NMR spectroscopy spotlighting immunogenicity induced by COVID-19 vaccination to mitigate future health concerns
Status PubMed-not-MEDLINE Language English Country Netherlands Media print-electronic
Document type Journal Article, Review
PubMed
36032416
PubMed Central
PMC9393187
DOI
10.1016/j.crimmu.2022.08.006
PII: S2590-2555(22)00017-8
Knihovny.cz E-resources
- Keywords
- COVID-19, Chemometrics, Immunogenicity, Nuclear magnetic resonance spectroscopy, Vaccination,
- Publication type
- Journal Article MeSH
- Review MeSH
In this review, the disease and immunogenicity affected by COVID-19 vaccination at the metabolic level are described considering the use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of different biological samples. Consistently, we explain how different biomarkers can be examined in the saliva, blood plasma/serum, bronchoalveolar-lavage fluid (BALF), semen, feces, urine, cerebrospinal fluid (CSF) and breast milk. For example, the proposed approach for the given samples can allow one to detect molecular biomarkers that can be relevant to disease and/or vaccine interference in a system metabolome. The analysis of the given biomaterials by NMR often produces complex chemical data which can be elucidated by multivariate statistical tools, such as PCA and PLS-DA/OPLS-DA methods. Moreover, this approach may aid to improve strategies that can be helpful in disease control and treatment management in the future.
Department of Chemistry Federal University of Amazonas Manaus Amazonas Brazil
Department of Chemistry Federal University of Paraná CEP 81530 900 Curitiba PR Brazil
Department of Health and Biological Sciences Abasyn University Peshawar CEP 25000 Peshawar Pakistan
Department of Physics and Chemistry University of Malakand CEP 18800 Dir Malakand Pakistan
Department of Plant Pathology Federal University of Lavras Lavras Brazil
Laboratory of Physiology and Control of Arthropod Vectors IOC Fiocruz CEP 21040 900 RJ Brazil
See more in PubMed
Ali S., Badshah G., da Ros Montes D'Oca C., Ramos Campos F., Nagata N., Khan A., de Fátima Costa Santos M., Barison A. High-resolution magic angle spinning (HR-MAS) NMR-based fingerprints determination in the medicinal plant Berberis laurina. Molecules. 2020;25:3647. doi: 10.3390/molecules25163647. PubMed DOI PMC
Ali S., Rech K.S., Badshah G., Soares F.L.F., Barison A. 1H HR-MAS NMR-based metabolomic fingerprinting to distinguish morphological similarities and metabolic profiles of Maytenus ilicifolia, a Brazilian medicinal plant. J. Nat. Prod. 2021;84:1707–1714. doi: 10.1021/acs.jnatprod.0c01094. PubMed DOI
Amante Salomone, Alladio Vincenti, Porpiglia Bro. Untargeted metabolomic profile for the detection of prostate carcinoma—preliminary results from PARAFAC2 and PLS–DA models. Molecules. 2019;24:3063. doi: 10.3390/molecules24173063. PubMed DOI PMC
Andrade Silva M., da Silva A.R.P.A., do Amaral M.A., Fragas M.G., Câmara N.O.S. Metabolic alterations in SARS-CoV-2 infection and its implication in kidney dysfunction. Front. Physiol. 2021;12:147. doi: 10.3389/fphys.2021.624698. PubMed DOI PMC
Arts R.J.W., Joosten L.A.B., Netea M.G. Immunometabolic circuits in trained immunity. Semin. Immunol. 2016;28:425–430. doi: 10.1016/j.smim.2016.09.002. PubMed DOI
Arya R., Kumari S., Pandey B., Mistry H., Bihani S.C., Das A., Prashar V., Gupta G.D., Panicker L., Kumar M. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol. 2021;433 doi: 10.1016/j.jmb.2020.11.024. PubMed DOI PMC
Awuchi C.G., Twinomuhwezi H., Awuchi C.G. Analytical Techniques in Biosciences. Elsevier; 2022. Hyphenated techniques; pp. 125–145. DOI
Barberi C., Castelnuovo E., Dipasquale A., Mrakic Sposta F., Vatteroni G., Canziani L.M., Alloisio M., Ciccarelli M., Selmi C., Ferraroli G.M. Bronchoalveolar lavage in suspected COVID-19 cases with a negative nasopharyngeal swab: a retrospective cross-sectional study in a high-impact Northern Italy area. Inter. Emerg. Med. 2021 doi: 10.1007/s11739-021-02714-y. PubMed DOI PMC
Bayne C.K., Kramer R. Chemometric techniques for quantitative analysis. Technometrics. 1999;41:173. doi: 10.2307/1270741. DOI
Bellagambi F.G., Lomonaco T., Salvo P., Vivaldi F., Hangouët M., Ghimenti S., Biagini D., di Francesco F., Fuoco R., Errachid A. Saliva sampling: methods and devices. An overview. TrAC, Trends Anal. Chem. 2020;124 doi: 10.1016/j.trac.2019.115781. DOI
Blanco-Melo D., Nilsson-Payant B.E., Liu W.-C., Uhl S., Hoagland D., Møller R., Jordan T.X., Oishi K., Panis M., Sachs D., Wang T.T., Schwartz R.E., Lim J.K., Albrecht R.A., TenOever B.R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036–1045. doi: 10.1016/j.cell.2020.04.026. e9. PubMed DOI PMC
Borriello F., van Haren S.D., Levy O. First international precision vaccines conference: multidisciplinary approaches to next-generation vaccines. mSphere. 2018;3:214–232. doi: 10.1128/mSphere.00214-18. PubMed DOI PMC
Boulange C.L., Rood I.M., Posma J.M., Lindon J.C., Holmes E., Wetzels J.F.M., Deegens J.K.J., Kaluarachchi M.R. NMR and MS urinary metabolic phenotyping in kidney diseases is fit-for-purpose in the presence of a protease inhibitor. Mol. Omics. 2019;15:39–49. doi: 10.1039/c8mo00190a. PubMed DOI
Bouvet M., Imbert I., Subissi L., Gluais L., Canard B., Decroly E. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl. Acad. Sci. U. S. A. 2012;109:9372–9377. doi: 10.1073/pnas.1201130109. PubMed DOI PMC
Brereton R.G., Lloyd G.R. Partial least squares discriminant analysis for chemometrics and metabolomics: how scores, loadings, and weights differ according to two common algorithms. J. Chemometr. 2018;32 doi: 10.1002/cem.3028. DOI
Bro R., Smilde A.K. Principal component analysis. Anal. Methods. 2014;6:2812–2831. doi: 10.1039/C3AY41907J. DOI
