Assessment of Microstructural Features of a Silchrome 1 Exhaust Valve of a Harley-Davidson WLA World War II Motorcycle
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_FCHT_2023_009, A2_FCHT_2023_035
UCT Prague
PubMed
39203334
PubMed Central
PMC11356271
DOI
10.3390/ma17164156
PII: ma17164156
Knihovny.cz E-zdroje
- Klíčová slova
- EN 52 steel, X45CrSi9-3, combustion engine, forensic metallurgy, heat resistant steel, heat treatment, historical metallurgy, poppet valve, silchrome, silchrome 1,
- Publikační typ
- časopisecké články MeSH
The paper aims at documenting the material employed in 1942 for the fabrication of an exhaust valve for a Harley-Davidson WLA/WLC motorcycle and assesses the material features with modern steel standard specifications and treatment. Facing properties of the original historical parts of technical heritage objects according to modern standards is a rare discipline, as these objects are nowadays in collections of museums or private collectors and experimental instrumental analyses are strictly forbidden. In this case, a preserved accessible unused surplus replacement kit was studied. The microstructure was assessed by light optical and scanning electron microscopy, electron probe micro-analysis and by heat treatment-hardness correlation. It was found that the valve was made of Silchrome 1 steel in coherence with the X45CrSi9-3 steel modern material standard, but with a slightly higher content of phosphorus and sulfur. Microscopic observations and hardness profile testing suggested a tempered martensitic structure (sorbite) with very fine grains uniformly distributed in the valve and an even heat treatment. Heat treatment-hardness experimentation demonstrated that the original heat treatment cannot be achieved by the modern standard procedure. The tempering temperature was surprisingly deduced to be lower than the recommended one according to the modern standard, which contrasts with the service temperature indicated in the contemporary motorcycle mechanics handbook.
Zobrazit více v PubMed
Firmansyah D., Irawan M., Amrozi M., Maitra M., Rahman T., Widiastuti N. A bibliometric analysis of motorcycle studies in Asia: From 1971 to 2022. IATSS Res. 2024;48:68–83. doi: 10.1016/j.iatssr.2024.01.005. DOI
Sun Z., Hong J., Zhang T., Sun B., Yang B., Lu L., Li L., Wu K. Hydrogen engine operation strategies: Recent progress, industrialization challenges, and perspectives. Int. J. Hydrogen Energy. 2023;48:366–392. doi: 10.1016/j.ijhydene.2022.09.256. DOI
Wróbel K., Wróbel J., Tokarz W., Lach J., Podsadni K., Czerwinski A. Hydrogen Internal Combustion Engine Vehicles: A Review. Energies. 2022;15:8937. doi: 10.3390/en15238937. DOI
Johnson V.A., Galen C.W. Diesel Exhaust Valves. [(accessed on 1 May 2024)];SAE Trans. 1967 75:171–179. Available online: http://www.jstor.org/stable/44563630.
Badami M., Marino B. Fatigue tests of un-HIP’ed γ-TiAl engine valves for motorcycles. Int. J. Fatigue. 2006;28:722–732. doi: 10.1016/j.ijfatigue.2005.09.004. DOI
Hawryluk M., Lachowicz M., Zwierzchowski M., Janik M., Gronostajski Z., Filipiak J. Influence of the grade of hot work tool steels and its microstructural features on the durability of punches used in the closed die precision forging of valve forgings made of nickel-chrome steel. Wear. 2023;204963:528–529. doi: 10.1016/j.wear.2023.204963. DOI
Voorwald H., Coisse R., Cioffi M. Fatigue Strength of X45CrSi93 stainless steel applied as internal combustion engine valves. Procedia Eng. 2011;10:1256–1261. doi: 10.1016/j.proeng.2011.04.209. DOI
Li J., Dongping Z., Jiang Z., Zhang H., Yang Y., Zhang Y. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review. J. Mat. Res. Tech. 2023;23:172–190. doi: 10.1016/j.jmrt.2022.12.177. DOI
Heat-Treatable Steels, Alloy Steels and Free-Cutting Steels, Part 15: Valve Steels for Internal Combustion Engines. International Organization for Standardization; Geneva, Switzerland: 1992.
