Sex differences in hypertension. Do we need a sex-specific guideline?

. 2022 ; 9 () : 960336. [epub] 20220823

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36082119

Hypertension is the most prevalent cardiovascular disorder and the leading cause of death worldwide in both sexes. The prevalence of hypertension is lower in premenopausal women than in men of the same age, but sharply increases after the menopause, resulting in higher rates in women aged 65 and older. Awareness, treatment, and control of hypertension are better in women. A sex-pooled analysis from 4 community-based cohort studies found increasing cardiovascular risk beginning at lower systolic blood pressure thresholds for women than men. Hormonal changes after the menopause play a substantial role in the pathophysiology of hypertension in postmenopausal women. Female-specific causes of hypertension such as the use of contraceptive agents and assisted reproductive technologies have been identified. Hypertensive disorders in pregnancy are associated with increased risk of maternal, fetal, and neonatal morbidity and mortality, as well as with a greater risk of developing cardiovascular disease later in life. Hypertension-mediated organ damage was found to be more prevalent in women, thus increasing the cardiovascular risk. Sex differences in pharmacokinetics have been observed, but their clinical implications are still a matter of debate. There are currently no sufficient data to support sex-based differences in the efficacy of antihypertensive treatment. Adverse drug reactions are more frequently reported in women. Women are still underrepresented in large clinical trials in hypertension, and not all of them report sex-specific results. Therefore, it is of utmost importance to oblige scientists to include women in clinical trials and to consider sex as a biological variable.

Zobrazit více v PubMed

Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. . European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. (2022) 43:716–99. 10.1093/eurheartj/ehab892 PubMed DOI

Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. . Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. (2004) 364:937–52. 10.1016/S0140-6736(04)17018-9 PubMed DOI

Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. . Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet. (2014) 383:1899–911. 10.1016/S0140-6736(14)60685-1 PubMed DOI PMC

GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. (2018) 392:1923–94. 10.1016/S0140-6736(18)32225-6 PubMed DOI PMC

National Heart Lung and Blood institute Bethesda Maryland . Pediatrics. (1987) 79:1–25. PubMed

Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. . 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Eur Heart J. (2018) 36:1953–2041. 10.1093/eurheartj/ehy339 PubMed DOI

Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. . ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation. (2018) 138:e426-e83. 10.1161/HYP.0000000000000066 PubMed DOI

Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. . Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. (2016) 134:441–50. 10.1161/CIRCULATIONAHA.115.018912 PubMed DOI PMC

Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. . Heart disease and stroke statistics-2021 update: a report from the American heart association. Circulation. (2021) 143:e254–743. 10.1161/CIR.0000000000000950 PubMed DOI

Robitaille C, Dai S, Waters C, Loukine L, Bancej C, Quach S, et al. . Diagnosed hypertension in Canada: incidence, prevalence and associated mortality. CMAJ. (2012) 184:E49–56. 10.1503/cmaj.101863 PubMed DOI PMC

Prince MJ, Ebrahim S, Acosta D, Ferri CP, Guerra M, Huang Y, et al. . Hypertension prevalence, awareness, treatment and control among older people in Latin America, India and China: a 10/66 cross-sectional population-based survey. J Hypertens. (2012) 30:177–87. 10.1097/HJH.0b013e32834d9eda PubMed DOI

Martins D, Nelson K, Pan D, Tareen N, Norris K. The effect of gender on age-related blood pressure changes and the prevalence of isolated systolic hypertension among older adults: data from NHANES III. J Gend Specif Med. (2001) 4:10–3. PubMed

Vynckier P, Ferrannini G, Rydén L, Jankowski P, De Backer T, Gevaert S, et al. . Gender gap in risk factor control of coronary patients far from closing: results from the European Society of Cardiology EUROASPIRE V registry. Eur J Prev Cardiol. (2022) 29:344–51. 10.1093/eurjpc/zwaa144 PubMed DOI

Osude N, Durazo-Arvizu R, Markossian T, Liu K, Michos ED, Rakotz M, et al. . Age and sex disparities in hypertension control: the multi-ethnic study of atherosclerosis (MESA). Am J Prev Cardiol. (2021) 8:100230. 10.1016/j.ajpc.2021.100230 PubMed DOI PMC

Ji H, Niiranen TJ, Rader F, Henglin M, Kim A, Ebinger JE, et al. . Sex differences in blood pressure associations with cardiovascular outcomes. Circulation. (2021) 143:761–3. 10.1161/CIRCULATIONAHA.120.049360 PubMed DOI PMC

Dickerson JA, Nagaraja HN, Raman SV. Gender-related differences in coronary artery dimensions: a volumetric analysis. Clin Cardiol. (2010) 33:E44–9. 10.1002/clc.20509 PubMed DOI PMC

Boggia J, Thijs L, Hansen TW, Li Y, Kikuya M, Björklund-Bodegård K, et al. . Ambulatory blood pressure monitoring in 9357 subjects from 11 populations highlights missed opportunities for cardiovascular prevention in women. Hypertension. (2011) 57:397–405. 10.1161/HYPERTENSIONAHA.110.156828 PubMed DOI PMC

Mancia G, Zanchetti A. White-coat hypertension: misnomers, misconceptions and misunderstandings. What should we do next? J Hypertens. (1996) 14:1049–52. 10.1097/00004872-199609000-00001 PubMed DOI

Bobrie G, Clerson P, Ménard J, Postel-Vinay N, Chatellier G, Plouin PF. Masked hypertension: a systematic review. J Hypertens. (2008) 26:1715–25. 10.1097/HJH.0b013e3282fbcedf PubMed DOI

Franklin SS, Thijs L, Hansen TW, O'Brien E, Staessen JA. White-coat hypertension: new insights from recent studies. Hypertension. (2013) 62:982–7. 10.1161/HYPERTENSIONAHA.113.01275 PubMed DOI

Omboni S, Aristizabal D, De la Sierra A, Dolan E, Head G, Kahan T, et al. . Hypertension types defined by clinic and ambulatory blood pressure in 14 143 patients referred to hypertension clinics worldwide Data from the ARTEMIS study. J Hypertens. (2016) 34:2187–98. 10.1097/HJH.0000000000001074 PubMed DOI

Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am J Physiol Regul Integr Comp Physiol. (2004) 286:R233–49. 10.1152/ajpregu.00338.2003 PubMed DOI

Wang L, Szklo M, Folsom AR, Cook NR, Gapstur SM, Ouyang P. Endogenous sex hormones, blood pressure change, and risk of hypertension in postmenopausal women: the multi-ethnic study of atherosclerosis. Atherosclerosis. (2012) 224:228–34. 10.1016/j.atherosclerosis.2012.07.005 PubMed DOI PMC

Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol. (2010) 24:687–98. 10.1111/j.1472-8206.2010.00854.x PubMed DOI

Sullivan JC. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol. (2008) 294:R1220–6. 10.1152/ajpregu.00864.2007 PubMed DOI

Safar ME, Smulyan H. Hypertension in women. Am J Hypertens. (2004) 17:82–7. 10.1016/S0895-7061(03)01008-2 PubMed DOI

Smulyan H, Asmar RG, Rudnicki A, London GM, Safar ME. Comparative effects of aging in men and women on the properties of the arterial tree. J Am Coll Cardiol. (2001) 37:1374–80. 10.1016/S0735-1097(01)01166-4 PubMed DOI

Fischer GM. In vivo effects of estradiol on collagen and elastin dynamics in rat aorta. Endocrinology. (1972) 91:1227–32. 10.1210/endo-91-5-1227 PubMed DOI

Cox RH, Fischer GM. Effects of sex hormones on the passive mechanical properties of rat carotid artery. Blood Vessels. (1978) 15:266–76. 10.1159/000158172 PubMed DOI

Waddell TK, Dart AM, Gatzka CD, Cameron JD, Kingwell BA. Women exhibit a greater age-related increase in proximal aortic stiffness than men. J Hypertens. (2001) 19:2205–12. 10.1097/00004872-200112000-00014 PubMed DOI

Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, et al. . Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. (2001) 37:381–5. 10.1161/01.HYP.37.2.381 PubMed DOI