Bruzzone C., Bizkarguenaga M., Gil-Redondo R., Diercks T., Arana E., García de Vicuña A., Seco M., Bosch A., Palazón A., San Juan I., Laín A., Gil-Martínez J., Bernardo-Seisdedos G., Fernández-Ramos D., Lopitz-Otsoa F., Embade N., Lu S., Mato J.M., Millet O. SARS-CoV-2 infection dysregulates the metabolomic and lipidomic profiles of serum. iScience. 2020;23 doi: 10.1016/j.isci.2020.101645. PubMed DOI PMC
Bruzzone C., Gil-Redondo R., Seco M., Barragán R., de la Cruz L., Cannet C., Schäfer H., Fang F., Diercks T., Bizkarguenaga M., González-Valle B., Laín A., Sanz-Parra A., Coltell O., de Letona A.L., Spraul M., Lu S.C., Buguianesi E., Embade N., Anstee Q.M., Corella D., Mato J.M., Millet O. A molecular signature for the metabolic syndrome by urine metabolomics. Cardiovasc. Diabetol. 2021;20:155. doi: 10.1186/s12933-021-01349-9. PubMed DOI PMC
Buchko G.W., Zhou M., Craig J.K., van Voorhis W.C., Myler P.J. Backbone chemical shift assignments for the SARS-CoV-2 non-structural protein Nsp9: intermediate (ms – μs) dynamics in the C-terminal helix at the dimer interface. Biomol. NMR Assign. 2021;15:107–116. doi: 10.1007/s12104-020-09992-1. PubMed DOI PMC
Bujak R., Struck-Lewicka W., Markuszewski M.J., Kaliszan R. Metabolomics for laboratory diagnostics. J. Pharmaceut. Biomed. Anal. 2015;113:108–120. doi: 10.1016/j.jpba.2014.12.017. PubMed DOI
Cantini F., Banci L., Altincekic N., Bains J.K., Dhamotharan K., Fuks C., Fürtig B., Gande S.L., Hargittay B., Hengesbach M., Hutchison M.T., Korn S.M., Kubatova N., Kutz F., Linhard V., Löhr F., Meiser N., Pyper D.J., Qureshi N.S., Richter C., Saxena K., Schlundt A., Schwalbe H., Sreeramulu S., Tants J.-N., Wacker A., Weigand J.E., Wöhnert J., Tsika A.C., Fourkiotis N.K., Spyroulias G.A. 1H, 13C and 15N backbone chemical shift assignments of the apo and the ADP-ribose bound forms of the macrodomain of SARS-CoV-2 non-structural protein 3b. Biomol. NMR Assign. 2020;14:339–346. doi: 10.1007/s12104-020-09973-4. PubMed DOI PMC
Chen M.X., Wang S.-Y., Kuo C.-H., Tsai I.-L. Metabolome analysis for investigating host-gut microbiota interactions. J. Formos. Med. Assoc. 2019;118:S10–S22. doi: 10.1016/j.jfma.2018.09.007. PubMed DOI
Chen Y., Chen L., Deng Q., Zhang G., Wu K., Ni L., Yang Y., Liu B., Wang W., Wei C., Yang J., Ye G., Cheng Z. The presence of SARS‐CoV‐2 RNA in the feces of COVID‐19 patients. J. Med. Virol. 2020;92:833–840. doi: 10.1002/jmv.25825. PubMed DOI
Ciaramelli C., Fumagalli M., Viglio S., Bardoni A.M., Piloni D., Meloni F., Iadarola P., Airoldi C. 1H NMR to evaluate the metabolome of bronchoalveolar lavage fluid (BALf) in bronchiolitis obliterans syndrome (BOS): toward the development of a new approach for biomarker identification. J. Proteome Res. 2017;16:1669–1682. doi: 10.1021/acs.jproteome.6b01038. PubMed DOI
Ciecka J.E. Book Reviews, Review of Social Economy. 1982;40:76–78. doi: 10.1080/00346768200000024. DOI
Claridge T. third ed. Elsevier; 2016. High-resolution NMR Techniques in Organic Chemistry.https://www.elsevier.com/
Cong Y., Ulasli M., Schepers H., Mauthe M., V’kovski P., Kriegenburg F., Thiel V., de Haan C.A.M., Reggiori F. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol. 2019;94 doi: 10.1128/jvi.01925-19. PubMed DOI PMC
Costa dos Santos Junior G., Pereira C.M., Kelly da Silva Fidalgo T., Valente A.P. Saliva NMR-based metabolomics in the war against COVID-19. Anal. Chem. 2020;92:15688–15692. doi: 10.1021/acs.analchem.0c04679. PubMed DOI
Crook A.A., Powers R. Quantitative NMR-based biomedical metabolomics: current status and applications. Molecules. 2020;25:5128. doi: 10.3390/molecules25215128. PubMed DOI PMC
Cruickshank-Quinn C., Powell R., Jacobson S., Kechris K., Bowler R.P., Petrache I., Reisdorph N. Metabolomic similarities between bronchoalveolar lavage fluid and plasma in humans and mice. Sci. Rep. 2017;7:5108. doi: 10.1038/s41598-017-05374-1. PubMed DOI PMC
Cui M., Trimigno A., Castro-Mejía J.L., Reitelseder S., Bülow J., Bechshøft R.L., Nielsen D.S., Holm L., Engelsen S.B., Khakimov B. Human fecal metabolome reflects differences in body mass index, physical fitness, and blood lipoproteins in healthy older adults. Metabolites. 2021;11:717. doi: 10.3390/metabo11110717. 717. 11 (2021) PubMed DOI PMC
Das B.B., Moskowitz W.B., Taylor M.B., Palmer A. Myocarditis and pericarditis following mRNA COVID-19 vaccination: what do we know so far? Children. 2021;8:607. doi: 10.3390/children8070607. PubMed DOI PMC
Davidson K.R., Ha D.M., Schwarz M.I., Chan E.D. Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases. J. Thorac. Dis. 2020;12:4991–5019. doi: 10.21037/jtd-20-651. PubMed DOI PMC
de Luna Marques A., Caruso I.P., Santana-Silva M.C., Bezerra P.R., Araujo G.R., Almeida F.C.L., Amorim G.C. 1H, 13C and 15N resonance assignments of the N-terminal domain of the nucleocapsid protein from the endemic human coronavirus HKU1. Biomol. NMR Assign. 2021;15:153–157. doi: 10.1007/s12104-020-09998-9. PubMed DOI PMC
de Souza S.P., Silveira M.A.D., Souza B.S. de F., Cabral J.B., de Melo E.B. dos, Nonaka C.K.V., Coelho F.O., da Hora Passos R. Evaluation of urine SARS-COV-2 RT-PCR as a predictor of acute kidney injury and disease severity in patients with critical COVID-19. J. Int. Med. Res. 2021;49 doi: 10.1177/03000605211015555. PubMed DOI PMC
Diray-Arce J., Conti M.G., Petrova B., Kanarek N., Angelidou A., Levy O. Integrative metabolomics to identify molecular signatures of responses to vaccines and infections. Metabolites. 2020;10:492. doi: 10.3390/metabo10120492. PubMed DOI PMC
Dong Y., Dai T., Wei Y., Zhang L., Zheng M., Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Targeted Ther. 2020;5:237. doi: 10.1038/s41392-020-00352-y. PubMed DOI PMC
Dutra L.M., da Conceição Santos A.D., Lourenço A.V.F., Nagata N., Heiden G., Campos F.R., Barison A. 1H HR-MAS NMR and chemometric methods for discrimination and classification of Baccharis (Asteraceae): a proposal for quality control of Baccharis trimera. J. Pharmaceut. Biomed. Anal. 2020;184 doi: 10.1016/j.jpba.2020.113200. PubMed DOI
