Research into Specific Mechanical Properties of Composites Produced by 3D-Printing Additive Continuous-Fiber Fabrication Technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural Funds of the European Union and project.
PubMed
36837089
PubMed Central
PMC9962958
DOI
10.3390/ma16041459
PII: ma16041459
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, CFF technology, composites, computer tomography, mechanical properties,
- Publikační typ
- časopisecké články MeSH
This paper introduces novel research into specific mechanical properties of composites produced by 3D printing using Continuous-Fiber Fabrication (CFF). Nylon (Onyx) was used as the composite base material, while carbon constituted the reinforcement element. The carbon fiber embedment was varied in selected components taking values of 0°, 45°, 90°, and 135° for parts undergoing tensile testing, while one specific part type was produced combining all angles. Carbon-fiber-free components with 100% and 37% fillings were also produced for comparison purposes. Parts undergoing the Charpy impact test had the fibers deposited at angles of 0° and 90°, while one part type was also produced combining the four angles mentioned before. Carbon-fiber-free parts with 100% and 37% fillings were also produced for comparison purposes as with the first part. The Markforged MARK TWO 3D printer was used for printing the parts. These were subsequently scanned in the METROTOM 1500 computed tomography and submitted to the tensile and impact tests. The results showed that adding carbon fiber to the base material increased the volume of defects in the samples as a result of the porosity increase. Although the tensile testing manifested an overall increase in tensile strength Rm of up to 12 times compared to the sample without reinforcement, it was proven that an improper fiber orientation significantly diminished the strength and that combining the four selected angles did not lead to the highest strength values. Finally, the impact tests also showed that fiber-reinforced parts implied up to 2.7 times more work to fracture, and that an improved fiber orientation also led to strength reduction.
Zobrazit více v PubMed
When Is FDM/CFF the Most Suitable? [(accessed on 13 December 2021)]. Available online: https://www.h3d.sk/en/fdm-ccf.
Zhang H., Wu Y., Wang K., Peng Y., Danqi Y.P., Wang D., Yao S., Wang J. Materials selection of 3D-printed continuous carbon fiber reinforced composites considering multiple criteria. Mater. Des. 2020;196:109140. doi: 10.1016/j.matdes.2020.109140. DOI
Singh B., Raman Kumar R., Chohan J.S. Polymer matrix composites in 3D printing: A state of art review. Mater. Today Proc. 2020;33:1562–1567. doi: 10.1016/j.matpr.2020.04.335. DOI
Popan A., Popan I.A., Cosma C., Ceclan V., Balc N. Experimental study on 3d printed parts made of continuous fiberglass reinforced polymer. Acta Tech. Napoc. Ser.-Appl. Math. Mech. Eng. 2021;64:81–86.
Pervaiz S., Qureshi T.A., Kashwani G., Kannan S. 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review. Materials. 2021;14:4520. doi: 10.3390/ma14164520. PubMed DOI PMC
Prüß H., Vietor T. Design for Fiber-Reinforced Additive Manufacturing. ASME J. Mech. Des. 2015;137:111409. doi: 10.1115/1.4030993. DOI
Mohan N., Senthil P., Vinodh S., Jayanth N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017;12:47–59. doi: 10.1080/17452759.2016.1274490. DOI
Heidari-Rarani M., Rafiee-Afarani M., Zahedi A.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B Eng. 2019;175:107147. doi: 10.1016/j.compositesb.2019.107147. DOI
Yang C., Tian X., Liu T., Cao Y., Li D. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance. Rapid Prototyp. J. 2017;23:209–215. doi: 10.1108/RPJ-08-2015-0098. DOI
Shuting L., Yingguang L., Nanya L. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures. Mater. Des. 2018;137:235–244. doi: 10.1016/j.matdes.2017.10.007. DOI
Goh G.D., Dikshit V., Nagalingam A.P., Goh G.L., Agarwala S., Sing S.L., Wei J., Yeong W.Y. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater. Des. 2018;137:79–89. doi: 10.1016/j.matdes.2017.10.021. DOI
Egorov S., Tarasova T., Terekhina S. Production technology for polymeric composite materials by additive manufacturing methods. IOP Conf. Ser. Mater. Sci. Eng. 2020;971:022006. doi: 10.1088/1757-899X/971/2/022006. DOI
Baumann F., Scholz J., Fleischer J. Investigation of a New Approach for Additively Manufactured Continuous Fiber-reinforced Polymers. Procedia CIRP. 2017;66:323–328. doi: 10.1016/j.procir.2017.03.276. DOI
Scrocco M., Chamberlain T., Chow C., Weinreber L., Ellks E., Halford C., Cortes P., Conner B. Impact testing of 3D printed Kevlar-reinforced onyx material; Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium; Austin, TX, USA. 13–15 December 2018.
