soc. 2004;82:547–560. doi: 10.1111/j.1095-8312.2004.00340.x. DOI
Russell JRW, Pannell JR. Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives. Heredity. 2015;114:262–271. doi: 10.1038/hdy.2014.95. PubMed DOI PMC
Cavalier-Smith T. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. 2005;95:147–175. doi: 10.1093/aob/mci010. PubMed DOI PMC
Stebbins, G. L. Variation and Evolution of Plants (Columbia University Press, New York, USA, 1950).
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 2008;179:975–986. doi: 10.1111/j.1469-8137.2008.02528.x. PubMed DOI
Stebbins, G. L. Chromosomal Evolution in Higher Plants (Edward Arnold, London, UK, 1971).
Beaulieu JM, et al. Correlated evolution of genome size and seed mass. New Phytol. 2007;173:422–437. doi: 10.1111/j.1469-8137.2006.01919.x. PubMed DOI
Knight CA, Beaulieu JM. Genome size scaling through phenotype space. Ann. Bot. 2008;101:759–766. doi: 10.1093/aob/mcm321. PubMed DOI PMC
Lomax BH, Woodward FI, Leitch IJ, Knight CA, Lake JA. Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions. New Phytol. 2009;181:311–314. doi: 10.1111/j.1469-8137.2008.02700.x. PubMed DOI
McElwain JC, Steinthorsdottir M. Paleoecology, ploidy, paleoatmospheric composition, and developmental biology: a review of multiple uses of fossil stomata. Plant Physiol. 2017;174:650–664. doi: 10.1104/pp.17.00204. PubMed DOI PMC
Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars