Computational Modeling of Polymer Matrix Based Textile Composites
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36015558
PubMed Central
PMC9415990
DOI
10.3390/polym14163301
PII: polym14163301
Knihovny.cz E-resources
- Keywords
- Leonov model, Mori–Tanaka method, basalt fibers, multiscale computational homogenization, polymer matrix, woven composite,
- Publication type
- Journal Article MeSH
A simple approach to the multiscale analysis of a plain weave reinforced composite made of basalt fabrics bonded to a high performance epoxy resin L285 Havel is presented. This requires a thorough experimental program to be performed at the level of individual constituents as well as formulation of an efficient and reliable computational scheme. The rate-dependent behavior of the polymer matrix is examined first providing sufficient data needed in the calibration step of the generalized Leonov model, which in turn is adopted in numerical simulations. Missing elastic properties of basalt fibers are derived next using nanoindentation. A series of numerical tests is carried out at the level of yarns to promote the ability of a suitably modified Mori-Tanaka micromechanical model to accurately describe the nonlinear viscoelastic response of unidirectional fibrous composites. The efficiency of the Mori-Tanaka method is then exploited in the formulation of a coupled two scale computational scheme, while at the level of textile ply the finite element computational homogenization is assumed, the two-point averaging format of the Mori-Tanaka method is applied at the level of yarn to serve as a stress updater in place of another finite element model representing the yarn microstructure as typical of FE2 based multiscale approach. Several numerical simulations are presented to support the proposed modeling methodology.
Departamento de Matemática Aplicada 1 University of Seville 41012 Seville Spain
High Technical School of Architecture University of Seville 41012 Seville Spain
See more in PubMed
Molnár J. Master’s Thesis (in Czech) Technical University of Liberec, Faculty of Textile Engineering; Liberec, Czech Republic: 2017. Influence of the weave structure on the fabric comfort properties.
Long A. Design and Manufacture of Textile Composites. Woodhead Publishing Series in Textiles; Cambridge, UK: 2005.
Novotná J. Ph.D. Thesis. Technical University of Liberec, Faculty of Textile Engineering, TUL; Liberec, Czech Republic: 2021. Dielektrické Vlastnosti Epoxidových Kompozitu Plněných Recyklovanými Uhlíkovými Vlákny.
Tomková B., Novotná J., Pechočiaková M. Limits of carbon micro/nano particles utilization to improve properties of polymer matrices in fibre reinforced composites. IOP Conf. Ser. Mater. Sci. Eng. 2018;459:012024. doi: 10.1088/1757-899X/459/1/012024. DOI
Lopresto V., Leone C., De Iorio I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011;42:717–723. doi: 10.1016/j.compositesb.2011.01.030. DOI
Chairman C.A., Kumaresh Babu S.P. Mechanical and abrasive wear behavior of glass and basalt fabric-reinforced epoxy composites. J. Appl. Polym. Sci. 2013;130:120–130. doi: 10.1002/app.39154. DOI
Dorigato A., Pegoretti A. Fatigue resistance of basalt fibers-reinforced laminates. J. Compos. Mater. 2012;46:1773–1785. doi: 10.1177/0021998311425620. DOI
Černý M., Glogar P., Goliáš V., Hruška J., Jakeš P., Sucharda Z., Vávrová I. Comparison of mechanical properties and structural changes of continuous basalt and glass fibres at elevated temperatures. Ceram.-Silik. 2007;51:82–88.
Černý M., Glogar P., Sucharda Z., Chlup Z., Kotek J. Partially pyrolyzed composites with basalt fibres–Mechanical properties at laboratory and elevated temperatures. Compos. Part A Appl. Sci. Manuf. 2009;40:1650–1659. doi: 10.1016/j.compositesa.2009.08.002. DOI
Veselý P., Bezkočka K. Pojiva na bázi polysiloxanu pro tepelně odolné nátěrové hmoty (Binders Based on Polysiloxane for Heat-Resistant Paint Matters) In: Kalendová A., editor. Proceedings of the 39th International Conference on Coatings Technology. University of Pardubice, Faculty of Chemical Technology, Faculty of Chemical Technology; Pardubice, Czech Republic: 2008.
Valentová S. Ph.D. Thesis. Czech Technical University in Prague; Prague, Czech Republic: 2022. Modeling of Carbon and Basalt Plain Weave Textile Composites.
Kouznetsova V., Geers M.G.D., Brekelmans W.A.M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 2002;54:1235–1260. doi: 10.1002/nme.541. DOI
Michel J.C., Moulinec H., Suquet P. Effective properties of composite materials with periodic microstructure: A computational approach. Comput. Methods Appl. Mech. Eng. 1999;172:109–143. doi: 10.1016/S0045-7825(98)00227-8. DOI
Šejnoha M., Zeman J. Micromechanics in Practice. WIT Press; Southampton, UK: 2013.
Dvorak G. Micromechanics of Composite Materials. Springer; Berlin/Heidelberg, Germany: 2013.