Ghebretinsae F., Mikkelsen O., Akessa A.D. Strength analysis of 3D printed carbon fibre reinforced thermoplastic using experimental and numerical methods. [(accessed on 15 June 2022)];IOP Conf. Ser. Mater. Sci. Eng. 2019 700:012024. doi: 10.1088/1757-899X/700/1/012024. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/700/1/012024. DOI
Hu C., Sun Z., Xiao Y., Qin Q. Recent Patents in Additive Manufacturing of Continuous Fiber Reinforced Composites. Recent. Patents Mech. Eng. 2019;12:25–36. doi: 10.2174/2212797612666190117131659. DOI
Sanei S.H.R., Popescu D. 3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review. J. Compos. Sci. 2020;4:98. doi: 10.3390/jcs4030098. DOI
Garcia J., Harper R., Lu Y.C. Anisotropic Material Behaviors of Three-Dimensional Printed Carbon-Fiber Polymer Composites with Open-Source Printers. ASME J. Manuf. Sci. Eng. 2022;144:031014. doi: 10.1115/1.4051921. DOI
Saeed K., McIlhagger A., Harkin-Jones E., McGarrigle C., Dixon D., Shar M.A., McMillan A., Archer E. Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions. Compos. Struct. 2022;282:115033. doi: 10.1016/j.compstruct.2021.115033. DOI
Krzikalla D., Měsíček J., Halama R., Hajnyš J., Pagáč M., Čegan T., Petrů J. On flexural properties of additive manufactured composites: Experimental, and numerical study. Compos. Sci. Technol. 2022;218:109182. doi: 10.1016/j.compscitech.2021.109182. DOI
Rajak D.K., Pagar D.D., Kumar R., Pruncu C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019;8:6354–6374. doi: 10.1016/j.jmrt.2019.09.068. DOI
Yang Y., Boom R., Irion B., Heerden D.J., Kuiper P., Wit H. Recycling of composite materials. Chem. Eng. Process Process Intensif. 2012;51:53–68. doi: 10.1016/j.cep.2011.09.007. DOI
Otani L., Alves H., Melo J., Amico S. Elastic moduli characterization of composites using the impulse excitation technique. [(accessed on 15 June 2022)];ATCP Phys. Eng. 2014 doi: 10.13140/RG.2.1.1551.2481. Available online: https://scholar.google.com/scholar_lookup?title=Elastic%20moduli%20characterization%20of%20composites%20using%20the%20impulse%20excitation%20technique&publication_year=2014&author=L.%20Otani&author=H.%20Alves&author=J.%20Melo&author=S.%20Amico. DOI
Ibrahim I., Jamiru T., Sadiku R., Kupolati W. The use of polypropylene in bamboo fibre composite and their mechanical properties—A review. J. Reinf. Plast. Compos. 2015;34:1347–1356. doi: 10.1177/0731684415591302. DOI
Oliveira M.S., Pereira A.C., da Costa F., da Luz F.S., de Oliveira Braga F., Nascimento L.F.C., Lima P., Demosthenes L.C.D.C., Monteiro S.N. Green Materials Engineering. Springer; Cham, Switzerland: 2019. Fique fiber-reinforced epoxy composite for ballistic armor against 7.62 mm ammunition; pp. 193–199.