Eisenreich W., Heesemann J., Rudel T., Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Front. Cell. Infect. Microbiol. 2013;3:24. doi: 10.3389/fcimb.2013.00024. PubMed DOI PMC
Ferreira A.M., Ferrari M.I., Trostchansky A., Batthyany C., Souza J.M., Alvarez M.N., López G.V., Baker P.R.S., Schopfer F.J., O'Donnell V., Freeman B.A., Rubbo H. Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate. Biochem. J. 2009;417:223–238. doi: 10.1042/BJ20080701. PubMed DOI PMC
Fonville J.M., Richards S.E., Barton R.H., Boulange C.L., Ebbels T.M.D., Nicholson J.K., Holmes E., Dumas M.-E. The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J. Chemometr. 2010;24:636–649. doi: 10.1002/cem.1359. DOI
Fraser D.D., Slessarev M., Martin C.M., Daley M., Patel M.A., Miller M.R., Patterson E.K., O'Gorman D.B., Gill S.E., Wishart D.S., Mandal R., Cepinskas G. Metabolomics profiling of critically ill coronavirus disease 2019 patients: identification of diagnostic and prognostic biomarkers. Crit. Care Explor. 2020;2 doi: 10.1097/cce.0000000000000272. PubMed DOI PMC
Fu Z., Huang B., Tang J., Liu S., Liu M., Ye Y., Liu Z., Xiong Y., Zhu W., Cao D., Li J., Niu X., Zhou H., Zhao Y.J., Zhang G., Huang H. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 2021;12:488. doi: 10.1038/s41467-020-20718-8. PubMed DOI PMC
Fuentes E., Araya-Maturana R., Urra F.A. Regulation of mitochondrial function as a promising target in platelet activation-related diseases. Free Radic. Biol. Med. 2019;136:172–182. doi: 10.1016/j.freeradbiomed.2019.01.007. PubMed DOI
Fuertes-Martín Correig, Vallvé, Amigó Human serum/plasma glycoprotein analysis by 1H-NMR, an emerging method of inflammatory assessment. J. Clin. Med. 2020;9:354. doi: 10.3390/jcm9020354. PubMed DOI PMC
Gallo A., Tsika A.C., Fourkiotis N.K., Cantini F., Banci L., Sreeramulu S., Schwalbe H., Spyroulias G.A. 1H, 13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: “the N-terminal domain-SUD-N.”. Biomol. NMR Assign. 2021;15:85–89. doi: 10.1007/s12104-020-09987-y. PubMed DOI PMC
Gallo A., Tsika A.C., Fourkiotis N.K., Cantini F., Banci L., Sreeramulu S., Schwalbe H., Spyroulias G.A. 1H, 13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: “The SUD-M and SUD-C domains. Biomol. NMR Assign. 2021;15:165–171. doi: 10.1007/s12104-020-10000-9. PubMed DOI PMC
Gan X., Hua L., Liu Q., Xie D., Wu Z., Xiong Y., Zhou B., Xue G. Clinical value of anal swab positive in COVID-19 patients. Chin. J. Microbiol. Immunol. 2020;40:489–494. doi: 10.3760/cma.j.cn112309-20200425-00228. DOI
Garbino J., Soccal P.M., Aubert J.-D., Rochat T., Meylan P., Thomas Y., Tapparel C., Bridevaux P.-O., Kaiser L. Respiratory viruses in bronchoalveolar lavage: a hospital-based cohort study in adults. Thorax. 2009;64:399–404. doi: 10.1136/thx.2008.105155. PubMed DOI
Gardner A., Carpenter G., So P.W. Salivary metabolomics: from diagnostic biomarker discovery to investigating biological function. Metabolites. 2020;10:47. doi: 10.3390/metabo10020047. PubMed DOI PMC
Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ. Res. 2020;126:1456–1474. doi: 10.1161/CIRCRESAHA.120.317015. PubMed DOI PMC
Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.v., Sidorov I.A., Sola I., Ziebuhr J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z. PubMed DOI PMC
Gowda G.A.N., Zhang S., Gu H., Asiago V., Shanaiah N., Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 2008;8:617–633. doi: 10.1586/14737159.8.5.617. PubMed DOI PMC
Gratton J., Phetcharaburanin J., Mullish B.H., Williams H.R.T., Thursz M., Nicholson J.K., Holmes E., Marchesi J.R., Li J.v. Optimized sample handling strategy for metabolic profiling of human feces. Anal. Chem. 2016;88:4661–4668. doi: 10.1021/acs.analchem.5b04159. PubMed DOI
Hagan T., Cortese M., Rouphael N., Boudreau C., Linde C., Maddur M.S., Das J., Wang H., Guthmiller J., Zheng N.-Y., Huang M., Uphadhyay A.A., Gardinassi L., Petitdemange C., McCullough M.P., Johnson S.J., Gill K., Cervasi B., Zou J., Bretin A., Hahn M., Gewirtz A.T., Bosinger S.E., Wilson P.C., Li S., Alter G., Khurana S., Golding H., Pulendran B. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell. 2019;178:1313–1328. doi: 10.1016/j.cell.2019.08.010. e13. PubMed DOI PMC
Heitland P., Köster H.D. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021;64 doi: 10.1016/j.jtemb.2020.126706. PubMed DOI
Hinkov A., Angelova P., Marchev A., Hodzhev Y., Tsvetkov V., Dragolova D., Todorov D., Shishkova K., Kapchina-Toteva V., Blundell R., Shishkov S., Georgiev M. Nepeta nuda ssp. nuda L. water extract: inhibition of replication of some strains of human alpha herpes virus (genus simplex virus) in vitro, mode of action and NMR-based metabolomics. J. Herb. Med. 2020;21 doi: 10.1016/j.hermed.2020.100334. DOI
Holmes E., Wilson I.D., Nicholson J.K. Metabolic phenotyping in health and disease. Cell. 2008;134:714–717. doi: 10.1016/j.cell.2008.08.026. PubMed DOI
Holtmann N., Edimiris P., Andree M., Doehmen C., Baston-Buest D., Adams O., Kruessel J.S., Bielfeld A.P. Assessment of SARS-CoV-2 in human semen—a cohort study. Fertil. Steril. 2020;114:233–238. doi: 10.1016/j.fertnstert.2020.05.028. PubMed DOI PMC
Hulswit R.J.G., de Haan C.A.M., Bosch B.J. Advances in Virus Research. 2016. Coronavirus spike protein and tropism changes; pp. 29–57. PubMed DOI PMC
Imamura T., Isozumi N., Higashimura Y., Ohki S., Mori M. Production of ORF8 protein from SARS-CoV-2 using an inducible virus-mediated expression system in suspension-cultured tobacco BY-2 cells. Plant Cell Rep. 2021;40:433–436. doi: 10.1007/s00299-020-02654-5. PubMed DOI PMC
