Rho-kinase inhibition ameliorates non-alcoholic fatty liver disease in type 2 diabetic rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36047723
PubMed Central
PMC9841803
DOI
10.33549/physiolres.934869
PII: 934869
Knihovny.cz E-zdroje
- MeSH
- diabetes mellitus 2. typu * komplikace farmakoterapie MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- experimentální diabetes mellitus * komplikace farmakoterapie metabolismus MeSH
- inzulinová rezistence * MeSH
- játra metabolismus MeSH
- kinázy asociované s Rho metabolismus MeSH
- krysa rodu Rattus MeSH
- lipidy MeSH
- nealkoholová steatóza jater * farmakoterapie patologie MeSH
- tělesná hmotnost MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fasudil MeSH Prohlížeč
- kinázy asociované s Rho MeSH
- lipidy MeSH
Non-alcoholic fatty liver disease (NAFLD) is linked to type 2 diabetes mellitus (T2DM), obesity, and insulin resistance. The Rho/ROCK pathway had been involved in the pathophysiology of diabetic complications. This study was designed to assess the possible protective impacts of the Rho/Rho-associated coiled-coil containing protein kinase (Rho/ROCK) inhibitor fasudil against NAFLD in T2DM rats trying to elucidate the underlying mechanisms. Animals were assigned into control rats, non-treated diabetic rats with NAFLD, and diabetic rats with NAFLD that received fasudil treatment (10 mg/kg per day) for 6 weeks. The anthropometric measures and biochemical analyses were performed to assess metabolic and liver function changes. The inflammatory and oxidative stress markers and the histopathology of rat liver tissues were also investigated. Groups with T2DM showed increased body weight, serum glucose, and insulin resistance. They exhibited disturbed lipid profile, enhancement of inflammatory cytokines, and deterioration of liver function. Fasudil administration reduced body weight, insulin resistance, and raised liver enzymes. It improved the disturbed lipid profile and attenuated liver inflammation. Moreover, it slowed down the progression of high fat diet (HFD)-induced liver injury and reduced the caspase-3 expression. The present study demonstrated beneficial amelioration effect of fasudil on NAFLD in T2DM. The mechanisms underlying these impacts are improving dyslipidemia, attenuating oxidative stress, downregulated inflammation, improving mitochondrial architecture, and inhibiting apoptosis.
Zobrazit více v PubMed
Giacco F, Brownlee M, Schmidt AM. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–1070. doi: 10.1161/CIRCRESAHA.110.223545. PubMed DOI PMC
Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66:1138–1153. doi: 10.1136/gutjnl-2017-313884. PubMed DOI
Li L, Lou X, Zhang K, Yu F, Zhao Y, Jiang P. Hydrochloride fasudil attenuates brain injury in ICH rats. Transl Neurosci. 2020;11:75–86. doi: 10.1515/tnsci-2020-0100. PubMed DOI PMC
Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer. 2013;2:367–383. doi: 10.1159/000343852. PubMed DOI PMC
Akshintala D, Chugh R, Amer F, Cusi K. Nonalcoholic fatty liver disease: the overlooked complication of type 2 diabetes. Endotext [Internet] 2019
Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol. 2013;28:68–76. doi: 10.1111/jgh.12212. PubMed DOI
Matsuzaka T, Shimano H. New perspective on type 2 diabetes, dyslipidemia and non-alcoholic fatty liver disease. J Diabetes Investig. 2020;11:532–534. doi: 10.1111/jdi.13258. PubMed DOI PMC
Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25:1767–1775. doi: 10.1161/01.ATV.0000176193.83629.c8. PubMed DOI
Huang H, Lee S-H, Sousa-Lima I, Kim SS, Hwang WM, Dagon Y, Yang W-M, et al. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J Clin Invest. 2018;128:5335–5350. doi: 10.1172/JCI63562. PubMed DOI PMC
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66:789–800. doi: 10.1016/j.molcel.2017.05.032. PubMed DOI PMC
