A sensitive and specific genetically-encoded potassium ion biosensor for in vivo applications across the tree of life

. 2022 Sep ; 20 (9) : e3001772. [epub] 20220906

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid36067248

Grantová podpora
P30 GM138396 NIGMS NIH HHS - United States
R01 GM095903 NIGMS NIH HHS - United States
U24 NS109107 NINDS NIH HHS - United States
FS-154310 CIHR - Canada
Howard Hughes Medical Institute - United States

Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically-encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically-encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.

Zobrazit více v PubMed

Palmer BF. Regulation of Potassium Homeostasis. Clin J Am Soc Nephrol. 2015;10:1050–1060. doi: 10.2215/CJN.08580813 PubMed DOI PMC

Udensi UK, Tchounwou PB. Potassium Homeostasis, Oxidative Stress, and Human Disease. Int J Clin Exp Physiol. 2017;4:111–122. doi: 10.4103/ijcep.ijcep_43_17 PubMed DOI PMC

Epstein W. The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol. 2003;75:293–320. doi: 10.1016/s0079-6603(03)75008-9 PubMed DOI

Beagle SD, Lockless SW. Unappreciated Roles for K+ Channels in Bacterial Physiology. Trends Microbiol. 2021;29:942–950. doi: 10.1016/j.tim.2020.11.005 PubMed DOI PMC

Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F, Nakano M, et al.. An expanded palette of genetically encoded Ca2+ indicators. Science. 2011;333:1888–1891. PubMed PMC

Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, et al.. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods. 2019;16:649–657. doi: 10.1038/s41592-019-0435-6 PubMed DOI

Frant MS, Ross JW Jr. Potassium ion specific electrode with high selectivity for potassium over sodium. Science. 1970;167:987–988. doi: 10.1126/science.167.3920.987 PubMed DOI

Minta A, Tsien RY. Fluorescent indicators for cytosolic sodium. J Biol Chem. 1989;264:19449–19457. PubMed

Wang Z, Detomasi TC, Chang CJ. A dual-fluorophore sensor approach for ratiometric fluorescence imaging of potassium in living cells. Chem Sci. 2020;12:1720–1729. doi: 10.1039/d0sc03844j PubMed DOI PMC

Liu J, Li F, Wang Y, Pan L, Lin P, Zhang B, et al.. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat Nanotechnol. 2020;1720–1729. PubMed

Liu J, Pan L, Shang C, Lu B, Wu R, Feng Y, et al.. A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci Adv. 2020;6:eaax9757. doi: 10.1126/sciadv.aax9757 PubMed DOI PMC

Ashraf KU, Josts I, Mosbahi K, Kelly SM, Byron O, Smith BO, et al.. The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor. Structure. 2016;24:741–749. doi: 10.1016/j.str.2016.03.017 PubMed DOI

Shen Y, Wu S-Y, Rancic V, Aggarwal A, Qian Y, Miyashita S-I, et al.. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun Biol. 2019;2:18. doi: 10.1038/s42003-018-0269-2 PubMed DOI PMC

Bischof H, Rehberg M, Stryeck S, Artinger K, Eroglu E, Waldeck-Weiermair M, et al.. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat Commun. 2017;8:1422. doi: 10.1038/s41467-017-01615-z PubMed DOI PMC

Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al.. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280:69–77. doi: 10.1126/science.280.5360.69 PubMed DOI

Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, et al.. Crystal structure of a potassium ion transporter, TrkH. Nature. 2011;471:336–340. PubMed PMC

Neupert-Laves K, Dobler M. The crystal structure of a K+ complex of valinomycin. Helv Chim Acta. 1975;58:432–442. doi: 10.1002/hlca.19750580212 PubMed DOI

Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature. 2001;414:43–48. doi: 10.1038/35102009 PubMed DOI

Liu S, Li S, Yang Y, Li W. Termini restraining of small membrane proteins enables structure determination at near-atomic resolution. Sci Adv. 2020;6:abe3717. doi: 10.1126/sciadv.abe3717 PubMed DOI PMC

Ding J, Luo AF, Hu L, Wang D, Shao F. Structural basis of the ultrasensitive calcium indicator GCaMP6. Sci China Life Sci. 2014;57:269–274. doi: 10.1007/s11427-013-4599-5 PubMed DOI

Wang Q, Shui B, Kotlikoff MI, Sondermann H. Structural basis for calcium sensing by GCaMP2. Structure. 2008;16:1817–1827. doi: 10.1016/j.str.2008.10.008 PubMed DOI PMC

Nasu Y, Shen Y, Kramer L, Campbell RE. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat Chem Biol. 2021;17:509–518. doi: 10.1038/s41589-020-00718-x PubMed DOI

Yamagata N. The concentration of common cesium and rubidium in human body. J Radiat Res. 1962;3:9–30. doi: 10.1269/jrr.3.9 PubMed DOI

Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394:192–195. doi: 10.1038/28190 PubMed DOI

Sustr M, Soukup A, Tylova E. Potassium in Root Growth and Development. Plan Theory. 2019;8:435. PubMed PMC

Hasanuzzaman M, Bhuyan MHMB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, et al.. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy. 2018;8:31.