Jackson L.A., Anderson E.J., Rouphael N.G., Roberts P.C., Makhene M., Coler R.N., McCullough M.P., Chappell J.D., Denison M.R., Stevens L.J., Pruijssers A.J., McDermott A., Flach B., Doria-Rose N.A., Corbett K.S., Morabito K.M., O'Dell S., Schmidt S.D., Swanson P.A., Padilla M., Mascola J.R., Neuzil K.M., Bennett H., Sun W., Peters E., Makowski M., Albert J., Cross K., Buchanan W., Pikaart-Tautges R., Ledgerwood J.E., Graham B.S., Beigel J.H. An mRNA vaccine against SARS-CoV-2 — preliminary report. N. Engl. J. Med. 2020;383:1920–1931. doi: 10.1056/NEJMoa2022483. PubMed DOI PMC
Jacofsky D., Jacofsky E.M., Jacofsky M. Understanding antibody testing for COVID-19. J. Arthroplasty. 2020;35:S74–S81. doi: 10.1016/j.arth.2020.04.055. PubMed DOI PMC
Jaiswal N., Agarwal N., Poluri K.M., Kumar D. Effect of urea concentration on instant refolding of Nuclear Export Protein (NEP) from Influenza-A virus H1N1: a solution NMR based investigation. Int. J. Biol. Macromol. 2020;165:2508–2519. doi: 10.1016/j.ijbiomac.2020.10.146. PubMed DOI
Johnson J., Flores M.G., Rosa J., Han C., Salvi A.M., DeMali K.A., Jagnow J.R., Sparks A., Haim H. The high content of fructose in human semen competitively inhibits broad and potent antivirals that target high-mannose glycans. J. Virol. 2020;94 doi: 10.1128/jvi.01749-19. PubMed DOI PMC
Jutzeler C.R., Bourguignon L., Weis C.v., Tong B., Wong C., Rieck B., Pargger H., Tschudin-Sutter S., Egli A., Borgwardt K., Walter M. Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: a systematic review and meta-analysis. Trav. Med. Infect. Dis. 2020;37 doi: 10.1016/j.tmaid.2020.101825. PubMed DOI PMC
Kaddurah-Daouk R., Weinshilboum R.M. Pharmacometabolomics Research Network, Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin. Pharmacol. Ther. 2014;95:154–167. doi: 10.1038/clpt.2013.217. PubMed DOI
Kahn M., Schuierer L., Bartenschlager C., Zellmer S., Frey R., Freitag M., Dhillon C., Heier M., Ebigbo A., Denzel C., Temizel S., Messmann H., Wehler M., Hoffmann R., Kling E., Römmele C. Performance of antigen testing for diagnosis of COVID-19: a direct comparison of a lateral flow device to nucleic acid amplification based tests. BMC Infect. Dis. 2021;21:798. doi: 10.1186/s12879-021-06524-7. PubMed DOI PMC
Karinch A.M., Pan M., Lin C.-M., Strange R., Souba W.W. Glutamine metabolism in sepsis and infection. J. Nutr. 2001;131:2535S–2538S. doi: 10.1093/jn/131.9.2535S. PubMed DOI
Karpiński T.M., Ożarowski M., Seremak-Mrozikiewicz A., Wolski H., Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics. 2021;11:1690–1702. doi: 10.7150/thno.53691. PubMed DOI PMC
Karu N., Deng L., Slae M., Guo A.C., Sajed T., Huynh H., Wine E., Wishart D.S. A review on human fecal metabolomics: methods, applications and the human fecal metabolome database. Anal. Chim. Acta. 2018;1030:1–24. doi: 10.1016/j.aca.2018.05.031. PubMed DOI
Khan A., Shin O.S., Na J., Kim J.K., Seong R.-K., Park M.-S., Noh J.Y., Song J.Y., Cheong H.J., Park Y.H., Kim W.J. A systems vaccinology approach reveals the mechanisms of immunogenic responses to hantavax vaccination in humans. Sci. Rep. 2019;9:4760. doi: 10.1038/s41598-019-41205-1. PubMed DOI PMC
Khattri R.B., Kim K., Thome T., Salyers Z.R., O'Malley K.A., Berceli S.A., Scali S.T., Ryan T.E. Unique metabolomic profile of skeletal muscle in chronic limb threatening ischemia. J. Clin. Med. 2021;10:548. doi: 10.3390/jcm10030548. PubMed DOI PMC
Khurana A., Allawadhi P., Khurana I., Allwadhi S., Weiskirchen R., Banothu A.K., Chhabra D., Joshi K., Bharani K.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today. 2021;38 doi: 10.1016/j.nantod.2021.101142. PubMed DOI PMC
Kim Y., Jedrzejczak R., Maltseva N.I., Wilamowski M., Endres M., Godzik A., Michalska K., Joachimiak A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci. 2020;29:1596–1605. doi: 10.1002/pro.3873. PubMed DOI PMC
Kimhofer T., Lodge S., Whiley L., Gray N., Loo R.L., Lawler N.G., Nitschke P., Bong S.-H., Morrison D.L., Begum S., Richards T., Yeap B.B., Smith C., Smith K.G.C., Holmes E., Nicholson J.K. Integrative modeling of quantitative plasma lipoprotein, metabolic, and amino acid data reveals a multiorgan pathological signature of SARS-CoV-2 infection. J. Proteome Res. 2020;19:4442–4454. doi: 10.1021/acs.jproteome.0c00519. PubMed DOI
Koeken V.A.C.M., Lachmandas E., Riza A., Matzaraki V., Li Y., Kumar V., Oosting M., Joosten L.A.B., Netea M.G., van Crevel R. Role of glutamine metabolism in host defense against Mycobacterium tuberculosis infection. J. Infect. Dis. 2019;219:1662–1670. doi: 10.1093/infdis/jiy709. PubMed DOI
Korn S.M., Dhamotharan K., Fürtig B., Hengesbach M., Löhr F., Qureshi N.S., Richter C., Saxena K., Schwalbe H., Tants J.-N., Weigand J.E., Wöhnert J., Schlundt A. 1H, 13C and 15N backbone chemical shift assignments of the nucleic acid-binding domain of SARS-CoV-2 non-structural protein 3e. Biomol. NMR Assign. 2020;14:329–333. doi: 10.1007/s12104-020-09971-6. PubMed DOI PMC
Korn S.M., Lambertz R., Fürtig B., Hengesbach M., Löhr F., Richter C., Schwalbe H., Weigand J.E., Wöhnert J., Schlundt A. 1H, 13C and 15N backbone chemical shift assignments of the C-terminal dimerization domain of SARS-CoV-2 nucleocapsid protein. Biomol. NMR Assign. 2021;15:129–135. doi: 10.1007/s12104-020-09995-y. PubMed DOI PMC
Kubatova N., Qureshi N.S., Altincekic N., Abele R., Bains J.K., Ceylan B., Ferner J., Fuks C., Hargittay B., Hutchison M.T., de Jesus V., Kutz F., Wirtz Martin M.A., Meiser N., Linhard V., Pyper D.J., Trucks S., Fürtig B., Hengesbach M., Löhr F., Richter C., Saxena K., Schlundt A., Schwalbe H., Sreeramulu S., Wacker A., Weigand J.E., Wirmer-Bartoschek J., Wöhnert J. 1H, 13C and 15N backbone chemical shift assignments of coronavirus-2 non-structural protein Nsp10. Biomol. NMR Assign. 2020;15:65–71. doi: 10.1007/s12104-020-09984-1. PubMed DOI PMC
Lee C., Choi W.J. Overview of COVID-19 inflammatory pathogenesis from the therapeutic perspective. Arch Pharm. Res. (Seoul) 2021;44:99–116. doi: 10.1007/s12272-020-01301-7. PubMed DOI PMC