Armstrong B., Tweedale J. Percy Armstrong (1883–1949): A transatlantic pioneer of alloy steels. Hist. Metall. 1993;27:19–24.
Petsov G.G. Thermomechanical hardening of Silchrome steels. Met. Sci. Heat Treat. 1977;19:111–113. doi: 10.1007/BF00703152. DOI
Starr F. Design and Development of Exhaust Valves for Internal Combustion Engines from the perspective of Modern Thinking: Part 2 1930-90. Int. J. Hist. Eng. Technol. 2014;84:1–29. doi: 10.1179/1758120613Z.00000000030. DOI
International Standards of Valve Steels. Engine Valve Steels. 2014. [(accessed on 3 February 2022)]. Available online: https://www.starwire.in/wp-content/uploads/2023/09/Enginevalvesteel.pdf.
Pierce D., Haynes A., Hughes J., Graves R., Maziasz P., Muralidharan G., Shyam A., Wang B., England R., Daniel C. High temperature materials for heavy duty diesel engines: Historical and future trends. Prog. Mater. Sci. 2019;103:109–179. doi: 10.1016/j.pmatsci.2018.10.004. DOI
Azadi M., Roozban M., Mafi A. Failure analysis of an intake valve in a gasoline engine. J. Engine Res. 2012;26:03–09.
Kuge H. On the Corrosibility and Passivity Formation of Silchrome Steel of various Microstructures. J. Jpn. Inst. Met. 1942;6:12–15. doi: 10.2320/jinstmet1937.6.12. DOI
Nishigori S. On the Cause of Brittleness of Silchrome Steels. Tetsu-to-Hagane. 1934;20:91–99. doi: 10.2355/tetsutohagane1915.20.2_91. PubMed DOI
Yamanaka N., Sato K. Several researches into Silchrome steel (1st. report) Investigation of the sectional diagram of the Fe-C-Cr-Si series. Tetsu-to-Hagane. 1942;28:757–773. doi: 10.2355/tetsutohagane1915.28.7_757. DOI
Saranraj I., Ganesan S., Čepová L., Elangovan M., Beránek L. Microstructure, Mechanical and Wear Behaviour of Deep Cryogenically Treated EN 52 Silchrome Valve Steel. Materials. 2022;15:5484. doi: 10.3390/ma15165484. PubMed DOI PMC
Wu Y., Zhang M., Xu X. Investigations on hot deformation behaviors and abnormal variation mechanisms of flow stress at elevated temperature for X45CrSi93 valve steel. Mater. Res. Soc. 2015;30:1715–1726. doi: 10.1557/jmr.2015.98. DOI
Mascarenhas L., Gomes J., Portela A., Nogueira T., Barbosa C. Analysis of martensitic valve steel SAE HNV-3 SIL1 (0.45C, 8.5Cr, 3.2Si) for application in automotive valves, tested in an experimental workbench at high temperatures; Proceedings of the 8° Congresso Brasileiro de Engenharia de Fabricação; Salvador, Bahia, Brasil. 18–22 May 2015.
Frye J. Metallurgy of Foreign Automotive Matériel. [(accessed on 1 May 2024)];SAE Trans. 1945 53:450–479. Available online: https://www.jstor.org/stable/44467804.
Banks F.R. Valve and Valve-Seat Technique for Automobile and AeroEngines. Proc. Inst. Automob. Eng. 1938;33:334–394. doi: 10.1243/PIAE_PROC_1938_033_023_02. Pictures taken from Colwell, A.T. presentation, Proceedings of the S.A.E. Meeting, Indianapolis, IN, USA, 9 February 1939. DOI
Valve Steels and Alloys for Internal Combustion Engines. European Committee for Standardization; Brussels, Belgium: 1998.
Valve Materials. German Institute for Standardisation; Berlin, Germany: 2013.
