Analysis of Thermomechanical Properties and the Influence of Machining Process on the Surface Structure of Composites Manufactured from Metal Chips with a Polymer Matrix

. 2022 Aug 26 ; 14 (17) : . [epub] 20220826

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36080576

Nowadays, the dynamic development of the entire market of composite materials is noticeable, which is very often associated with the need to use waste or recycled materials in their production. In the process of producing composites themselves, the easy possibility of shaping their mechanical and thermomechanical properties becomes apparent, which can be a big problem for materials with a homogeneous structure. For the tests, samples made of a combination of acrylic-phenolic resin with fine aluminum and brass chips were used. The tests were performed for composite samples produced by pressing. This paper presents the results of the DMTA method of the conservative modulus and the tangent of mechanical loss angle of the composite, a detailed stereometric analysis of the surface after machining, roughness parameters and volumetric functional parameters were performed. For the tested samples, changes in the values of the conservative modulus and the mechanical loss coefficient were recorded, which indicated significant differences for the composite with brass chips in relation to composites with aluminum chips. In the case of the composite with aluminum chips, slight changes in the conservative modulus were recorded in the glass transition phase and the elastic deformation phase at different frequencies. In contrast, for composites with brass, slight changes were recorded in the entire range of the course of the conservative module as a function of temperature when different excitation frequencies were applied. In relation to the polymer matrix, a significant increase in the value of the conservative modulus of composites was recorded in the entire temperature range of the test. Significant differences were recorded in the study of the surface of composites in the case of using different materials obtained after machining as fillers. The dependences of the amplitude parameters of the surface after machining the sample made of phenolic-acrylic resin prove the poor performance properties of the surface. The use of chips in the composite significantly changed the surface geometry.

Zobrazit více v PubMed

Nicodemo L., Nicolais L. Mechanical properties of metal/polymer composites. J. Mater. Sci. Lett. 1983;2:201–203. doi: 10.1007/BF00725619. DOI

Ilyas R.A., Sapuan S.M., Asyraf M.R.M., Dayana D.A.Z.N., Amelia J.J.N., Rani M.S.A., Norrrahim M.N.F., Nurazzi N.M., Aisyah H.A., Sharma S., et al. Polymer composites filled with metal derivatives: A review of flame retardants. Polymers. 2021;13:1701. doi: 10.3390/polym13111701. PubMed DOI PMC

Amancio-Filho S.T., dos Santos J.F. Joining of polymers and polymer–metal hybrid structures. Polym. Eng. Sci. 2009;49:1461–1476. doi: 10.1002/pen.21424. DOI

Söderholm P., Ekvall T. Metal markets and recycling policies: Impacts and challenges. Miner. Econ. 2020;33:257–272. doi: 10.1007/s13563-019-00184-5. DOI

Delmonte J. Metal/Polymer Composites. Springer; New York, NY, USA: 1990.

Bhattacharya S.K. Metal Filled Polymers. CRC Press; New York, NY, USA: 1986.

Anis A., Elnour A.Y., Alam M.A., Al-Zahrani S.M., AlFayez F., Bashir Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers. 2020;12:2038. doi: 10.3390/polym12092038. PubMed DOI PMC

Bishay I.K., Abd-El-Messieh S.L., Mansour S.H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminium powder. Mater. Des. 2011;32:62–68. doi: 10.1016/j.matdes.2010.06.035. DOI

Sehajpal S.B., Sood V.K. Effect of metal fillers on some physical properties of acrylic resin. J. Prosthet. Dent. 1989;61:746–751. doi: 10.1016/S0022-3913(89)80055-1. PubMed DOI

Bhagyashekar M.S., Rao K., Rao R., Bhagyashekar M.S., Rao K., Rao R. Studies on Rheological and Physical Properties of Metallic and Non-metallic Particulate Filled Epoxy Composites. J. Reinf. Plast. Compos. 2009;28:2869–2878. doi: 10.1177/0731684408093976. DOI

Akhtar M.W., Lee Y.S., Yoo D.J., Kim J.S. Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity. Compos. Part B. 2017;131:184–195. doi: 10.1016/j.compositesb.2017.07.067. DOI

Abdulkareem S.A., Amosa M.K., Adeniyi A.G., Magaji M.M., Ajibola R.A. Effect of metallic fillers on the hardness of poly-styrene composites: An experimental investigation. IOP Conf. Ser. Mater. Sci. Eng. 2019;640:012058. doi: 10.1088/1757-899X/640/1/012058. DOI

Osman A.F., Mariatti M. Properties of Aluminium filled Polypropylene Composites. Polym. Polym. Compos. 2006;14:623. doi: 10.1177/096739110601400608. DOI

Nurazreena H., Ismail L.B., Mariatti H. Metal filled high density polyethylene composites—Electrical and tensile properties. J. Thermoplast. Compos. Mater. 2006;19:413–425. doi: 10.1177/0892705706062197. DOI

Lotfy A., Mohamed E., Handam A.K., Yu B.R. Investigation of Polymer-70% Aluminum Powder Composite. Int. J. Metall Met. Phys. 2020;5:1–10.