Lee E., Cines D.B., Gernsheimer T., Kessler C., Michel M., Tarantino M.D., Semple J.W., Arnold D.M., Godeau B., Lambert M.P., Bussel J.B. Thrombocytopenia following Pfizer and Moderna <scp>SARS‐CoV</scp> ‐2 vaccination. Am. J. Hematol. 2021;96:534–537. doi: 10.1002/ajh.26132. PubMed DOI PMC
Li P., Yin Y.-L., Li D., Woo Kim S., Wu G. Amino acids and immune function. Br. J. Nutr. 2007;98:237–252. doi: 10.1017/S000711450769936X. PubMed DOI
Li S., Sullivan N.L., Rouphael N., Yu T., Banton S., Maddur M.S., McCausland M., Chiu C., Canniff J., Dubey S., Liu K., Tran V., Hagan T., Duraisingham S., Wieland A., Mehta A.K., Whitaker J.A., Subramaniam S., Jones D.P., Sette A., Vora K., Weinberg A., Mulligan M.J., Nakaya H.I., Levin M., Ahmed R., Pulendran B. Metabolic phenotypes of response to vaccination in humans. Cell. 2017;169:862–877. doi: 10.1016/j.cell.2017.04.026. e17. PubMed DOI PMC
Li D., Jin M., Bao P., Zhao W., Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw. Open. 2020;3 doi: 10.1001/jamanetworkopen.2020.8292. PubMed DOI PMC
Lin M.H., Huang Y.P., Chang C.F., Hsu C.H. NMR assignments of the macro domain from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Biomol. NMR Assign. 2021;15:137–142. doi: 10.1007/s12104-020-09996-x. PubMed DOI PMC
Lindon J.C., Nicholson J.K., Holmes E., Keun H.C., Craig A., Pearce J.T.M., Bruce S.J., Hardy N., Sansone S.-A., Antti H., Jonsson P., Daykin C., Navarange M., Beger R.D., Verheij E.R., Amberg A., Baunsgaard D., Cantor G.H., Lehman-McKeeman L., Earll M., Wold S., Johansson E., Haselden J.N., Kramer K., Thomas C., Lindberg J., Schuppe-Koistinen I., Wilson I.D., Reily M.D., Robertson D.G., Senn H., Krotzky A., Kochhar S., Powell J., van der Ouderaa F., Plumb R., Schaefer H., Spraul M. Standard Metabolic Reporting Structures working group, Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 2005;23:833–838. doi: 10.1038/nbt0705-833. PubMed DOI
Lodge S., Nitschke P., Loo R.L., Kimhofer T., Bong S.-H., Richards T., Begum S., Spraul M., Schaefer H., Lindon J.C., Holmes E., Nicholson J.K. Low volume in vitro diagnostic proton NMR spectroscopy of human blood plasma for lipoprotein and metabolite analysis: application to SARS-CoV-2 biomarkers. J. Proteome Res. 2021;20:1415–1423. doi: 10.1021/acs.jproteome.0c00815. PubMed DOI
Lodge S., Nitschke P., Kimhofer T., Coudert J.D., Begum S., Bong S.-H., Richards T., Edgar D., Raby E., Spraul M., Schaefer H., Lindon J.C., Loo R.L., Holmes E., Nicholson J.K. NMR spectroscopic windows on the systemic effects of SARS-CoV-2 infection on plasma lipoproteins and metabolites in relation to circulating cytokines. J. Proteome Res. 2021;20:1382–1396. doi: 10.1021/acs.jproteome.0c00876. PubMed DOI
Lombó M., Ruiz-Díaz S., Gutiérrez-Adán A., Sánchez-Calabuig M.-J. Sperm metabolomics through nuclear magnetic resonance spectroscopy. Animals. 2021;11:1669. doi: 10.3390/ani11061669. PubMed DOI PMC
Loo R.L., Lodge S., Kimhofer T., Bong S.-H., Begum S., Whiley L., Gray N., Lindon J.C., Nitschke P., Lawler N.G., Schäfer H., Spraul M., Richards T., Nicholson J.K., Holmes E. Quantitative in-vitro diagnostic NMR spectroscopy for lipoprotein and metabolite measurements in plasma and serum: recommendations for analytical artifact minimization with special reference to COVID-19/SARS-CoV-2 samples. J. Proteome Res. 2020;19:4428–4441. doi: 10.1021/acs.jproteome.0c00537. PubMed DOI
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC
Lv L., Jiang H., Chen Y., Gu S., Xia J., Zhang H., Lu Y., Yan R., Li L. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal. Chim. Acta. 2021;1152 doi: 10.1016/j.aca.2021.338267. PubMed DOI PMC
Ma E.H., Bantug G., Griss T., Condotta S., Johnson R.M., Samborska B., Mainolfi N., Suri V., Guak H., Balmer M.L., Verway M.J., Raissi T.C., Tsui H., Boukhaled G., Henriques da Costa S., Frezza C., Krawczyk C.M., Friedman A., Manfredi M., Richer M.J., Hess C., Jones R.G. Serine is an essential metabolite for effector T cell expansion. Cell Metabol. 2017;25:345–357. doi: 10.1016/j.cmet.2016.12.011. PubMed DOI
Ma C., Cong Y., Zhang H. COVID-19 and the digestive system. Am. J. Gastroenterol. 2020;115:1003–1006. doi: 10.14309/ajg.0000000000000691. PubMed DOI PMC
Ma L., Xie W., Li D., Shi L., Ye G., Mao Y., Xiong Y., Sun H., Zheng F., Chen Z., Qin J., Lyu J., Zhang Y., Zhang M. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J. Med. Virol. 2021;93:456–462. doi: 10.1002/jmv.26259. PubMed DOI PMC
Mandala V.S., McKay M.J., Shcherbakov A.A., Dregni A.J., Kolocouris A., Hong M. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 2020;27:1202–1208. doi: 10.1038/s41594-020-00536-8. PubMed DOI PMC
Manzetti S., Zhang J., van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry. 2014;53:821–835. doi: 10.1021/bi401618y. PubMed DOI
Marini F. Orthogonal PLS (O‐PLS) and related algorithms. J. Chemometr. 2020;34:10–12. doi: 10.1002/cem.3214. DOI
Mark H., Workman J. Chemometrics in Spectroscopy. Elsevier; 2007. The chemometrics of imaging spectroscopy. 503–XXI. DOI
Meoni G., Ghini V., Maggi L., Vignoli A., Mazzoni A., Salvati L., Capone M., Vanni A., Tenori L., Fontanari P., Lavorini F., Peris A., Bartoloni A., Liotta F., Cosmi L., Luchinat C., Annunziato F., Turano P. Metabolomic/lipidomic profiling of COVID-19 and individual response to tocilizumab. PLoS Pathog. 2021;17 doi: 10.1371/journal.ppat.1009243. PubMed DOI PMC
Misra B.B., Langefeld C., Olivier M., Cox L.A. Integrated omics: tools, advances and future approaches. J. Mol. Endocrinol. 2019;62 doi: 10.1530/JME-18-0055. R21–R45. PubMed DOI
Mounayar R., Morzel M., Brignot H., Tremblay-Franco M., Canlet C., Lucchi G., Ducoroy P., Feron G., Neyraud E. Salivary markers of taste sensitivity to oleic acid: a combined proteomics and metabolomics approach. Metabolomics. 2014;10:688–696. doi: 10.1007/s11306-013-0602-1. PubMed DOI
