Microstructure, Mechanical and Wear Behaviour of Deep Cryogenically Treated EN 52 Silchrome Valve Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36013621
PubMed Central
PMC9409960
DOI
10.3390/ma15165484
PII: ma15165484
Knihovny.cz E-zdroje
- Klíčová slova
- EN 52 Silchrome steel, deep cryogenic treatments, mechanical properties, wear surface morphology,
- Publikační typ
- časopisecké články MeSH
This study has compared the performance of cryogenically processed EN 52 Silchrome valve steel with untreated material. After completing the standard heat treatment process, EN 52 steel material specimens are subjected to a deep cryogenic process with varying soaking temperatures. The parameters of the deep cryogenic procedure were changed to find the best wear qualities. The key features of valve steel, such as microstructure, mechanical, and wear behaviour are evaluated by conducting a test study. The evolution of wear mechanisms after enhancing qualities of EN 52 steel is studied using scanning electron microscopy. The mechanical and wear behaviour improved due to factors such as fine carbide precipitation, conversion of residual austenite, and carbide refining formed after cryogenic treatment. With a maximum reduction in wear rate of up to 45%, the deep cryogenic treatment of EN 52 steel with a soaking temperature of -140 °C was the ideal parameter. All three cryo-treated samples had better properties than the untreated EN 52 valve steel.
Zobrazit více v PubMed
Molinari A., Pellizzari M., Gialanella S., Straffelini G., Stiasny K.H. Stiasny: Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 2001;118:350–355. doi: 10.1016/S0924-0136(01)00973-6. DOI
Zhang F., Yang Y., Shan Q., Li Z., Bi J., Zhou R. Microstructure evolution and mechanical properties of 0.4C-Si-Mn-Cr steel during high temperature deformation. Materials. 2020;13:172. doi: 10.3390/ma13010172. PubMed DOI PMC
Arockia Jaswin M., Mohan Lal D.M. Comprehensive analysis on the effect of deep cryogenic treatment on the mechanical behaviour of martensitic valve steel. Iran. J. Mater. Sci. Eng. 2018;15:9–16.
Vimal A.J., Bensely A., Lal D.M., Srinivasan K. Deep cryogenic treatment improves wear resistance of En 31 steel. Mater. Manuf. Process. 2008;23:369–376. doi: 10.1080/10426910801938098. DOI
Senthilkumar D., Rajendran I. Influence of shallow and deep cryogenic treatment on tribological behavior of En 19 steel. J. Iron Steel Res. Int. 2011;18:53–59. doi: 10.1016/S1006-706X(12)60034-X. DOI
Huang J.Y., Zhu Y.T., Liao X.Z., Beyerlein I.J., Bourke M.A., Mitchell T.E. Microstructure of cryogenic treated M2 tool steel. Mater. Sci. Eng. A. 2003;339:241–244. doi: 10.1016/S0921-5093(02)00165-X. DOI
Harish S., Bensely A., Lal D.M., Rajadurai A., Lenkey G.B. Microstructural study of cryogenically treated En 31 bearing steel. J. Mater. Process. Technol. 2009;209:3351–3357. doi: 10.1016/j.jmatprotec.2008.07.046. DOI
Jaswin M.A., Lal D.M., Rajadurai A. Effect of cryogenic treatment on the microstructure and wear resistance of X45Cr9Si3 and X53Cr22Mn9Ni4N valve steels. Tribol. Trans. 2011;54:341–350. doi: 10.1080/10402004.2010.546033. DOI
Özden R.C., Anik M.U.S.T.A.F.A. Enhancement of the mechanical properties of EN52CrMoV4 spring steel by deep cryogenic treatment. Mater. Und Werkst. 2020;51:422–431. doi: 10.1002/mawe.201900122. DOI
Razavykia A., Delprete C., Baldissera P. Correlation between microstructural alteration, mechanical properties and manufacturability after cryogenic treatment: A review. Materials. 2019;12:3302. doi: 10.3390/ma12203302. PubMed DOI PMC
Das D., Dutta A.K., Ray K.K. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel. Cryogenics. 2009;49:176–184. doi: 10.1016/j.cryogenics.2009.01.002. DOI
Sun X., Zhang M., Wang Y., Jiang Y., Song Y., Ge N. Effect of deep cryogenic pretreatment on microstructure and mechanical properties of warm-deformed 7 Mn steel after intercritical annealing. Mater. Sci. Eng. A. 2019;764:138202. doi: 10.1016/j.msea.2019.138202. DOI
Çiçek A., Kara F., Kıvak T., Ekici E., Uygur I. Effects of deep cryogenic treatment on the wear resistance and mechanical properties of AISI H13 hot-work tool steel. J. Mater. Eng. Perform. 2015;24:4431–4439. doi: 10.1007/s11665-015-1712-x. DOI
Sugavaneswaran M., Kulkarni A. Effect of cryogenic treatment on the wear behavior of additive manufactured 316L stainless steel. Tribol. Ind. 2019;41:33. doi: 10.24874/ti.2019.41.01.04. DOI
Vahdat S.E., Nategh S., Mirdamadi S. Effect of microstructure parameters on tensile toughness of tool steel after deep cryogenic treatment. Int. J. Precis. Eng. Manuf. 2014;15:497–502. doi: 10.1007/s12541-014-0363-4. DOI
Kumar S., Nagraj M., Bongale A., Khedkar N. Deep cryogenic treatment of AISI M2 tool steel and optimisation of its wear characteristics using Taguchi‘s approach. Arab. J. Sci. Eng. 2018;43:4917–4929. doi: 10.1007/s13369-018-3242-y. DOI
Kaya E., Ulutan M. Tribological and mechanical properties of deep cryogenically treated medium carbon micro alloy steel. Met. Mater. Int. 2017;23:691–698. doi: 10.1007/s12540-017-6715-8. DOI
Amini K., Safari M., Shafyei A. Investigation of hardness and wear behaviour of the deep cryogenic treated 1.3255 tool steel. J. Balk. Tribol. Assoc. 2016;22:294–303.
Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of the deep cryogenic heat treatment on the corrosion behavior of the 1.2080 tool steel. Kov. Mater. 2016;54:331–338. doi: 10.4149/km_2016_5_331. DOI
Kandeva M., Kalitchin Z., Stoyanova Y. Influence of Chromium Concentration on the Abrasive Wear of Ni-Cr-B-Si Coatings Applied by Supersonic Flame Jet (HVOF) Metals. 2021;11:915. doi: 10.3390/met11060915. DOI
Jaswin M.A., Lal D.M. Effect of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures. Mater. Des. 2011;32:2429–2437. doi: 10.1016/j.matdes.2010.11.065. DOI
Sheng S., Zhou H., Wang X., Qiao Y., Yuan H., Chen J., Yang L., Wang D., Liu Z., Zou J. Friction and Wear Behaviors of Fe-19Cr-15Mn-0.66 N Steel at High Temperature. Coatings. 2021;11:1285. doi: 10.3390/coatings11111285. DOI
Lai F., Qu S., Qin H., Lewis R., Slatter T., Li X., Luo H. A comparison of wear behaviour of heat-resistant steel engine valves and TiAl engine valves. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020;234:1549–1562. doi: 10.1177/1350650119872093. DOI
Lewis R., Dwyer-Joyce R.S. Wear of diesel engine inlet valves and seat inserts. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2002;216:205–216. doi: 10.1243/0954407021529048. DOI
Cavalieri F.J., Zenklusen F., Cardona A. Determination of wear in internal combustion engine valves using the finite element method and experimental tests. Mech. Mach. Theory. 2016;104:81–99. doi: 10.1016/j.mechmachtheory.2016.05.017. DOI
Saran Raj I., Ganesan S. Process parameter analysis of deep cryogenic treated EN 52 Silicon chromium valve steel through Taguchi technique. Mater. Manuf. Process. 2022:1–7. doi: 10.1080/10426914.2022.2065003. DOI
Chaudhari R., Ingle A., Kalita K. Experimental Investigation of Correlation of Grain Size and Mechanical Properties in 304 Stainless Steel. Mater. Focus. 2016;5:440–445. doi: 10.1166/mat.2016.1334. DOI
Chaudhari R., Ingle A., Kalita K. Tribological investigation of effect of grain size in 304 austenitic stainless steel. Trans. Indian Inst. Met. 2017;70:2399–2405. doi: 10.1007/s12666-017-1101-2. DOI
Ghadai R.K., Kalita K., Mondal S.C., Swain B.P. PECVD process parameter optimization: Towards increased hardness of diamond-like carbon thin films. Mater. Manuf. Process. 2018;33:1905–1913. doi: 10.1080/10426914.2018.1512114. DOI
Tibadia R., Patwardhan K., Shah D., Shinde D., Chaudhari R., Kalita K. Experimental investigation on hole quality in drilling of composite pipes. Trans. Can. Soc. Mech. Eng. 2018;42:147–155. doi: 10.1139/tcsme-2017-0045. DOI
Ootani T., Yahata N., Fujiki A., Ehira A. Impact wear characteristics of engine valve and valve seat insert materials at high temperature (impact wear tests of austenitic heat-resistant steel SUH36 against Fe-base sintered alloy using plane specimens) Wear. 1995;188:175184. doi: 10.1016/0043-1648(95)06656-X. DOI