Fiore V., Di Bella G., Valenza A. Effect of sheep wool fibers on thermal insulation and mechanical properties of cement-based composites. J. Nat. Fibers. 2019;17:1532–1543. doi: 10.1080/15440478.2019.1584075. DOI
Kurdi A., Kan W.H., Chang L. Tribological behaviour of high performance polymers and polymer composites at elevated temperature. Tribol. Int. 2018;130:94–105. doi: 10.1016/j.triboint.2018.09.010. DOI
Nimanpure S., Hashmi S.A.R., Kumar R., Bhargaw H.N., Kumar R., Nair P., Naik A. Mechanical, electrical, and thermal analysis of sisal fibril/kenaf fiber hybrid polyester composites. Polym. Compos. 2017;40:664–676. doi: 10.1002/pc.24706. DOI
Jamwal A., Prakash P., Kumar D., Singh N., Sadasivuni K.K., Harshit K., Gupta S., Gupta P. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites. J. Compos. Mater. 2019;53:2545–2553. doi: 10.1177/0021998319832961. DOI
Goriparthi B.K., Suman K.N.S., Rao N.M. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos. Part. A. Appl. Sci. Manuf. 2012;43:1800–1808. doi: 10.1016/j.compositesa.2012.05.007. DOI
Bhat T., Chevali V., Liu X., Feih S., Mouritz A.P. Fire structural resistance of basalt fibre composite. Compos. Part A Appl. Sci. Manuf. 2015;71:107–115. doi: 10.1016/j.compositesa.2015.01.006. DOI
Zegaoui A., Derradji M., Ma R., Cai W., Medjahed A., Liu W., Qadeer Dayo A., Wang J. Silane-modified carbon fibers reinforced cyanate ester/benzoxazineresin composites: Morphological, mechanical and thermal degradation properties. Vacuum. 2018;150:12–23. doi: 10.1016/j.vacuum.2018.01.025. DOI
Ghouti H.A., Zegaoui A., Derradji M., Cai W.-A., Wang J., Liu W., Dayo A.Q. Multifunctional Hybrid Composites with Enhanced Mechanical and Thermal Properties Based on Polybenzoxazine and Chopped Kevlar/Carbon Hybrid Fibers. Polymers. 2018;10:1308. doi: 10.3390/polym10121308. PubMed DOI PMC
Daham A., Zegaoui A., Ghouti H.A., Derradji M., Cai W., Wang J., Liu W., Wang J., Moussa Z. Structural, morphological and mechanical properties of hyperbranched polymers coated carbon fibers reinforced DCBA/BA-a composites. Compos. Interfaces. 2019;27:905–919. doi: 10.1080/09276440.2019.1708672. DOI
Zhang Q., Yang Q.-C., Li W.-J., Gu X.-L., Dai H.-H. Study on model of flexure response of carbon fiber textile reinforced concrete (CTRC) sheets with short AR-glass fibers. Case Stud. Constr. Mater. 2023;18:e01791. doi: 10.1016/j.cscm.2022.e01791. DOI
de Azevedo A.R.G., Amin M., Nyarko M.H., Saad Agwa I., Zeyad A.M., Tayeh B.A., Adesina A. Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective. Clean. Mater. 2022;3:100040. doi: 10.1016/j.clema.2021.100040. DOI
Pokorný P., Václav Š., Petru J., Kritikos M. Porosity Analysis of Additive Manufactured Parts Using CAQ Technology. Materials. 2021;14:1142. doi: 10.3390/ma14051142. PubMed DOI PMC
Perepelkin K.E. Armiruyuschie Volokna i Voloknistye Polimernye Kompozity. Monografiya [Reinforcing Fibers and Fibrous Polymeric Composites. Monograph] Scientific Basics and Technologies Publ.; St. Petersburg, Russia: 2009. 380p
Skornyakov I.A., Tarasova T.V., Terekhina S.M. Investigation of the strength characteristics of samples made of nylon by FFF technology. ARPN J. Eng. Appl. Sci. 2019;14:2427–2432.
Onyx—Micro Carbon Fiber Filled Nylon that Forms the Foundation of Markforged Composite parts. [(accessed on 1 February 2022)]. Available online: https://markforged.com/materials/plastics/onyx.
MATERIAL DATASHEET, Composites. [(accessed on 1 February 2022)]. Available online: https://www-objects.markforged.com/craft/materials/CompositesV5.2.pdf.
Kritikos M. Lecture Notes in Mechanical Engineering. Springer; Cham, Switzerland: 2021. Porosity Measurement by X—Ray Computed Tomography: Different Porosity Analysis Application. In: Digital Conversion on the Way to Industry 4.0. ISPR 2020. DOI
Gómez H.V., Lee C.H., Smith S.T. Dimensional metrology with X-ray CT: A comparison with CMM measurements on internal features and compliant structures. Precis. Eng. 2018;51:291–307. doi: 10.1016/j.precisioneng.2017.08.021. DOI
Gómez H.V., Morse E.P., Hocken R.J., Smith S.T. Dimensional metrology of internal features with X-ray computed tomography; Proceedings of the 29th ASPE Annual meeting; Boston, MA, USA. 12 October 2014; pp. 684–689.
