Microstructure, Mechanical and Wear Behaviour of Deep Cryogenically Treated EN 52 Silchrome Valve Steel

. 2022 Aug 10 ; 15 (16) : . [epub] 20220810

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36013621

This study has compared the performance of cryogenically processed EN 52 Silchrome valve steel with untreated material. After completing the standard heat treatment process, EN 52 steel material specimens are subjected to a deep cryogenic process with varying soaking temperatures. The parameters of the deep cryogenic procedure were changed to find the best wear qualities. The key features of valve steel, such as microstructure, mechanical, and wear behaviour are evaluated by conducting a test study. The evolution of wear mechanisms after enhancing qualities of EN 52 steel is studied using scanning electron microscopy. The mechanical and wear behaviour improved due to factors such as fine carbide precipitation, conversion of residual austenite, and carbide refining formed after cryogenic treatment. With a maximum reduction in wear rate of up to 45%, the deep cryogenic treatment of EN 52 steel with a soaking temperature of -140 °C was the ideal parameter. All three cryo-treated samples had better properties than the untreated EN 52 valve steel.

Zobrazit více v PubMed

Molinari A., Pellizzari M., Gialanella S., Straffelini G., Stiasny K.H. Stiasny: Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 2001;118:350–355. doi: 10.1016/S0924-0136(01)00973-6. DOI

Zhang F., Yang Y., Shan Q., Li Z., Bi J., Zhou R. Microstructure evolution and mechanical properties of 0.4C-Si-Mn-Cr steel during high temperature deformation. Materials. 2020;13:172. doi: 10.3390/ma13010172. PubMed DOI PMC

Arockia Jaswin M., Mohan Lal D.M. Comprehensive analysis on the effect of deep cryogenic treatment on the mechanical behaviour of martensitic valve steel. Iran. J. Mater. Sci. Eng. 2018;15:9–16.

Vimal A.J., Bensely A., Lal D.M., Srinivasan K. Deep cryogenic treatment improves wear resistance of En 31 steel. Mater. Manuf. Process. 2008;23:369–376. doi: 10.1080/10426910801938098. DOI

Senthilkumar D., Rajendran I. Influence of shallow and deep cryogenic treatment on tribological behavior of En 19 steel. J. Iron Steel Res. Int. 2011;18:53–59. doi: 10.1016/S1006-706X(12)60034-X. DOI

Huang J.Y., Zhu Y.T., Liao X.Z., Beyerlein I.J., Bourke M.A., Mitchell T.E. Microstructure of cryogenic treated M2 tool steel. Mater. Sci. Eng. A. 2003;339:241–244. doi: 10.1016/S0921-5093(02)00165-X. DOI

Harish S., Bensely A., Lal D.M., Rajadurai A., Lenkey G.B. Microstructural study of cryogenically treated En 31 bearing steel. J. Mater. Process. Technol. 2009;209:3351–3357. doi: 10.1016/j.jmatprotec.2008.07.046. DOI

Jaswin M.A., Lal D.M., Rajadurai A. Effect of cryogenic treatment on the microstructure and wear resistance of X45Cr9Si3 and X53Cr22Mn9Ni4N valve steels. Tribol. Trans. 2011;54:341–350. doi: 10.1080/10402004.2010.546033. DOI

Özden R.C., Anik M.U.S.T.A.F.A. Enhancement of the mechanical properties of EN52CrMoV4 spring steel by deep cryogenic treatment. Mater. Und Werkst. 2020;51:422–431. doi: 10.1002/mawe.201900122. DOI

Razavykia A., Delprete C., Baldissera P. Correlation between microstructural alteration, mechanical properties and manufacturability after cryogenic treatment: A review. Materials. 2019;12:3302. doi: 10.3390/ma12203302. PubMed DOI PMC

Das D., Dutta A.K., Ray K.K. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel. Cryogenics. 2009;49:176–184. doi: 10.1016/j.cryogenics.2009.01.002. DOI

Sun X., Zhang M., Wang Y., Jiang Y., Song Y., Ge N. Effect of deep cryogenic pretreatment on microstructure and mechanical properties of warm-deformed 7 Mn steel after intercritical annealing. Mater. Sci. Eng. A. 2019;764:138202. doi: 10.1016/j.msea.2019.138202. DOI

Çiçek A., Kara F., Kıvak T., Ekici E., Uygur I. Effects of deep cryogenic treatment on the wear resistance and mechanical properties of AISI H13 hot-work tool steel. J. Mater. Eng. Perform. 2015;24:4431–4439. doi: 10.1007/s11665-015-1712-x. DOI