Zhu D, Chung HF, Dobson AJ, Pandeya N, Giles GG, Bruinsma F, et al. . Age at natural menopause and risk of incident cardiovascular disease: a pooled analysis of individual patient data. Lancet Public Health. (2019) 4:e553–e64. 10.1016/S2468-2667(19)30155-0 PubMed DOI PMC

van Lennep JE, Heida KY, Bots ML, Hoek A. Cardiovascular disease risk in women with premature ovarian insufficiency: A systematic review and meta-analysis. Eur J Prev Cardiol. (2016) 23:178–86. 10.1177/2047487314556004 PubMed DOI

Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, et al. . ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. (2016) 31:926–37. 10.1093/humrep/dew027 PubMed DOI

Belletti DA, Zacker C, Wogen J. Effect of cardiometabolic risk factors on hypertension management: a cross-sectional study among 28 physician practices in the United States. Cardiovasc Diabetol. (2010) 9:7. 10.1186/1475-2840-9-7 PubMed DOI PMC

Kannel WB. Risk stratification in hypertension: new insights from the framingham study. Am J Hypertens. (2000) 13:3s−10. 10.1016/S0895-7061(99)00252-6 PubMed DOI

Wilson PW, D'Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. (2005) 112:3066–72. 10.1161/CIRCULATIONAHA.105.539528 PubMed DOI

Kittnar O. Selected sex related differences in pathophysiology of cardiovascular system. Physiol Res. (2020) 69:21–31. 10.33549/physiolres.934068 PubMed DOI PMC

Oh GC, Kang KS, Park CS, Sung HK, Ha KH, Kim HC, et al. . Metabolic syndrome, not menopause, is a risk factor for hypertension in peri-menopausal women. Clin Hypertens. (2018) 24:14. 10.1186/s40885-018-0099-z PubMed DOI PMC

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. . Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; international atherosclerosis society; and International association for the study of obesity. Circulation. (2009) 120:1640–5. 10.1161/CIRCULATIONAHA.109.192644 PubMed DOI

Kuk JL, Ardern CI. Age and sex differences in the clustering of metabolic syndrome factors: association with mortality risk. Diabetes Care. (2010) 33:2457–61. 10.2337/dc10-0942 PubMed DOI PMC

Rajca A, Wojciechowska A, Smigielski W, Drygas W, Piwońska A, Pajak A, et al. . Increase in the prevalence of metabolic syndrome in Poland: comparison of the results of the WOBASZ (2003-2005) and WOBASZ II (2013-2014) studies. Pol Arch Intern Med. (2021) 131:520–6. 10.20452/pamw.15975 PubMed DOI

Slagter SN, van Waateringe RP, van Beek AP, van der Klauw MM, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV. Sex, BMI and age differences in metabolic syndrome: the Dutch lifelines cohort study. Endocr Connect. (2017) 6:278–88. 10.1530/EC-17-0011 PubMed DOI PMC

Gornik HL, Persu A, Adlam D, Aparicio LS, Azizi M, Boulanger M, et al. . First international consensus on the diagnosis and management of fibromuscular dysplasia. J Hypertens. (2019) 37:229–52. 10.1097/HJH.0000000000002019 PubMed DOI

Georges A, Yang ML, Berrandou TE, Bakker MK, Dikilitas O, Kiando SR, et al. . Genetic investigation of fibromuscular dysplasia identifies risk loci and shared genetics with common cardiovascular diseases. Nat Commun. (2021) 12:6031. 10.1038/s41467-021-26174-2 PubMed DOI PMC

Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. . The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. (2016) 101:1889–916. 10.1210/jc.2015-4061 PubMed DOI

Hannemann A, Friedrich N, Lüdemann J, Völzke H, Rettig R, Peters J, et al. . Reference intervals for aldosterone, renin, and the aldosterone-to-renin ratio in the population-based Study of Health in Pomerania (SHIP-1). Horm Metab Res. (2010) 42:392–9. 10.1055/s-0030-1247545 PubMed DOI

Ahmed AH, Gordon RD, Taylor PJ, Ward G, Pimenta E, Stowasser M. Are women more at risk of false-positive primary aldosteronism screening and unnecessary suppression testing than men? J Clin Endocrinol Metab. (2011) 96:E340–6. 10.1210/jc.2010-1355 PubMed DOI