Tavman I.H. Thermal and mechanical properties of aluminum powderfilled high-density polyethylene composites. J. Appl. Polym. Sci. 1996;62:2161–2167. doi: 10.1002/(SICI)1097-4628(19961219)62:12<2161::AID-APP19>3.0.CO;2-8. DOI

Pinto G., Jiménez-Martín A. Conducting aluminium-filled nylon 6 composites. Polym. Compos. 2001;22:65–70. doi: 10.1002/pc.10517. DOI

Schricker K., Bergmann J.P., Hopfeld M., Spie L. Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum. Weld. World. 2021;65:699–711. doi: 10.1007/s40194-020-01048-1. DOI

Kovtun V., Pasovets V., Pieczonka T. Tribological properties and microstructure of the metal-polymer composite thin layer deposited on a copper plate by electrocontact sintering. Arch. Metall. Mater. 2017;62:51–58. doi: 10.1515/amm-2017-0007. DOI

Bloor D., Donnelly K., Hands P.J., Laughlin P., Lussey D. A metalpolymer composite with unusual properties. J. Phys. D Appl. Phys. 2005;38:2851–2860. doi: 10.1088/0022-3727/38/16/018. DOI

Dasture M.D., Kelkar D.S. Aluminium-filled low-density polyethylene structural, morphological, and mechanical properties. J. Appl. Polym. Sci. 2007;106:2436–2441. doi: 10.1002/app.26847. DOI

Eddoumy F., Kasem H., Dhieb H., Buijnsters J., Dufrenoy P., Celis J.P., Desplanques Y. Impact of brass as filler on thermal, mechanical, friction and wear properties of brake pad composites. Mech. Ind. 2018;19:105. doi: 10.1051/meca/2016083. DOI

Karadağ H.B., Aslan İ. Recycling of waste brass and cast iron chips through metal matrix composite material production- investigation of mechanical properties. Am. J. Eng. Res. 2018;7:292–304.

Gnatowski A., Gołębski R., Sikora P. Analysis of the Impact of Changes in Thermomechanical Properties of Polymer Materials on the Machining Process of Gears. Polymers. 2021;13:28. doi: 10.3390/polym13010028. PubMed DOI PMC

Usca Ü.A., Uzun M., Şap S., Kuntoğlu M., Giasin K., Pimenov D.Y., Wojciechowski S. Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu–B–CrC based ceramic matrix composites. J. Mater. Res. Technol. 2022;16:1243–1259. doi: 10.1016/j.jmrt.2021.12.063. DOI

Usca Ü.A., Uzun M., Kuntoğlu M., Şap S., Giasin K., Pimenov D.Y. Tribological Aspects, Optimization and Analysis of Cu-B-CrC Composites Fabricated by Powder Metallurgy. Materials. 2021;14:4217. doi: 10.3390/ma14154217. PubMed DOI PMC

Teti R. Machining of Composite Materials. CIRP Ann. 2002;51:611–634. doi: 10.1016/S0007-8506(07)61703-X. DOI

Usca Ü.A., Şap S., Uzun M., Kuntoğlu M., Salur E., Karabiber A., Pimenov D.Y., Giasin K., Wojciechowski S. Estimation, optimization and analysis based investigation of the energy consumption in machinability of ceramic-based metal matrix composite materials. J. Mater. Res. Technol. 2022;17:2987–2998. doi: 10.1016/j.jmrt.2022.02.055. DOI

Prakash Rao C.R., Bhagyashekar M.S., Narendraviswanath N. Effect of machining parameters on the surface roughness while turning particulate composites. Procedia Eng. 2014;97:421–431. doi: 10.1016/j.proeng.2014.12.266. DOI

Plastics—Determination of Dynamic Mechanical Properties—Part 1: General Principles. International Organization for Standardization; Geneva, Switzerland:

Wetton R.E., Marsh R.D.L., Van-de-Velde J.G. Theory and application of dynamic mechanical thermal analysis. Thermochim. Acta. 1991;175:1–11. doi: 10.1016/0040-6031(91)80240-J. DOI

Dynamic Mechanical Analysis, A Beginner’s Guide. [(accessed on 6 July 2022)]. Available online: https://www.perkinelmer.com/CMSResources/Images/44-74546GDE_IntroductionToDMA.pdf.

Hoffmann Group. [(accessed on 8 April 2022)]. Available online: https://www.hoffmann-group.com/GB/en/houk/Mono-machining/Solid-carbide-milling-cutters/Diabolo-solid-carbide-milling-cutter-HPC-TiAlN/p/203211?comingFromCategory=20.

Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 73: Terms and Definitions for Surface Defects on Material Measures. International Organization for Standardization; Geneva, Switzerland:

Wieczorowski M. Theoretical principles of spatial analysis of surface unevenness. Mach Eng. 2013;18:7–34.

Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland:

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...