Komers R. Rho kinase inhibition in diabetic kidney disease. Br J Clin Pharmacol. 2013;76:551–559. doi: 10.1111/bcp.12196. PubMed DOI PMC
Zhou H, Fang C, Zhang L, Deng Y, Wang M, Meng F. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, ameliorates hepatic fibrosis in rats with type 2 diabetes. Chin Med J. 2014;127:225–231. https://doi:10.3760/cma.j.issn.0366-6999.20131917 . PubMed DOI
Musabayane C, Mahlalela N, Shode F, Ojewole J. Effects of Syzygium cordatum (Hochst.)[Myrtaceae] leaf extract on plasma glucose and hepatic glycogen in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2005;97(3):485–490. doi: 10.1016/j.jep.2004.12.005. PubMed DOI
Nascimento AF, Sugizaki MM, Leopoldo AS, Lima-Leopoldo AP, Nogueira CR, Novelli ELB, Padovani CR, Cicogna AC. Misclassification probability as obese or lean in hypercaloric and normocaloric diet. Biol Res. 2008;41:253–259. doi: 10.4067/S0716-97602008000300002. PubMed DOI
Novelli E, Diniz Y, Galhardi C, Ebaid G, Rodrigues H, Mani F, Fernandes AAH, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41:111–119. doi: 10.1258/002367707779399518. PubMed DOI
Alghannam MA, Khalefa AA, Alaleem D, Ahmad AA. Plasma vaspin levels in relation to diet induced metabolic disturbance in rats. Int J Diabetes Res. 2013;2:112–122. doi: 10.5923/j.diabetes.20130206.04. DOI
Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, Matsuda M, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002;51:2734–2741. doi: 10.2337/diabetes.51.9.2734. PubMed DOI
Ebrahim HA, Alzamil NM, Al-Ani B, Haidara MA, Kamar SS, Dawood AF. Suppression of knee joint osteoarthritis induced secondary to type 2 diabetes mellitus in rats by resveratrol: role of glycated haemoglobin and hyperlipidaemia and biomarkers of inflammation and oxidative stress. Arch Physiol Biochem. 2020:1–8. doi: 10.1080/13813455.2020.1771378. PubMed DOI
Sabir U, Irfan HM, Alamgeer AU, Althobaiti YS, Asim MH. Reduction of hepatic steatosis, oxidative stress, inflammation, ballooning and insulin resistance after therapy with safranal in NAFLD animal model: a new approach. J Inflamm Res. 2022;15:1293. doi: 10.2147/JIR.S354878. PubMed DOI PMC
Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, Monauni T, Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23:57–63. doi: 10.2337/diacare.23.1.57. PubMed DOI
Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28:2077–2080. doi: 10.1093/clinchem/28.10.2077. PubMed DOI
Nauck M, Marz W, Jarausch J, Cobbaert C, Sagers A, Bernard D, Delanghe J, et al. Multicenter evaluation of a homogeneous assay for HDL-cholesterol without sample pretreatment. Clin Chem. 1997;43:1622–1629. doi: 10.1093/clinchem/43.9.1622. PubMed DOI
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502. doi: 10.1093/clinchem/18.6.499. PubMed DOI
Foster LB, Dunn RT. Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method. Clin Chem. 1973;19:338–340. PubMed
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Vassault A. Lactate dehydrogenase: UV-method with pyruvate and NADH. Methods Enzym Anal. 1984;3:118–126.
Wack RF, Warmolts DI. Fish medicine. JSTOR. 1994;2:548–549. doi: 10.2307/1447015. DOI
Song L, Qu D, Zhang Q, Jiang J, Zhou H, Jiang R, Li Y, et al. Phytosterol esters attenuate hepatic steatosis in rats with non-alcoholic fatty liver disease rats fed a high-fat diet. Sci Rep. 2017;7:41604. doi: 10.1038/srep41604. PubMed DOI PMC
Varshey R, Kale R. Effect of calmodulin antagonist on radiation induced lipid peroxidation in microsome. Int J Rad Biol. 1990;58:733–743. doi: 10.1080/09553009014552121. PubMed DOI
Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–3175. doi: 10.1016/S0021-9258(19)45228-9. PubMed DOI
Rajurkar RB, Khan ZH, Gujar GT. Studies on levels of glutathione S-transferase, its isolation and purification from Helicoverpa armigera. Curr Sci Ind. 2003;85:1355–1360.