Mulligan M.J., Lyke K.E., Kitchin N., Absalon J., Gurtman A., Lockhart S., Neuzil K., Raabe V., Bailey R., Swanson K.A., Li P., Koury K., Kalina W., Cooper D., Fontes-Garfias C., Shi P.-Y., Türeci Ö., Tompkins K.R., Walsh E.E., Frenck R., Falsey A.R., Dormitzer P.R., Gruber W.C., Şahin U., Jansen K.U. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–593. doi: 10.1038/s41586-020-2639-4. PubMed DOI
Mussap M., Loddo C., Fanni C., Fanos V. Metabolomics in pharmacology - a delve into the novel field of pharmacometabolomics. Expet Rev. Clin. Pharmacol. 2020;13:115–134. doi: 10.1080/17512433.2020.1713750. PubMed DOI
Naito Antiviral effect of arginine against herpes simplex virus type 1. Int. J. Mol. Med. 2009;23:495–499. doi: 10.3892/ijmm_00000156. PubMed DOI
Naqvi A.A.T., Fatima K., Mohammad T., Fatima U., Singh I.K., Singh A., Atif S.M., Hariprasad G., Hasan G.M., Hassan M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim. Biophys. Acta, Mol. Basis Dis. 2020;1866 doi: 10.1016/j.bbadis.2020.165878. PubMed DOI PMC
Nasir M., Bean H.D., Smolinska A., Rees C.A., Zemanick E.T., Hill J.E. Volatile molecules from bronchoalveolar lavage fluid can ‘rule-in’ Pseudomonas aeruginosa and ‘rule-out’ Staphylococcus aureus infections in cystic fibrosis patients. Sci. Rep. 2018;8:826. doi: 10.1038/s41598-017-18491-8. PubMed DOI PMC
Ocampos F.M.M., Menezes L.R.A., Dutra L.M., Santos M.F.C., Ali S., Barison A. EMagRes. John Wiley & Sons, Ltd; Chichester, UK: 2017. NMR in chemical ecology: an overview highlighting the main NMR approaches; pp. 325–342. DOI
Oh K.-Y., Kang M.-J., Choi W.-A., Kwon J.-W., Kim B.-J., Yu J., Hong S.-J. Association between serum IgE levels and the CTLA4 +49A/G and FCER1B -654C/T polymorphisms in Korean children with asthma. Allergy Asthma Immunol. Res. 2010;2:127. doi: 10.4168/aair.2010.2.2.127. PubMed DOI PMC
Owen D.H., Katz D.F. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J. Androl. 2005;26:459–469. doi: 10.2164/jandrol.04104. PubMed DOI
O'Neill L.A.J., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70. PubMed DOI PMC
Pai M., Chan B., Stall N.M., Grill A., Ivers N., Maltsev A., Miller K.J., Odutayo A., Razak F., Schull M., Schwartz B., Sholzberg M., Steiner R., Wilson S., Neil U., Juni P., Morris A.M. 2021. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT) Following Adenovirus Vector COVID-19 Vaccination. DOI
Palleria C., di Paolo A., Giofrè C., Caglioti C., Leuzzi G., Siniscalchi A., de Sarro G., Gallelli L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. 2013;18:601–610. http://www.ncbi.nlm.nih.gov/pubmed/24516494 PubMed PMC
Paoli D., Pallotti F., Colangelo S., Basilico F., Mazzuti L., Turriziani O., Antonelli G., Lenzi A., Lombardo F. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J. Endocrinol. Invest. 2020;43:1819–1822. doi: 10.1007/s40618-020-01261-1. PubMed DOI PMC
Park J.H., Pyun W.Y., Park H.W. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells. 2020;9:2308. doi: 10.3390/cells9102308. PubMed DOI PMC
Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L., Pérez Marc G., Moreira E.D., Zerbini C., Bailey R., Swanson K.A., Roychoudhury S., Koury K., Li P., Kalina W.v., Cooper D., Frenck R.W., Hammitt L.L., Türeci Ö., Nell H., Schaefer A., Ünal S., Tresnan D.B., Mather S., Dormitzer P.R., Şahin U., Jansen K.U., Gruber W.C. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 2020;383:2603–2615. doi: 10.1056/NEJMoa2034577. PubMed DOI PMC
Pottegård A., Lund L.C., Karlstad Ø., Dahl J., Andersen M., Hallas J., Lidegaard Ø., Tapia G., Gulseth H.L., Ruiz P.L.-D., Watle S.V., Mikkelsen A.P., Pedersen L., Sørensen H.T., Thomsen R.W., Hviid A. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population based cohort study. BMJ. 2021;373 doi: 10.1136/bmj.n1114. PubMed DOI PMC
Pudakalakatti S., Audia A., Mukhopadhyay A., Enriquez J.S., Bourgeois D., Tayob N., Zacharias N.M., Millward S.W., Carson D., Farach-Carson M.C., Lang F.F., Heimberger A.B., Bhat K.P., Bhattacharya P.K. NMR spectroscopy-based metabolomics of platelets to analyze brain tumors. Report. 2021;4:32. doi: 10.3390/reports4040032. PubMed DOI PMC
Puskarich M.A., Finkel M.A., Karnovsky A., Jones A.E., Trexel J., Harris B.N., Stringer K.A. Pharmacometabolomics of l-carnitine treatment response phenotypes in patients with septic shock. Ann. Am. Thorac. Soc. 2015;12:46–56. doi: 10.1513/AnnalsATS.201409-415OC. PubMed DOI PMC
Rahimpour E., Khoubnasabjafari M., Jouyban-Gharamaleki V., Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal. Bioanal. Chem. 2018;410:6411–6440. doi: 10.1007/s00216-018-1259-4. PubMed DOI
Rai R.K., Azim A., Sinha N., Sahoo J.N., Singh C., Ahmed A., Saigal S., Baronia A.K., Gupta D., Gurjar M., Poddar B., Singh R.K. Metabolic profiling in human lung injuries by high-resolution nuclear magnetic resonance spectroscopy of bronchoalveolar lavage fluid (BALF) Metabolomics. 2013;9:667–676. doi: 10.1007/s11306-012-0472-y. DOI
Rambe D.S., del Giudice G., Rossi S., Sanicas M. Safety and mechanism of action of licensed vaccine adjuvants. Int. Curr. Pharmaceut. J. 2015;4:420–431. doi: 10.3329/icpj.v4i8.24024. DOI
Ren W., Duan J., Yin J., Liu G., Cao Z., Xiong X., Chen S., Li T., Yin Y., Hou Y., Wu G. Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids. 2014;46:2403–2413. doi: 10.1007/s00726-014-1793-0. PubMed DOI
Ren W., Rajendran R., Zhao Y., Tan B., Wu G., Bazer F.W., Zhu G., Peng Y., Huang X., Deng J., Yin Y. Amino acids as mediators of metabolic cross talk between host and pathogen. Front. Immunol. 2018;9:319. doi: 10.3389/fimmu.2018.00319. PubMed DOI PMC
Rose J., McCullough P.A. A report on myocarditis adverse events in the U.S. Vaccine adverse events reporting system (VAERS) in association with COVID-19 injectable biological products. Curr. Probl. Cardiol. 2021 doi: 10.1016/j.cpcardiol.2021.101011. PubMed DOI PMC