Sugavaneswaran M., Kulkarni A. Effect of cryogenic treatment on the wear behavior of additive manufactured 316L stainless steel. Tribol. Ind. 2019;41:33. doi: 10.24874/ti.2019.41.01.04. DOI

Vahdat S.E., Nategh S., Mirdamadi S. Effect of microstructure parameters on tensile toughness of tool steel after deep cryogenic treatment. Int. J. Precis. Eng. Manuf. 2014;15:497–502. doi: 10.1007/s12541-014-0363-4. DOI

Kumar S., Nagraj M., Bongale A., Khedkar N. Deep cryogenic treatment of AISI M2 tool steel and optimisation of its wear characteristics using Taguchi‘s approach. Arab. J. Sci. Eng. 2018;43:4917–4929. doi: 10.1007/s13369-018-3242-y. DOI

Kaya E., Ulutan M. Tribological and mechanical properties of deep cryogenically treated medium carbon micro alloy steel. Met. Mater. Int. 2017;23:691–698. doi: 10.1007/s12540-017-6715-8. DOI

Amini K., Safari M., Shafyei A. Investigation of hardness and wear behaviour of the deep cryogenic treated 1.3255 tool steel. J. Balk. Tribol. Assoc. 2016;22:294–303.

Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of the deep cryogenic heat treatment on the corrosion behavior of the 1.2080 tool steel. Kov. Mater. 2016;54:331–338. doi: 10.4149/km_2016_5_331. DOI

Kandeva M., Kalitchin Z., Stoyanova Y. Influence of Chromium Concentration on the Abrasive Wear of Ni-Cr-B-Si Coatings Applied by Supersonic Flame Jet (HVOF) Metals. 2021;11:915. doi: 10.3390/met11060915. DOI

Jaswin M.A., Lal D.M. Effect of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures. Mater. Des. 2011;32:2429–2437. doi: 10.1016/j.matdes.2010.11.065. DOI

Sheng S., Zhou H., Wang X., Qiao Y., Yuan H., Chen J., Yang L., Wang D., Liu Z., Zou J. Friction and Wear Behaviors of Fe-19Cr-15Mn-0.66 N Steel at High Temperature. Coatings. 2021;11:1285. doi: 10.3390/coatings11111285. DOI

Lai F., Qu S., Qin H., Lewis R., Slatter T., Li X., Luo H. A comparison of wear behaviour of heat-resistant steel engine valves and TiAl engine valves. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020;234:1549–1562. doi: 10.1177/1350650119872093. DOI

Lewis R., Dwyer-Joyce R.S. Wear of diesel engine inlet valves and seat inserts. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2002;216:205–216. doi: 10.1243/0954407021529048. DOI

Cavalieri F.J., Zenklusen F., Cardona A. Determination of wear in internal combustion engine valves using the finite element method and experimental tests. Mech. Mach. Theory. 2016;104:81–99. doi: 10.1016/j.mechmachtheory.2016.05.017. DOI

Saran Raj I., Ganesan S. Process parameter analysis of deep cryogenic treated EN 52 Silicon chromium valve steel through Taguchi technique. Mater. Manuf. Process. 2022:1–7. doi: 10.1080/10426914.2022.2065003. DOI

Chaudhari R., Ingle A., Kalita K. Experimental Investigation of Correlation of Grain Size and Mechanical Properties in 304 Stainless Steel. Mater. Focus. 2016;5:440–445. doi: 10.1166/mat.2016.1334. DOI

Chaudhari R., Ingle A., Kalita K. Tribological investigation of effect of grain size in 304 austenitic stainless steel. Trans. Indian Inst. Met. 2017;70:2399–2405. doi: 10.1007/s12666-017-1101-2. DOI

Ghadai R.K., Kalita K., Mondal S.C., Swain B.P. PECVD process parameter optimization: Towards increased hardness of diamond-like carbon thin films. Mater. Manuf. Process. 2018;33:1905–1913. doi: 10.1080/10426914.2018.1512114. DOI

Tibadia R., Patwardhan K., Shah D., Shinde D., Chaudhari R., Kalita K. Experimental investigation on hole quality in drilling of composite pipes. Trans. Can. Soc. Mech. Eng. 2018;42:147–155. doi: 10.1139/tcsme-2017-0045. DOI

Ootani T., Yahata N., Fujiki A., Ehira A. Impact wear characteristics of engine valve and valve seat insert materials at high temperature (impact wear tests of austenitic heat-resistant steel SUH36 against Fe-base sintered alloy using plane specimens) Wear. 1995;188:175184. doi: 10.1016/0043-1648(95)06656-X. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...