Quan G.-Z., Zou Z.-Y., Zhang Z.-H., Pan J. A Study on Formation Process of Secondary Upsetting Defect in Electric Upsetting and Optimization of Processing Parameters Based on Multi-Field Coupling FEM. Mat. Res. 2016;19:856–864. doi: 10.1590/1980-5373-MR-2015-0678. DOI
Lopes Silva D., Augusto de Oliveira J., Padovezi Filleti R., Gomes de Oliveira J., Jannone da Silva E., Ometto A. Life Cycle Assessment in automotive sector: A case study for engine valves towards cleaner production. J. Clean. Prod. 2018;184:286–300. doi: 10.1016/j.jclepro.2018.02.252. DOI
Jeong H., Cho J., Lee N., Park H. Simulation of Electric Upsetting and Forging Process for Large Marine Diesel Engine Exhaust Valves. Mater. Sci. Forum. 2006;510–511:142–145. doi: 10.4028/www.scientific.net/MSF.510-511.142. DOI
Forge Technology, Inc.; Woodstock IL 60098 USA Electric Upsetting. [(accessed on 28 April 2024)]. Available online: https://forgetechnology.com/qform-simulation-software/processes-simulated-with-qform/electric-upsetting/
Vander Voort G. Metallography and Microstructures ASM Handbook. 1st ed. ASM International; Materials Park, OH, USA: 2004. pp. 4, 61, 63, 625, 675, 826.
Homer Research Laboratories, Bethlehem Steel Corp Metallographic Reagents for Iron and Steel. Met. Prog. 1974;106:201–209.
Kemet International Ltd. Metallographic Etchants for Stainless Steel. Etching in Metallography. 2016. [(accessed on 13 June 2024)]. Available online: https://www.kemet.co.uk/blog/metallography/etching-in-metallography.
Small K., Englehart D., Christman T. Guide to Etching Specialty Alloys. Adv. Mater. Process. 2008;1:33–35.
Zipperian D. Metallographic Handbook. 1st ed. PACE Technologies; Tuscon, AZ, USA: 2011.
Lejček P., Novák P. Fyzika Kovů; Vysoká Škola Chemicko-Technologická v Praze, Fakulta Chemické Technologie. Ústav kovových materiálů a korozního inženýrství; Praha, Czech Republic: 2008.
Borrajo-Pelaez R., Hedström P. Recent Developments of Crystallographic Analysis Methods in the Scanning Electron Microscope for Applications in Metallurgy, Critical Reviews. Solid State Mater. Sci. 2018;43:455–474. doi: 10.1080/10408436.2017.1370576. DOI
Metallic Materials—Vickers Hardness Test—Part 1: Test Method. International Organization for Standardization; Geneva, Switzerland: 2018.
Liu W., Wang X., Guo F., Shang C. Carbides Dissolution in 5Cr15MoV Martensitic Stainless Steel and New Insights into Its Effect on Microstructure and Hardness. Materials. 2022;15:8742. doi: 10.3390/ma15248742. PubMed DOI PMC
Machek V., Sodomka J. Struktury Kovových Materiálů: Nauka o Materiálu—1. Část. 1st ed. České vysoké učení technické v Praze, Fakulta dopravní; Praha, Czech Republic: 2006.
Osin V. Tribotechnical properties of deposited metal of 50Kh9S3G type with increased sulphur content. Paton Weld. J. 2014;12:8–10. doi: 10.15407/tpwj2014.12.02. DOI
Jaswin M.A., Lal D.M., Rajadurai A. Effect of Cryogenic Treatment on the Microstructure and Wear Resistance of X45Cr9Si3 and X53Cr22Mn9Ni4N Valve Steels. Tribol. Trans. 2011;54:341–350. doi: 10.1080/10402004.2010.546033. DOI
Motorcycle Mechanics Handbook: Representative Temperatures (WLA Engine) The Armored School, Motorcycle Department; Fort Knox, Kentucky: 1943.