Rueedi R., Mallol R., Raffler J., Lamparter D., Friedrich N., Vollenweider P., Waeber G., Kastenmüller G., Kutalik Z., Bergmann S. Metabomatching: using genetic association to identify metabolites in proton NMR spectroscopy. PLoS Comput. Biol. 2017;13 doi: 10.1371/journal.pcbi.1005839. PubMed DOI PMC
Salam A.P., Horby P.W. The breadth of viruses in human semen. Emerg. Infect. Dis. 2017;23:1922–1924. doi: 10.3201/eid2311.171049. PubMed DOI PMC
Salvi N., Bessa L.M., Guseva S., Camacho-Zarco A., Maurin D., Perez L.M., Malki A., Hengesbach M., Korn S.M., Schlundt A., Schwalbe H., Blackledge M. 1H, 13C and 15N backbone chemical shift assignments of SARS-CoV-2 nsp3a. Biomol. NMR Assign. 2021;15:173–176. doi: 10.1007/s12104-020-10001-8. PubMed DOI PMC
Santos A.D.C., Dutra L.M., Menezes L.R.A., Santos M.F.C., Barison A. Forensic NMR spectroscopy: just a beginning of a promising partnership. TrAC, Trends Anal. Chem. 2018;107:31–42. doi: 10.1016/j.trac.2018.07.015. DOI
Sapkota D., Søland T.M., Galtung H.K., Sand L.P., Giannecchini S., To K.K.W., Mendes-Correa M.C., Giglio D., Hasséus B., Braz-Silva P.H. COVID-19 salivary signature: diagnostic and research opportunities. J. Clin. Pathol. 2020 doi: 10.1136/jclinpath-2020-206834. jclinpath-2020-206834. PubMed DOI
Schnieders R., Peter S.A., Banijamali E., Riad M., Altincekic N., Bains J.K., Ceylan B., Fürtig B., Grün J.T., Hengesbach M., Hohmann K.F., Hymon D., Knezic B., Oxenfarth A., Petzold K., Qureshi N.S., Richter C., Schlagnitweit J., Schlundt A., Schwalbe H., Stirnal E., Sudakov A., Vögele J., Wacker A., Weigand J.E., Wirmer-Bartoschek J., Wöhnert J. 1H, 13C and 15N chemical shift assignment of the stem-loop 5a from the 5′-UTR of SARS-CoV-2. Biomol. NMR Assign. 2021;15:203–211. doi: 10.1007/s12104-021-10007-w. PubMed DOI PMC
Schultz N.H., Sørvoll I.H., Michelsen A.E., Munthe L.A., Lund-Johansen F., Ahlen M.T., Wiedmann M., Aamodt A.-H., Skattør T.H., Tjønnfjord G.E., Holme P.A. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 2021;384:2124–2130. doi: 10.1056/NEJMoa2104882. PubMed DOI PMC
Serkova N.J., Davis D.M., Steiner J., Agarwal R. Methods Mol Biol, Methods Mol Biol. 2019. Quantitative NMR-based metabolomics on tissue biomarkers and its translation into in vivo magnetic resonance spectroscopy; pp. 369–387. PubMed DOI
Sharma S., Varani G. NMR structure of Dengue West Nile viruses stem-loop B: a key cis-acting element for flavivirus replication. Biochem. Biophys. Res. Commun. 2020;531:522–527. doi: 10.1016/j.bbrc.2020.07.115. PubMed DOI PMC
Sharma V., Chitranshi N., Agarwal A.K. Significance and biological importance of pyrimidine in the microbial World. Int. J. Med. Chem. 2014:1–31. doi: 10.1155/2014/202784. 2014. PubMed DOI PMC
Shen B., Yi X., Sun Y., Bi X., Du J., Zhang C., Quan S., Zhang F., Sun R., Qian L., Ge W., Liu W., Liang S., Chen H., Zhang Y., Li J., Xu J., He Z., Chen B., Wang J., Yan H., Zheng Y., Wang D., Zhu J., Kong Z., Kang Z., Liang X., Ding X., Ruan G., Xiang N., Cai X., Gao H., Li L., Li S., Xiao Q., Lu T., Zhu Y., Liu H., Chen H., Guo T. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182:59–72. doi: 10.1016/j.cell.2020.05.032. e15. PubMed DOI PMC
Shi J., Wen Z., Zhong G., Yang H., Wang C., Huang B., Liu R., He X., Shuai L., Sun Z., Zhao Y., Liu P., Liang L., Cui P., Wang J., Zhang X., Guan Y., Tan W., Wu G., Chen H., Bu Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 1979;368:1016–1020. doi: 10.1126/science.abb7015. 2020. PubMed DOI PMC
Silwood C.J.L., Lynch E., Claxson A.W.D., Grootveld M.C. 1 H and 13 C NMR spectroscopic analysis of human saliva. J. Dent. Res. 2002;81:422–427. doi: 10.1177/154405910208100613. PubMed DOI
Siu Y.L., Teoh K.T., Lo J., Chan C.M., Kien F., Escriou N., Tsao S.W., Nicholls J.M., Altmeyer R., Peiris J.S.M., Bruzzone R., Nal B. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 2008;82:11318–11330. doi: 10.1128/JVI.01052-08. PubMed DOI PMC
Skorupa A., Ciszek M., Chmielik E., Boguszewicz Ł., Oczko-Wojciechowska M., Kowalska M., Rusinek D., Tyszkiewicz T., Kluczewska-Gałka A., Czarniecka A., Jarząb B., Sokół M. Shared and unique metabolic features of the malignant and benign thyroid lesions determined with use of 1H HR MAS NMR spectroscopy. Sci. Rep. 2021;11:1344. doi: 10.1038/s41598-020-79565-8. PubMed DOI PMC
Smith C.W., Kardeby C., Di Y., Lowe G.C., Lester W.A., Watson S.P., Nicolson P.L.R. Platelet activation by vaccine-induced immune thrombotic thrombocytopenia (VITT) patient serum is blocked by COX, P2Y12 and kinase inhibitors. medRxiv. 2021:2021. doi: 10.1101/2021.04.24.21255655. 04.24.21255655. DOI
Snee R.D. Computer-aided design of experiments—some practical experiences. J. Qual. Technol. 1985;17:222–236. doi: 10.1080/00224065.1985.11978972. DOI
Speiser D.E., Bachmann M.F. COVID-19: mechanisms of vaccination and immunity. Vaccines (Basel) 2020;8:404. doi: 10.3390/vaccines8030404. PubMed DOI PMC
Sturm S., Högner C., Seger C., Stuppner H. Combining HPLC-DAD-QTOF-MS and HPLC-SPE-NMR to monitor in vitro vitetrifolin D phase I and II metabolism. Metabolites. 2021;11 doi: 10.3390/METABO11080529/S1. PubMed DOI PMC
Sun S., Zhang X., Lan R., Xin M., Hao Z., You S., Xu Y., Wu J., Dang L. Biological functions and large-scale profiling of protein glycosylation in human semen. J. Proteome Res. 2020;19:3877–3889. doi: 10.1021/acs.jproteome.9b00795. PubMed DOI
Sutton G., Fry E., Carter L., Sainsbury S., Walter T., Nettleship J., Berrow N., Owens R., Gilbert R., Davidson A., Siddell S., Poon L.L.M., Diprose J., Alderton D., Walsh M., Grimes J.M., Stuart D.I. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure. 2004;12:341–353. doi: 10.1016/j.str.2004.01.016. PubMed DOI PMC