Mori T., Tanaka K. Average stress in matrix and average elastic energy of elastic materials with misfitting inclusions. Acta Metall. 1973;21:571. doi: 10.1016/0001-6160(73)90064-3. DOI
Benveniste Y. A new approach to the application of Mori-Tanaka theory in composite materials. Mech. Mater. 1987;6:147–157. doi: 10.1016/0167-6636(87)90005-6. DOI
Matouš K. Damage evolution in particulate composite materials. Int. J. Solids Struct. 2003;40:1489–1503. doi: 10.1016/S0020-7683(02)00669-8. DOI
Filho V., Ferrário C.A., Cavalcante M.A.A. Elastoplastic Analysis of Perforated Metal Sheets using Transformation Field Analysis and Finite Element Method. Lat. Am. J. Solids Struct. 2021;18:e391. doi: 10.1590/1679-78256650. DOI
Vorel J., Šmilauer V., Bittnar Z. Multiscale simulations of concrete mechanical tests. J. Comput. Appl. Math. 2012;236:4882–4892. doi: 10.1016/j.cam.2012.01.009. DOI
Dvorak G.J., Benveniste Y. On transformation strains and uniform fields in multiphase elastic media. Proc. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 1992;437:291–310.
Fiore V., Scalici T., Di Bella G., Valenza A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015;74:74–94. doi: 10.1016/j.compositesb.2014.12.034. DOI
Vorel J., Grippon E., Šejnoha M. Effective thermoelastic properties of polysiloxane matrix based plain weave textile composites. Int. J. Multiscale Comput. Eng. 2015;13:181–200. doi: 10.1615/IntJMultCompEng.2014011020. DOI
Technical Information for EPIKOTE Resin MGS LR285. [(accessed on 16 May 2017)]. Available online: www.swiss-composite.ch/pdf/t-Epoxyd-Harz-L-285-LF-e.pdf.
Havel Composites CZ s.r.o. Czech Republic [(accessed on 1 April 2022)]. Available online: http://www.havel-composites.com.
Zeman J., Šejnoha M. From random microstructures to representative volume elements. Model. Simul. Mater. Sci. Eng. 2007;15:S325–S335. doi: 10.1088/0965-0393/15/4/S01. DOI
Šejnoha M., Zeman J. Micromechanical modeling of imperfect textile composites. Int. J. Eng. Sci. 2008;46:513–526. doi: 10.1016/j.ijengsci.2008.01.006. DOI
Vorel J., Šejnoha M. Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori–Tanaka method. Struct. Eng. Mech. 2009;33:429–446. doi: 10.12989/sem.2009.33.4.429. DOI
Teplý J.L., Dvorak G.J. Bound on overall instantaneous properties of elastic-plastic composites. J. Mech. Phys. Solids. 1988;36:29–58. doi: 10.1016/0022-5096(88)90019-1. DOI
Hertz H. On the Contact of Rigid Elastic Solids, (Original: Über die Berührung fester elastischer Körper), Chapter 6. Misc. Pap. 1882 doi: 10.1515/crll.1882.92.156. DOI
Oliver W., Phar G. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Valenta R., Šejnoha M. Epoxy Resin as a Bonding Agent in Polymer Matrix Composites: Materiál Properties and Numerical Implementation; Proceedings of the 2004 International Conference on Computational Experimental Engineering Science Madeira; Madeira, Portugal. 26–29 July 2004; pp. 2141–2146.
Tervoort T.A. Ph.D. Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: 1996. Constitutive Modeling of Polymer Glasses: Finite, Nonlinear Visocelastic Behaviour of Polycarbonate.
Valenta R. Ph.D. Thesis. Czech Technical University in Prague, Faculty of Civil Engineering; Prague, Czech Republic: 2011. Micromechanical Modeling of Asphalt Mixtures.
Leonov A.I. Non-equilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta. 1976;15:85–98. doi: 10.1007/BF01517499. DOI
Valenta R. Mater’s Thesis. Faculty of Civil Engineering, Czech Technical University in Prague; Prague, Czech Republic: 2003. Numerical Modeling of Polymers (Numerické Modelování Polymeru)66p. (In Czech)
Valenta R., Šejnoha J., Šejnoha M. Transformace funkce dotvarování na relaxační funkci. Staveb. Obz. 2003;12:116–121.
Bittnar Z., Šejnoha J. Numerical Methods in Structural Engineering. ASCE Press; Reston, VA, USA: 1996.
Hill R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids. 1963;11:357–372. doi: 10.1016/0022-5096(63)90036-X. DOI
Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Ser. A. 1957;241:376–396.
Walpole J.L. On the overall elastic moduli of composite materials. J. Mech. Phys. Solids. 1969;17:289–301. doi: 10.1016/0022-5096(69)90014-3. DOI
Masson R., Bornert M., Suquet P., Zaoui A. An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Solids. 2000;48:1203–1227. doi: 10.1016/S0022-5096(99)00071-X. DOI
Šejnoha M., Valenta R., Zeman J. Nonlinear Viscoelastic Analysis of Statistically Homogeneous Random Composites. Int. J. Multiscale Comput. Eng. 2004;2:645–673. doi: 10.1615/IntJMultCompEng.v2.i4.80. DOI
Barral M., Chatzigeorgiou G., Meraghni F., Léon R. Homogenization using modified Mori–Tanaka and TFA framework for elastoplastic-viscoelastic-viscoplastic composites: Theory and numerical validation. Int. J. Plast. 2020;127:102632. doi: 10.1016/j.ijplas.2019.11.011. DOI
Valenta R., Šejnoha M., Zeman J. Macroscopic constitutive law for Mastic Asphalt Mixtures from multiscale modeling. Int. J. Multiscale Comput. Eng. 2010;8:131–149.
Valenta R., Šejnoha M. Hierarchical Modeling of Mastic Asphalt in Layered Road Structures Based on the Mori–Tanaka Method. Acta Polytech. 2012;52:48–58. doi: 10.14311/1676. DOI