Single-Particle Tracking and Trajectory Analysis of Fluorescent Nanodiamonds in Cell-Free Environment and Live Cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
ERC-2016-STG
European Research Council - International
714289
European Research Council - International
PubMed
36038355
DOI
10.1002/smll.202201395
Knihovny.cz E-zdroje
- Klíčová slova
- fluorescent nanodiamonds, free radicals, magnetometry, single-particle tracking,
- MeSH
- diamant MeSH
- fluorescenční barviva MeSH
- glycerol MeSH
- nanodiamanty * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diamant MeSH
- fluorescenční barviva MeSH
- glycerol MeSH
- nanodiamanty * MeSH
Diamond magnetometry can provide new insights on the production of free radicals inside live cells due to its high sensitivity and spatial resolution. However, the measurements often lack intracellular context for the recorded signal. In this paper, the possible use of single-particle tracking and trajectory analysis of fluorescent nanodiamonds (FNDs) to bridge that gap is explored. It starts with simulating a set of different possible scenarios of a particle's movement, reflecting different modes of motion, degrees of confinement, as well as shapes and sizes of that confinement. Then, the insights from the analysis of the simulated trajectories are applied to describe the movement of FNDs in glycerol solutions. It is shown that the measurements are in good agreement with the previously reported findings and that trajectory analysis yields meaningful results, when FNDs are tracked in a simple environment. Then the much more complex situation of FNDs moving inside a live cell is focused. The behavior of the particles after different incubation times is analyzed, and the possible intracellular localization of FNDs is deducted from their trajectories. Finally, this approach is combined with long-term magnetometry methods to obtain maps of the spin relaxation dynamics (or T1) in live cells, as FNDs move through the cytosol.
Zobrazit více v PubMed
N. J. McLaughlin, H. Wang, M. Huang, E. Lee-Wong, L. Hu, H. Lu, G. Q. Yan, G. Gu, C. Wu, Y. Z. You, C. R. Du, Nano Lett. 2021, 21, 7277.
L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, P. Maletinsky, Science 2019, 364, 973.
Y. Dovzhenko, F. Casola, S. Schlotter, T. X. Zhou, F. Büttner, R. L. Walsworth, G. S. D. Beach, A. Yacoby, Nat. Commun. 2018, 9, 2712.
T. Rendler, J. Neburkova, O. Zemek, J. Kotek, A. Zappe, Z. Chu, P. Cigler, J. Wrachtrup, Nat. Commun. 2017, 8, 14701.
J. Barton, M. Gulka, J. Tarabek, Y. Mindarava, Z. Wang, J. Schimer, H. Raabova, J. Bednar, M. B. Plenio, F. Jelezko, M. Nesladek, P. Cigler, ACS Nano 2020, 14, 12938.
F. P. Martínez, A. C. Nusantara, M. Chipaux, S. K. Padamati, R. Schirhagl, ACS Sens. 2020, 5, 3862.
M. Karadas, A. M. Wojciechowski, A. Huck, N. O. Dalby, U. L. Andersen, A. Thielscher, Sci. Rep. 2018, 8, 4503.
L. Nie, A. C. Nusantara, V. G. Damle, R. Sharmin, E. P. P. Evans, S. R. Hemelaar, K. J. van der Laan, R. Li, F. P. P. Martinez, T. Vedelaar, M. Chipaux, R. Schirhagl, Sci. Adv. 2021, 7, eabf0573.
R. Sharmin, T. Hamoh, A. Sigaeva, A. Mzyk, V. G. Damle, A. Morita, T. Vedelaar, R. Schirhagl, ACS Sens. 2021, 6, 4349.
K. van der Laan, M. Hasani, T. Zheng, R. Schirhagl, Small 2018, 14, 1703838.
Y. Y. Hui, W. W. W. Hsiao, S. Haziza, M. Simonneau, F. Treussart, H. C. Chang, Curr. Opin. Solid State Mater. Sci. 2017, 21, 35.
D. A. Simpson, A. J. Thompson, M. Kowarsky, N. F. Zeeshan, M. S. J. Barson, L. T. Hall, Y. Yan, S. Kaufmann, B. C. Johnson, T. Ohshima, F. Caruso, R. E. Scholten, R. B. Saint, M. J. Murray, L. C. L. Hollenberg, Biomed. Opt. Express 2014, 5, 1250.
W. Liu, F. Yu, J. Yang, B. Xiang, P. Xiao, L. Wang, Adv. Funct. Mater. 2016, 26, 365.
S. Haziza, N. Mohan, Y. Loe-Mie, A. M. Lepagnol-Bestel, S. Massou, M. P. Adam, X. L. Le, J. Viard, C. Plancon, R. Daudin, P. Koebel, E. Dorard, C. Rose, F. J. Hsieh, C. C. Wu, B. Potier, Y. Herault, C. Sala, A. Corvin, B. Allinquant, H. C. Chang, F. Treussart, M. Simonneau, Nat. Nanotechnol. 2017, 12, 322.