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–169. PubMed
Altunkaynak Z. Effects of high fat diet induced obesity on female rat livers (a histochemical study) Eur J Gen Med. 2005;2:100–109. doi: 10.29333/ejgm/82319. DOI
Kleiner D, Brunt E, Van Natta M, Behling C, Contos M, Cummings O, Ferrell LD, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI
Zhao C-Y, Jiang L-L, Li L, Deng Z-J, Liang B-L, Li J-M. Peroxisome proliferator activated receptor-γ in pathogenesis of experimental fatty liver disease. World J Gastroenterol. 2004;10:1329. doi: 10.3748/wjg.v10.i9.1329. PubMed DOI PMC
Mohamed HE, Elswefy SE, Rashed LA, Younis NN, Shaheen MA, Ghanim AM. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model. Exp Biol Med. 2016;241:581–591. doi: 10.1177/1535370215627219. PubMed DOI PMC
El-Sherbiny M, Eldosoky M, El-Shafey M, Othman G, Elkattawy HA, Bedir T, Elsherbiny NM. Vitamin D nanoemulsion enhances hepatoprotective effect of conventional vitamin D in rats fed with a high-fat diet. Chem Biol Interact. 2018;288:65–75. doi: 10.1016/j.cbi.2018.04.010. PubMed DOI
Dozic B, Glumac S, Boricic N, Dozic M, Anicic B, Boricic I. Immunohistochemical expression of caspases 9 and 3 in adenoid cystic carcinoma of salivary glands and association with clinicopathological parameters. J BUON. 2016;21:152–160. PubMed
Woods AE, Stirling JW. Transmission electron microscopy. Bancroft’s Theory and Practice of Histological Techniques. In: Kim Suvarna S, Layton C, Bancroft JD, editors. Science Direct. 2018. pp. 434–475. DOI
Harris EH. Elevated liver function tests in type 2 diabetes. Clin Diabetes. 2005;23:115–119. doi: 10.2337/diaclin.23.3.115. DOI
Ma Z, Chu L, Liu H, Wang W, Li J, Yao W, Yi J, Gao Y. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats. Sci Rep. 2017;7:44819. doi: 10.1038/srep44819. PubMed DOI PMC
Toriniwa Y, Muramatsu M, Ishii Y, Riya E, Miyajima K, Ohshida S, Kitatani K, et al. Pathophysiological characteristics of non-alcoholic steatohepatitis-like changes in cholesterol-loaded type 2 diabetic rats. Physiol Res. 2018;67:601–612. doi: 10.33549/physiolres.933784. PubMed DOI
Batirel S, Bozaykut P, Altundag EM, Ozer NK, Mantzoros CS. The effect of irisin on antioxidant system in liver. Free Radic Biol Med. 2014;75(Suppl 1):S16. doi: 10.1016/j.freeradbiomed.2014.10.592. PubMed DOI
Fotbolcu H, Zorlu E. Nonalcoholic fatty liver disease as a multi-systemic disease. World J Gastroenterol. 2016;22:4079. doi: 10.3748/wjg.v22.i16.4079. PubMed DOI PMC
Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10:627–636. doi: 10.1038/nrgastro.2013.149. PubMed DOI
Jiang X, Ma H, Wang Y, Liu Y. Early life factors and type 2 diabetes mellitus. J Diabetes Res. 2013;2013:485082. doi: 10.1155/2013/485082. PubMed DOI PMC
Kikuchi Y, Yamada M, Imakiire T, Kushiyama T, Higashi K, Hyodo N, Yamamoto K, et al. A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats. J Endocrinol. 2007;192:595–603. doi: 10.1677/JOE-06-0045. PubMed DOI
Liu P-Y, Chen J-H, Lin L-J, Liao JK. Increased Rho kinase activity in a Taiwanese population with metabolic syndrome. J Am Coll Cardiol. 2007;49:1619–1624. doi: 10.1016/j.jacc.2006.12.043. PubMed DOI PMC
Tabur S, Oztuzcu S, Oguz E, Korkmaz H, Eroglu S, Ozkaya M, Demiryürek AT. Association of Rho/Rho-kinase gene polymorphisms and expressions with obesity-related metabolic syndrome. Eur Rev Med Pharmacol Sci. 2015;19:1680–1688. PubMed
