Research on the Material Compatibility of Elastomer Sealing O-Rings
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LTAIN19029
Ministry of Education, Young and Sports of Czech Republic
PubMed
36015580
PubMed Central
PMC9414156
DOI
10.3390/polym14163323
PII: polym14163323
Knihovny.cz E-resources
- Keywords
- O-ring, compatibility, degradation, elastomer seals, fuel, life cycle assessment, polymer application,
- Publication type
- Journal Article MeSH
Significant attention has been paid to combustion engines for the utilization of new liquid fuels and their testing at the present. Research activities in ensuring the optimum function of the engine by watching sealing and distribution rubber elements, which are part of fuel systems, should be an integral part of fuels research. When evaluating fuels utilization in combustion engines, the issue has to be judged in a complex. However, when using biofuels in combustion engines, it is not always simple owing to the different degradation properties of these products. Elastomer material is not entirely resistant to various types of fuels. More or less, it is possible to expect changes in its mechanical properties. For the evaluation of the functionality of elastomer sealing elements based on ACM, HNBR and FVMQ type O-rings with pure and blended fuels, the evaluation of changes in mass, hardness Shore A, permanent deformation CS, tensile strength TS and deformation Eb after immersion with the tested fuel is mainly used. Permanent changes were found by the tests. The degradation of elastomer O-rings was more pronounced for the tested fuels containing ethanol, iso-butanol, n-butanol, methanol and dodecanol. HVO 100 fuel containing hydrotreated vegetable oil did not show significant degradation of elastomer O-ring seals. Of the O-rings tested, the FVMQ type O-rings showed the best performance in terms of material compatibility for all fuels tested.
See more in PubMed
Alvino A., Borsini S. High-Performance Elastomeric Materials Reinforced by Nano-Carbons. Elsevier; Amsterdam, The Netherlands: 2020. Testing of Rubber Nanocomposites for Aerospace, Automotive and Oil and Gas Applications; pp. 177–191.
Chea S., Luengchavanon M., Anancharoenwong E., Techato K.-A., Jutidamrongphan W., Chaiprapat S., Niyomwas S., Marthosa S. Development of an O-Ring from NR/EPDM Filled Silica/CB Hybrid Filler for Use in a Solid Oxide Fuel Cell Testing System. Polym. Test. 2020;88:106568. doi: 10.1016/j.polymertesting.2020.106568. DOI
Milani G., Milani F. Parabola-Hyperbola P-H Kinetic Model for NR Sulphur Vulcanization. Polym. Test. 2017;58:104–115. doi: 10.1016/j.polymertesting.2016.12.019. DOI
Milani G., Milani F. A Three-Function Numerical Model for the Prediction of Vulcanization- Reversion of Rubber during Sulfur Curing. J. Appl. Polym. Sci. 2011;119:419–437. doi: 10.1002/app.32670. DOI
Haseeb A.S.M.A., Jun T.S., Fazal M.A., Masjuki H.H. Degradation of Physical Properties of Different Elastomers upon Exposure to Palm Biodiesel. Energy. 2011;36:1814–1819. doi: 10.1016/j.energy.2010.12.023. DOI
Šleger V., Müller M., Pexa M. Evaluation of Properties of Elastomer Seal for Fuel Systems Exposed to Effects of Rapeseed Methyl Ester. Res. Agric. Eng. 2017;63:115–120. doi: 10.17221/55/2016-RAE. DOI
Milani G., Milani F. Relation between Activation Energy and Induction in Rubber Sulfur Vulcanization: An Experimental Study. J. Appl. Polym. Sci. 2021;138:50073. doi: 10.1002/app.50073. DOI
Müller M., Šleger V., Pexa M., Mařík J., Mizera Č. Evaluation of Stability of Elastomer Packing Exposed to Influence of Various Biofuels. Agron. Res. 2015;13:604–612.
Bafna S. Factors Influencing Hardness and Compression Set Measurements on O-Rings. Polym. Plast. Technol. Eng. 2013;52:1069–1073. doi: 10.1080/03602559.2013.779710. DOI
Richter B. Evaluation of Stability Tests for Elastomeric Materials and Seals. Int. Polym. Sci. Technol. 2014;41:1–6. doi: 10.1177/0307174X1404100501. DOI
Trelleborg. [(accessed on 10 April 2020)]. Available online: https://stage.tss.trelleborg.com/-/media/tss-media-repository/tss_website/pdf-and-otherliterature/catalogs/o_ring_cz.pdf?revision=94fa08f0-9345-4f14-a90e-3b52f5b3aff2.