Y. Wu, S. Cao, M. N. A. Alam, M. Raabe, S. Michel-Souzy, Z. Wang, M. Wagner, A. Ermakova, J. J. L. M. Cornelissen, T. Weil, J. Mater. Chem. B 2021, 9, 5621.
P. Moscariello, M. Raabe, W. Liu, S. Bernhardt, H. Qi, U. Kaiser, Y. Wu, T. Weil, H. J. Luhmann, J. Hedrich, Small 2019, 15, 1902992.
F. J. Hsieh, S. Sotoma, H. H. Lin, C. Y. Cheng, T. Y. Yu, C. L. Hsieh, C. H. Lin, H. C. Chang, ACS Appl. Mater. Interfaces 2019, 11, 19774.
S. Sotoma, J. Iimura, R. Igarashi, K. M. Hirosawa, H. Ohnishi, S. Mizukami, K. Kikuchi, T. K. Fujiwara, M. Shirakawa, H. Tochio, Nanomaterials 2016, 6, 56.
C. P. Epperla, N. Mohan, C. W. Chang, C. C. Chen, H. C. Chang, Small 2015, 11, 6097.
B. Zhang, Y. Li, C. Y. Fang, C. C. Chang, C. S. Chen, Y. Y. Chen, H. C. Chang, Small 2009, 5, 2716.
Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, W. Fann, Nat. Nanotechnol. 2008, 3, 284.
C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, W. Fann, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 727.
T. Savin, P. S. Doyle, Biophys. J. 2005, 88, 623.
X. Michalet, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2010, 82, 041914.
R. Metzler, J. H. Jeon, A. G. Cherstvy, E. Barkai, Phys. Chem. Chem. Phys. 2014, 16, 24128.
E. Kepten, A. Weron, G. Sikora, K. Burnecki, Y. Garini, PLoS One 2015, 10, e0117722.
S. C. Weber, M. A. Thompson, W. E. Moerner, A. J. Spakowitz, J. A. Theriot, Biophys. J. 2012, 102, 2443.
M. P. Backlund, R. Joyner, W. E. Moerner, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2015, 91, 062716.
I. Medina, J. Deuerling, P. Kumari, S. Scholl, M. Rädle, Micromachines 2021, 12, 940.
Y. Hayashi, A. Puzenko, I. Balin, Y. E. Ryabov, Y. Feldman, J. Phys. Chem. B 2005, 109, 9174.
H. Nakagawa, T. Oyama, Front. Chem. 2019, 7, 731.
J. Bachler, V. Fuentes-Landete, D. A. Jahn, J. Wong, N. Giovambattista, T. Loerting, Phys. Chem. Chem. Phys. 2016, 18, 11058.
H. Zheng, S. A. Claridge, A. M. Minor, A. P. Alivisatos, U. Dahmen, Nano Lett. 2009, 9, 2460.
A. Volk, C. J. Kähler, Exp. Fluids 2018, 59, 75.
Z. Chu, S. Zhang, B. Zhang, C. Zhang, C. Y. Fang, I. Rehor, P. Cigler, H. C. Chang, G. Lin, R. Liu, Q. Li, Sci. Rep. 2014, 4, 4495.
S. Kauanova, A. Urazbayev, I. Vorobjev, Front. Cell Dev. Biol. 2021, 9, 391.
E. Granger, G. McNee, V. Allan, P. Woodman, Semin. Cell Dev. Biol. 2014, 31, 20.
C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, H. C. Chang, Small 2011, 7, 3363.
B. Halliwell, Lancet 1994, 344, 721.
L. M. Paardekooper, I. Dingjan, P. T. A. Linders, A. H. J. Staal, S. M. Cristescu, W. C. E. P. Verberk, G. van den Bogaart, Front. Immunol. 2019, 10, 1216.
F. Liu, J. Wen, S. S. Chen, S. Sun, Chem. Commun. 2018, 54, 1371.
B. Zhang, X. Feng, H. Yin, Z. Ge, Y. Wang, Z. Chu, H. Raabova, J. Vavra, P. Cigler, R. Liu, Y. Wang, Q. Li, Sci. Rep. 2017, 7, 46462.
J. Havlik, V. Petrakova, I. Rehor, V. Petrak, M. Gulka, J. Stursa, J. Kucka, J. Ralis, T. Rendler, S. Y. Lee, R. Reuter, J. Wrachtrup, M. Ledvina, M. Nesladek, P. Cigler, Nanoscale 2013, 5, 3208.
J. Stursa, J. Havlik, V. Petrakova, M. Gulka, J. Ralis, V. Zach, Z. Pulec, V. Stepan, S. A. Zargaleh, M. Ledvina, M. Nesladek, F. Treussart, P. Cigler, Carbon 2016, 96, 812.
I. Rehor, P. Cigler, Diamond Relat. Mater. 2014, 46, 21.
A. Morita, T. Hamoh, F. P. P. Martinez, M. Chipaux, A. Sigaeva, C. Mignon, K. J. van der Laan, A. Hochstetter, R. Schirhagl, Nanomaterials 2020, 10, 516.