Gómez H.V., Thousand J.D., Morse E.P., Smith S.T. CT measurements and their estimated uncertainty: The significance of temperature and bias determination; Proceedings of the 15th International Conference on Metrology and Properties of Engineering Surfaces; Charlotte, NC, USA. 2–5 March 2015; pp. 1–8.
Moravčík R., Hudáková M., Černičková I., Bošák O. Náuka o Materiáloch I. Návody na Cvičenia. 1st ed. Trnava AlumniPress; Trnava, Slovakia: 2017. p. 198.
Somireddy M., Singh C.V., Czekanski A. Mechanical behaviour of 3D printed composite parts with short carbon fiber reinforcements. Eng. Fail. Anal. 2020;107:104232. doi: 10.1016/j.engfailanal.2019.104232. DOI
Somireddy M., Czekanski A. Anisotropic material behavior of 3D printed composite structures—Material extrusion additive manufacturing. Mater. Des. 2020;195:108953. doi: 10.1016/j.matdes.2020.108953. DOI
Handwerker M., Wellnitz J., Marzbani H. Review of mechanical properties of and optimisation methods for continuous fibre-reinforced thermoplastic parts manufactured by fused deposition modelling. Prog. Addit. Manuf. 2021;6:663–677. doi: 10.1007/s40964-021-00187-1. DOI
Blok L.G., Longana M.L., Yu H., Woods B.K.S. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018;22:176–186. doi: 10.1016/j.addma.2018.04.039. DOI
Dickson A.N., Barry J.N., McDonnell K.A., Dowling D.P. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf. 2017;16:146–152. doi: 10.1016/j.addma.2017.06.004. DOI
Yasa E., Ersoy K. Additive Manufacturing of Polymer Matrix Composites. Aircr. Technol. 2018;7:147–169. doi: 10.5772/intechopen.75628. DOI
Ning F., Cong W., Qui J., Wei J., Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B. 2015;80:369–378. doi: 10.1016/j.compositesb.2015.06.013. DOI
Tekinalp H.L., Kunc V., Velez-Garcia G.M., Duty C.E., Love L.J., Naskar A.K., Blue C.A., Ozcan S. Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos. Sci. Technol. 2014;105:144–150. doi: 10.1016/j.compscitech.2014.10.009. DOI
Love L.J., Kunc V., Rios O., Duty C.E., Elliott A.M., Post B.K., Smith R.J., Blue C.A. The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res. 2014;29:1893–1898. doi: 10.1557/jmr.2014.212. DOI
Tian X., Liu T., Yang C., Wang Q., Li D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A. 2016;88:198–205. doi: 10.1016/j.compositesa.2016.05.032. DOI
Matsuzaki R., Ueda M., Namiki M., Jeong T.K., Asahara H., Horiguchi K., Nakamura T., Todoroki A., Hirano Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016;6:23058. doi: 10.1038/srep23058. PubMed DOI PMC
Ramesh M., Rajeshkumar L., Balaji D. Influence of Process Parameters on the Properties of Additively Manufactured Fiber-Reinforced Polymer Composite Materials. A Review. J. Materi. Eng. Perform. 2021;30:4792–4807. doi: 10.1007/s11665-021-05832-y. DOI
Rossana R., Fernandes A.Y., Tamijani M. Al-Haik. Mechanical characterization of additively manufactured fiber-reinforced composites. Aerosp. Sci. Technol. 2021;113:106653. doi: 10.1016/j.ast.2021.106653. DOI
Mohammadizadeh A., Imeri I., Fidan M., Elkelany M. 3D printed fiber reinforced polymer composites—Structural analysis. Compos. Part B Eng. 2019;175:107112. doi: 10.1016/j.compositesb.2019.107112. DOI
Todoroki A., Oasada T., Mizutani Y., Suzuki Y., Ueda M., Matsuzaki R., Hirano Y. Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites. Adv. Compos. Mater. 2019;29:147–162. doi: 10.1080/09243046.2019.1650323. DOI
Araya-Calvo M., López-Gómez I., Chamberlain-Simon N., León-Salazar J.L., Guillén-Girón T., Corrales-Cordero J.S., Sánchez-Brenes O. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology. Addit. Manuf. 2018;22:157–164. doi: 10.1016/j.addma.2018.05.007. DOI
Gnatowski A., Gołebski R., Petru J., Pagac M. Analysis of Thermomechanical Properties and the Influence of Machining Process on the Surface Structure of Composites Manufactured from Metal Chips with a Polymer Matrix. Polymers. 2022;14:3501. doi: 10.3390/polym14173501. PubMed DOI PMC