Barrios C.C., Domínguez-Sáez A., Martín C., Álvarez P. Effects of Animal Fat Based Biodiesel on a TDI Diesel Engine Performance, Combustion Characteristics and Particle Number and Size Distribution Emissions. Fuel. 2014;117:618–623. doi: 10.1016/j.fuel.2013.09.037. DOI
Čedík J., Pexa M., Peterka B., Müller M., Holubek M., Hloch S., Kučera M. Combustion Characteristics of Compression Ignition Engine Fuelled with Rapeseed Oil–Diesel Fuel–n-Butanol Blends. Oil Gas Sci. Technol.–Rev. d’IFP Energ. Nouv. 2021;76:17. doi: 10.2516/ogst/2021001. DOI
Čedík J., Pexa M., Holúbek M., Mrázek J., Valera H., Agarwal A.K. Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends. Energies. 2021;14:6173. doi: 10.3390/en14196173. DOI
Čedík J., Pexa M., Holúbek M., Aleš Z., Pražan R., Kuchar P. Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine. Energies. 2020;13:3796. doi: 10.3390/en13153796. DOI
Imran S., Emberson D.R., Wen D.S., Diez A., Crookes R.J., Korakianitis T. Performance and Specific Emissions Contours of a Diesel and RME Fueled Compression-Ignition Engine throughout Its Operating Speed and Power Range. Appl. Energy. 2013;111:771–777. doi: 10.1016/j.apenergy.2013.04.040. DOI
Campion R.P. Durability Review of Elastomers for Severe Fluid Duties. Rubber Chem. Technol. 2003;76:719–746. doi: 10.5254/1.3547764. DOI
Caligiuri C., Bietresato M., Renzi M. The Effect of Using Diesel-Biodiesel-Bioethanol Blends on the Fuel Feed Pump of a Small-Scale Internal Combustion Engine. Energy Procedia. 2019;158:953–958. doi: 10.1016/j.egypro.2019.01.235. DOI
Akhlaghi S., Gedde U.W., Hedenqvist M.S., Braña M.T.C., Bellander M. Deterioration of Automotive Rubbers in Liquid Biofuels: A Review. Renew. Sustain. Energy Rev. 2015;43:1238–1248. doi: 10.1016/j.rser.2014.11.096. DOI
Jayed M.H., Masjuki H.H., Saidur R., Kalam M.A., Jahirul M.I. Environmental Aspects and Challenges of Oilseed Produced Biodiesel in Southeast Asia. Renew. Sustain. Energy Rev. 2009;13:2452–2462. doi: 10.1016/j.rser.2009.06.023. DOI
Haseeb A.S.M.A., Fazal M.A., Jahirul M.I., Masjuki H.H. Compatibility of Automotive Materials in Biodiesel: A Review. Fuel. 2011;90:922–931. doi: 10.1016/j.fuel.2010.10.042. DOI
Testing of Solid and Liquid Fuels-Determination of the Gross Calorific Value by the Bomb Calorimeter and Calculation of the Net Calorific Value-Part 1: General Information, Basic Equipment and Method. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2014.
Testing of Solid and Liquid Fuels-Determination of the Gross Calorific Value by the Bomb Calorimeter and Calculation of the Net Calorific Value-Part 2: Method Using Isoperibol or Static Jacket Calorimeter. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2014.
Automotive Fuels. Diesel. Requirements and Test Methods. European Committee for Standardization; Brussels, Belgium: 2013.
Valera H., Agarwal A.K. Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines. Springer; Singapore: 2020. Future Automotive Powertrains for India: Methanol Versus Electric Vehicles; pp. 89–123.
Xing-cai L., Jian-guang Y., Wu-gao Z., Zhen H. Effect of Cetane Number Improver on Heat Release Rate and Emissions of High Speed Diesel Engine Fueled with Ethanol–Diesel Blend Fuel. Fuel. 2004;83:2013–2020. doi: 10.1016/j.fuel.2004.05.003. DOI
Atmanli A., Ileri E., Yüksel B. Effects of Higher Ratios of N-Butanol Addition to Diesel-Vegetable Oil Blends on Performance and Exhaust Emissions of a Diesel Engine. J. Energy Inst. 2015;88:209–220. doi: 10.1016/j.joei.2014.09.008. DOI
Rakopoulos D.C., Rakopoulos C.D., Giakoumis E.G., Dimaratos A.M., Kyritsis D.C. Effects of Butanol–Diesel Fuel Blends on the Performance and Emissions of a High-Speed DI Diesel Engine. Energy Convers. Manag. 2010;51:1989–1997. doi: 10.1016/j.enconman.2010.02.032. DOI
Bohl T., Smallbone A., Tian G., Roskilly A.P. Particulate Number and NO Trade-off Comparisons between HVO and Mineral Diesel in HD Applications. Fuel. 2018;215:90–101. doi: 10.1016/j.fuel.2017.11.023. DOI
Automotive Fuels-Paraffinic Diesel Fuel from Synthesis or Hydrotreatment-Requirements and Test Methods. European Committee for Standardization; Brussels, Belgium: 2018.
Algayyim S.J.M., Wandel A.P., Yusaf T., Hamawand I. The Impact of N-Butanol and Iso-Butanol as Components of Butanol-Acetone (BA) Mixture-Diesel Blend on Spray, Combustion Characteristics, Engine Performance and Emission in Direct Injection Diesel Engine. Energy. 2017;140:1074–1086. doi: 10.1016/j.energy.2017.09.044. DOI
Knothe G. A Comprehensive Evaluation of the Cetane Numbers of Fatty Acid Methyl Esters. Fuel. 2014;119:6–13. doi: 10.1016/j.fuel.2013.11.020. DOI
Alves S.M., Mello V.S., Medeiros J.S. Palm and Soybean Biodiesel Compatibility with Fuel System Elastomers. Tribol. Int. 2013;65:74–80. doi: 10.1016/j.triboint.2013.03.026. DOI
Farfan-Cabrera L.I., Pérez-González J., Gallardo-Hernández E.A. Deterioration of Seals of Automotive Fuel Systems upon Exposure to Straight Jatropha Oil and Diesel. Renew. Energy. 2018;127:125–133. doi: 10.1016/j.renene.2018.04.048. DOI
Micallef G. Elastomer Selection for Bio-Fuel Requires a Systems Approach. Seal. Technol. 2009;2009:7–10. doi: 10.1016/S1350-4789(09)70022-4. DOI
Walker F.J. Effects of Bio-Fuels on Common Static Sealing Elastomers. Rubber Chem. Technol. 2009;82:369–378. doi: 10.5254/1.3548252. DOI
Tuckner P. Compression Stress Relaxation Test Comparisons and Development. SAE International; Warrendale, PA, USA: Mar 6, 2000. pp. 1–8. SAE Technical Papers.