Ono-Saito N, Niki I, Hidaka H. H-series protein kinase inhibitors and potential clinical applications. Pharmacol Ther. 1999;82:123–131. doi: 10.1016/S0163-7258(98)00070-9. PubMed DOI
Gaballah HH, El-Horany HE, Helal DS. Mitigative effects of the bioactive flavonol fisetin on high-fat/high-sucrose induced nonalcoholic fatty liver disease in rats. J Cell Biochem. 2019;120:12762–12774. doi: 10.1002/jcb.28544. PubMed DOI
Ibrahim RH, Fathy MA. Sexual dimorphism in serum kisspeptin level in experimentally induced non alcoholic fatty liver disease in adult albino rats. Am J Biomed Sci. 2018;10:115–128. doi: 10.5099/aj180200115. DOI
Chien M-Y, Ku Y-H, Chang J-M, Yang C-M, Chen C-H. Effects of herbal mixture extracts on obesity in rats fed a high-fat diet. J Food Drug Anal. 2016;24:594–601. doi: 10.1016/j.jfda.2016.01.012. PubMed DOI PMC
Ideta T, Shirakami Y, Miyazaki T, Kochi T, Sakai H, Moriwaki H, Shimizu M. The dipeptidyl peptidase-4 inhibitor teneligliptin attenuates hepatic lipogenesis via AMPK activation in non-alcoholic fatty liver disease model mice. Int J Mol Sci. 2015;16:29207–29218. doi: 10.3390/ijms161226156. PubMed DOI PMC
Xu L, Kitade H, Ni Y, Ota T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules. 2015;5:1563–1579. doi: 10.3390/biom5031563. PubMed DOI PMC
Kuroda S, Tashiro H, Kimura Y, Hirata K, Tsutada M, Mikuriya Y, Kobayashi T, et al. Rho-kinase inhibitor targeting the liver prevents ischemia/reperfusion injury in the steatotic liver without major systemic adversity in rats. Liver Transpl. 2015;21:123–131. doi: 10.1002/lt.24020. PubMed DOI
Anegawa G, Kawanaka H, Yoshida D, Konishi K, Yamaguchi S, Kinjo N, Taketomi A, et al. Defective endothelial nitric oxide synthase signaling is mediated by rho-kinase activation in rats with secondary biliary cirrhosis. Hepatology. 2008;47:966–977. doi: 10.1002/hep.22089. PubMed DOI
Takeda K, Jin MB, Fujita M, Fukai M, Sakurai T, Nakayama M, Taniguchi M, et al. A novel inhibitor of Rho-associated protein kinase, Y-27632, ameliorates hepatic ischemia and reperfusion injury in rats. Surgery. 2003;133:197–206. doi: 10.1067/msy.2003.59. PubMed DOI
Kanda T, Wakino S, Homma K, Yoshioka K, Tatematsu S, Hasegawa K, Takamatsu I, et al. Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J. 2006;20:169–171. doi: 10.1096/fj.05-4197fje. PubMed DOI
Jahani V, Kavousi A, Mehri S, Karimi G. Rho kinase, a potential target in the treatment of metabolic syndrome. Biomed Pharmacother. 2018;106:1024–1030. doi: 10.1016/j.biopha.2018.07.060. PubMed DOI
Noda K, Nakajima S, Godo S, Saito H, Ikeda S, Shimizu T, Enkhjargal B, et al. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice. PLoS One. 2014;9:e110446. doi: 10.1371/journal.pone.0110446. PubMed DOI PMC
Zhang Q-Q, Lu L-G. Nonalcoholic fatty liver disease: dyslipidemia, risk for cardiovascular complications, and treatment strategy. J Clin Transl Hepatol. 2015;3:78. doi: 10.14218/JCTH.2014.00037. PubMed DOI PMC
Noguchi M, Hosoda K, Fujikura J, Fujimoto M, Iwakura H, Tomita T, Ishii T, et al. Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis. J Biol Chem. 2007;282:29574–29583. doi: 10.1074/jbc.M705972200. PubMed DOI
Alosco ML, Gunstad J. The negative effects of obesity and poor glycemic control on cognitive function: a proposed model for possible mechanisms. Curr Diab Rep. 2014;14:1–7. doi: 10.1007/s11892-014-0495-z. PubMed DOI PMC