Walker DJ, Leigh RA, Miller AJ. Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci U S A. 1996;93:10510–10514. doi: 10.1073/pnas.93.19.10510 PubMed DOI PMC

Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi S-I, et al.. Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J. 2003;35:545–555. doi: 10.1046/j.1365-313x.2003.01822.x PubMed DOI

Shabala S, Cuin TA. Potassium transport and plant salt tolerance. Physiol Plant. 2008;133:651–669. doi: 10.1111/j.1399-3054.2007.01008.x PubMed DOI

Felle HH. pH regulation in anoxic plants. Ann Bot. 2005;96:519–532. doi: 10.1093/aob/mci207 PubMed DOI PMC

Halperin SJ, Gilroy S, Lynch JP. Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis thaliana L. J Exp Bot. 2003;54:1269–1280. PubMed

Moseyko N, Feldman LJ. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ. 2001;24:557–563. PubMed

Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, et al.. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr Biol. 2014;24:931–940. doi: 10.1016/j.cub.2014.03.025 PubMed DOI

Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci. 2014;15:379–393. doi: 10.1038/nrn3770 PubMed DOI

Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81:1065–1096. doi: 10.1152/physrev.2001.81.3.1065 PubMed DOI

Burgstaller S, Bischof H, Rauter T, Schmidt T, Schindl R, Patz S, et al.. Immobilization of Recombinant Fluorescent Biosensors Permits Imaging of Extracellular Ion Signals. ACS Sens. 2021;6:3994–4000. doi: 10.1021/acssensors.1c01369 PubMed DOI PMC

Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 1997;73:2782–2790. doi: 10.1016/S0006-3495(97)78307-3 PubMed DOI PMC

Mutch WA, Hansen AJ. Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab. 1984;4:17–27. doi: 10.1038/jcbfm.1984.3 PubMed DOI

Shen Y, Rosendale M, Campbell RE, Perrais D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J Cell Biol. 2014;207:419–432. doi: 10.1083/jcb.201404107 PubMed DOI PMC

Somjen GG. Ion regulation in the brain: implications for pathophysiology. Neuroscientist. 2002;8:254–267. doi: 10.1177/1073858402008003011 PubMed DOI

Barnett LM, Hughes TE, Drobizhev M. Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+−dependent change in fluorescence. PLoS ONE. 2017;12:e0170934. doi: 10.1371/journal.pone.0170934 PubMed DOI PMC

Molina RS, Qian Y, Wu J, Shen Y, Campbell RE, Drobizhev M, et al.. Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators. Biophys J. 2019;116:1873–1886. doi: 10.1016/j.bpj.2019.04.007 PubMed DOI PMC

Tao R, Zhao Y, Chu H, Wang A, Zhu J, Chen X, et al.. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14:720–728. doi: 10.1038/nmeth.4306 PubMed DOI PMC

Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337 PubMed DOI PMC

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206 PubMed DOI PMC

Trigo-Mourino P, Thestrup T, Griesbeck O, Griesinger C, Becker S. Dynamic tuning of FRET in a green fluorescent protein biosensor. Sci Adv. 2019;5:eaaw4988. doi: 10.1126/sciadv.aaw4988 PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493 PubMed DOI PMC

Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al.. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925 PubMed DOI PMC

Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z, de Gruiter HM, et al.. Quantitative assessment of fluorescent proteins. Nat Methods. 2016;13:557–562. doi: 10.1038/nmeth.3891 PubMed DOI PMC

Drobizhev M, Molina R, Hughes T. Characterizing the Two-photon Absorption Properties of Fluorescent Molecules in the 680–1300 nm Spectral Range. Bio Protoc. 2020;10:e3498. doi: 10.21769/BioProtoc.3498 PubMed DOI PMC

Brown SD, Jun S. Complete Genome Sequence of Escherichia coli NCM3722. Genome Announc. 2015;3:e00879–e00815. doi: 10.1128/genomeA.00879-15 PubMed DOI PMC

Sarrion-Perdigones A, Vazquez-Vilar M, Palací J, Castelijns B, Forment J, Ziarsolo P, et al.. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 2013;162:1618–1631. doi: 10.1104/pp.113.217661 PubMed DOI PMC

Ishige F, Takaichi M, Foster R, Chua N-H, Oeda K. A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J. 1999;18:443–448.

Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. PubMed

Serre NBC, Kralík D, Yun P, Slouka Z, Shabala S, Fendrych M. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat Plants. 2021;7:1229–1238. PubMed PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118:401–415. doi: 10.1242/dev.118.2.401 PubMed DOI

Kay AR, Raccuglia D, Scholte J, Sivan-Loukianova E, Barwacz CA, Armstrong SR, et al.. Goggatomy: A Method for Opening Small Cuticular Compartments in Arthropods for Physiological Experiments. Front Physiol. 2016;7:398. doi: 10.3389/fphys.2016.00398 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fluorescence-Based HTS Assays for Ion Channel Modulation in Drug Discovery Pipelines

. 2024 Dec 16 ; 19 (24) : e202400383. [epub] 20241029

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...