Tayanloo-Beik A., Sarvari M., Payab M., Gilany K., Alavi-Moghadam S., Gholami M., Goodarzi P., Larijani B., Arjmand B. OMICS insights into cancer histology; Metabolomics and proteomics approach. Clin. Biochem. 2020;84:13–20. doi: 10.1016/j.clinbiochem.2020.06.008. PubMed DOI
te Velthuis A.J.W., Arnold J.J., Cameron C.E., van den Worm S.H.E., Snijder E.J. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res. 2009;38:203–214. doi: 10.1093/nar/gkp904. PubMed DOI PMC
te Velthuis A.J.W., van den Worm S.H.E., Snijder E.J. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 2012;40:1737–1747. doi: 10.1093/nar/gkr893. PubMed DOI PMC
Teijaro J.R., Farber D.L. COVID-19 vaccines: modes of immune activation and future challenges. Nat. Rev. Immunol. 2021;21:195–197. doi: 10.1038/s41577-021-00526-x. PubMed DOI PMC
Thomas T., Stefanoni D., Reisz J.A., Nemkov T., Bertolone L., Francis R.O., Hudson K.E., Zimring J.C., Hansen K.C., Hod E.A., Spitalnik S.L., D'Alessandro A. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020;5 doi: 10.1172/jci.insight.140327. PubMed DOI PMC
Tian W., Li D., Zhang N., Bai G., Yuan K., Xiao H., Gao F., Chen Y., Wong C.C.L., Gao G.F. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an “O-Follow-N” rule. Cell Res. 2021;31:1123–1125. doi: 10.1038/s41422-021-00545-2. PubMed DOI PMC
Tonelli M., Rienstra C., Anderson T.K., Kirchdoerfer R., Henzler-Wildman K. 1H, 13C and 15N backbone and side chain chemical shift assignments of the SARS-CoV-2 non-structural protein 7. Biomol. NMR Assign. 2021;15:73–77. doi: 10.1007/s12104-020-09985-0. PubMed DOI PMC
Trypsteen W., van Cleemput J., van Snippenberg W., Gerlo S., Vandekerckhove L. On the whereabouts of SARS-CoV-2 in the human body: a systematic review. PLoS Pathog. 2020;16 doi: 10.1371/journal.ppat.1009037. PubMed DOI PMC
Vandeginste B.G.M., Massart D.L., Buydens L.M.C., de Jong S., Lewi P.J., Smeyers-Verbeke J. Data Handling in Science and Technology. 1998. Multivariate calibration; pp. 349–381. DOI
V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19:155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC
Wacker A., Weigand J.E., Akabayov S.R., Altincekic N., Bains J.K., Banijamali E., Binas O., Castillo-Martinez J., Cetiner E., Ceylan B., Chiu L.-Y., Davila-Calderon J., Dhamotharan K., Duchardt-Ferner E., Ferner J., Frydman L., Fürtig B., Gallego J., Grün J.T., Hacker C., Haddad C., Hähnke M., Hengesbach M., Hiller F., Hohmann K.F., Hymon D., de Jesus V., Jonker H., Keller H., Knezic B., Landgraf T., Löhr F., Luo L., Mertinkus K.R., Muhs C., Novakovic M., Oxenfarth A., Palomino-Schätzlein M., Petzold K., Peter S.A., Pyper D.J., Qureshi N.S., Riad M., Richter C., Saxena K., Schamber T., Scherf T., Schlagnitweit J., Schlundt A., Schnieders R., Schwalbe H., Simba-Lahuasi A., Sreeramulu S., Stirnal E., Sudakov A., Tants J.-N., Tolbert B.S., Vögele J., Weiß L., Wirmer-Bartoschek J., Wirtz Martin M.A., Wöhnert J., Zetzsche H. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res. 2020;48:12415–12435. doi: 10.1093/nar/gkaa1013. PubMed DOI PMC
Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323:1843–1844. doi: 10.1001/jama.2020.3786. PubMed DOI PMC
Whiley L., Chappell K.E., D'Hondt E., Lewis M.R., Jiménez B., Snowden S.G., Soininen H., Kłoszewska I., Mecocci P., Tsolaki M., Vellas B., Swann J.R., Hye A., Lovestone S., Legido-Quigley C., Holmes E. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer's disease. Alzheimer's Res. Ther. 2021;13:20. doi: 10.1186/s13195-020-00741-z. PubMed DOI PMC
Wold S. Pattern recognition by means of disjoint principal components models. Pattern Recogn. 1976;8:127–139. doi: 10.1016/0031-3203(76)90014-5. DOI
Wold S., Antti H., Lindgren F., Öhman J. Orthogonal signal correction of near-infrared spectra. Chemometr. Intell. Lab. Syst. 1998;44:175–185. doi: 10.1016/S0169-7439(98)00109-9. DOI
Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17. doi: 10.1007/s00726-009-0269-0. PubMed DOI
Wu Q., Zhou L., Sun X., Yan Z., Hu C., Wu J., Xu L., Li X., Liu H., Yin P., Li K., Zhao J., Li Y., Wang X., Li Y., Zhang Q., Xu G., Chen H. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci. Rep. 2017;7:9110. doi: 10.1038/s41598-017-09536-z. PubMed DOI PMC
Wu D., Shu T., Yang X., Song J.-X., Zhang M., Yao C., Liu W., Huang M., Yu Y., Yang Q., Zhu T., Xu J., Mu J., Wang Y., Wang H., Tang T., Ren Y., Wu Y., Lin S.-H., Qiu Y., Zhang D.-Y., Shang Y., Zhou X. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020;7:1157–1168. doi: 10.1093/nsr/nwaa086. PubMed DOI PMC
Xia S., Duan K., Zhang Y., Zhao D., Zhang H., Xie Z., Li X., Peng C., Zhang Y., Zhang W., Yang Y., Chen W., Gao X., You W., Wang X., Wang Z., Shi Z., Wang Y., Yang X., Zhang L., Huang L., Wang Q., Lu J., Yang Y., Guo J., Zhou W., Wan X., Wu C., Wang W., Huang S., Du J., Meng Z., Pan A., Yuan Z., Shen S., Guo W., Yang X. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes. JAMA. 2020;324:951. doi: 10.1001/jama.2020.15543. PubMed DOI PMC
Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., Li T., Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020;12:8. doi: 10.1038/s41368-020-0074-x. PubMed DOI PMC
Yang J., Zheng Y., Gou X., Pu K., Chen Z., Guo Q., Ji R., Wang H., Wang Y., Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017. PubMed DOI PMC
Zhang Y., Zeng G., Pan H., Li C., Kan B., Hu Y., Mao H., Xin Q., Chu K., Han W., Chen Z., Tang R., Yin W., Chen X., Gong X., Qin C., Hu Y., Liu X., Cui G., Jiang C., Zhang H., Li J., Yang M., Lian X., Song Y., Lu J., Wang X., Xu M., Gao Q., Zhu F. Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial. medRxiv. 2020 doi: 10.1101/2020.07.31.20161216. 2020.07.31.20161216. DOI
Zhang N., Gong Y., Meng F., Shi Y., Wang J., Mao P., Chuai X., Bi Y., Yang P., Wang F. Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. Sci. China Life Sci. 2021;64:486–488. doi: 10.1007/s11427-020-1783-9. PubMed DOI PMC