Mamdouh M, Shaban S, Ibrahim Abushouk A, Zaki MMM, Ahmed OM, Abdel-Daim MM. Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J Diabetes Res. 2017;2017:8095926. doi: 10.1155/2017/8095926. PubMed DOI PMC
Ma Z, Zhang J, Du R, Ji E, Chu L. Rho kinase inhibition by fasudil has anti-inflammatory effects in hypercholesterolemic rats. Biol Pharm Bull. 2011;34:1684–1689. doi: 10.1248/bpb.34.1684. PubMed DOI
Uchida T, Honjo M, Yamagishi R, Aihara M. The anti-inflammatory effect of ripasudil (K-115), a Rho kinase (ROCK) inhibitor, on endotoxin-induced uveitis in rats. Invest Ophthalmol Visual Sci. 2017;58:5584–5593. doi: 10.1167/iovs.17-22679. PubMed DOI
Hofni A, Shehata Messiha BA, Mangoura SA. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: a possible role of Rho kinase. Naunyn Schmiedebergs Arch Pharmacol. 2017;390:801–811. doi: 10.1007/s00210-017-1379-y. PubMed DOI
Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–1719. doi: 10.1161/hq1101.098486. PubMed DOI
Besse-Patin A, Léveillé M, Oropeza D, Nguyen BN, Prat A, Estall JL. Estrogen signals through peroxisome proliferator-activated Receptor-γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology. 2017;152:243–256. doi: 10.1053/j.gastro.2016.09.017. PubMed DOI
García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Grau M, Colina F, Muñoz-Yagüe T, Solís-Herruzo JA. High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice. Dis Model Mech. 2014;7:1287–1296. doi: 10.1242/dmm.016766. PubMed DOI PMC
Zhang R, Chu K, Zhao N, Wu J, Ma L, Zhu C, Chen X, et al. Corilagin alleviates nonalcoholic fatty liver disease in high-fat diet-induced C57BL/6 mice by ameliorating oxidative stress and restoring autophagic flux. Front Pharmacol. 2020;10:1693. doi: 10.3389/fphar.2019.01693. PubMed DOI PMC
Urbanova M, Mraz M, Ďurovcová V, Trachta P, Kloučková J, Kavalkova P, Haluzíková D, et al. The effect of very-low-calorie diet on mitochondrial dysfunction in subcutaneous adipose tissue and peripheral monocytes of obese subjects with type 2 diabetes mellitus. Physiol Res. 2017;66:811–822. doi: 10.33549/physiolres.933469. PubMed DOI
Guan P, Liang Y, Wang N. Fasudil alleviates pressure overload-induced heart failure by activating Nrf2-mediated antioxidant responses. J Cell Biochem. 2018;119:6452–6460. doi: 10.1002/jcb.26662. PubMed DOI
Guo R, Liu B, Zhou S, Zhang B, Xu Y. The protective effect of fasudil on the structure and function of cardiac mitochondria from rats with type 2 diabetes induced by streptozotocin with a high-fat diet is mediated by the attenuation of oxidative stress. Biomed Res Int. 2013;2013:430791. doi: 10.1155/2013/430791. PubMed DOI PMC
Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65:1049–1061. doi: 10.1016/j.metabol.2016.02.014. PubMed DOI PMC
Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, Kaneko T, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24:2661. doi: 10.3748/wjg.v24.i25.2661. PubMed DOI PMC
Thorlacius K, Slotta JE, Laschke MW, Wang Y, Menger MD, Jeppsson B, Thorlacius A. Protective effect of fasudil, a Rho-kinase inhibitor, on chemokine expression, leukocyte recruitment, and hepatocellular apoptosis in septic liver injury. J Leukoc Biol. 2006;79:923–931. doi: 10.1189/jlb.0705406. PubMed DOI
Ikeda H, Kume Y, Tejima K, Tomiya T, Nishikawa T, Watanabe N, Ohtomo N, et al. Rho-kinase inhibitor prevents hepatocyte damage in acute liver injury induced by carbon tetrachloride in rats. Am J Physiol Gastrointest Liver Physiol. 2007;293:G911–G917. doi: 10.1152/ajpgi.00210.2007. PubMed DOI