Gray MJ, Strausfeld KS, Watanabe M, Sims EA, Solomon S. Aldosterone secretory rates in the normal menstrual cycle. J Clin Endocrinol Metab. (1968) 28:1269–75. 10.1210/jcem-28-9-1269 PubMed DOI

Katz FH, Romfh P. Plasma aldosterone and renin activity during the menstrual cycle. J Clin Endocrinol Metab. (1972) 34:819–21. 10.1210/jcem-34-5-819 PubMed DOI

Akasaka H, Yamamoto K, Rakugi H, Nagasawa M, Nakamaru R, Ichijo T, et al. . Sex Difference in the association between subtype distribution and age at diagnosis in patients with primary aldosteronism. Hypertension. (2019) 74:368–74. 10.1161/HYPERTENSIONAHA.119.13006 PubMed DOI

The Rotterdam ESHRE/ASRM- Sponsored PCOS Consensus Workshop Group . Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. (2004) 81:19–25. 10.1016/j.fertnstert.2003.10.004 PubMed DOI

Glintborg D. Endocrine and metabolic characteristics in polycystic ovary syndrome. Dan Med J. (2016) 63:B5232. PubMed

Lønnebotn M, Natvig GK, Benediktsdóttir B, Burgess JA, Holm M, Jógi R, et al. . Polycystic ovary syndrome, body mass index and hypertensive disorders in pregnancy. Pregnancy Hypertens. (2018) 11:32–7. 10.1016/j.preghy.2017.12.006 PubMed DOI

Joham AE, Boyle JA, Zoungas S, Teede HJ. Hypertension in reproductive-aged women with polycystic ovary syndrome and association with obesity. Am J Hypertens. (2015) 28:847–51. 10.1093/ajh/hpu251 PubMed DOI

Bird ST, Hartzema AG, Brophy JM, Etminan M, Delaney JA. Risk of venous thromboembolism in women with polycystic ovary syndrome: a population-based matched cohort analysis. Cmaj. (2013) 185:E115–20. 10.1503/cmaj.120677 PubMed DOI PMC

Amiri M, Ramezani Tehrani F, Behboudi-Gandevani S, Bidhendi-Yarandi R, Carmina E. Risk of hypertension in women with polycystic ovary syndrome: a systematic review, meta-analysis and meta-regression. Reprod Biol Endocrinol. (2020) 18:23. 10.1186/s12958-020-00576-1 PubMed DOI PMC

Dong W, Colhoun HM, Poulter NR. Blood pressure in women using oral contraceptives: results from the health survey for England 1994. J Hypertens. (1997) 15:1063–8. 10.1097/00004872-199715100-00003 PubMed DOI

Chasan-Taber L, Willett WC, Manson JE, Spiegelman D, Hunter DJ, Curhan G, et al. . Prospective study of oral contraceptives and hypertension among women in the United States. Circulation. (1996) 94:483–9. 10.1161/01.CIR.94.3.483 PubMed DOI

Gillum LA, Mamidipudi SK, Johnston SC. Ischemic stroke risk with oral contraceptives: a meta-analysis. JAMA. (2000) 284:72–8. 10.1001/jama.284.1.72 PubMed DOI

Shufelt C, LeVee A. Hormonal contraception in women with hypertension. JAMA. (2020) 324:1451–2. 10.1001/jama.2020.11935 PubMed DOI PMC

Lubianca JN, Moreira LB, Gus M, Fuchs FD. Stopping oral contraceptives: an effective blood pressure-lowering intervention in women with hypertension. J Hum Hypertens. (2005) 19:451–5. 10.1038/sj.jhh.1001841 PubMed DOI

ACOG Practice Bulletin No. 206: use of hormonal contraception in women with coexisting medical conditions. Obstet Gynecol. (2019) 133:e128–50. 10.1097/AOG.0000000000003072 PubMed DOI

Thomopoulos C, Salamalekis G, Kintis K, Andrianopoulou I, Michalopoulou H, Skalis G, et al. . Risk of hypertensive disorders in pregnancy following assisted reproductive technology: overview and meta-analysis. J Clin Hypertens. (2017) 19:173–83. 10.1111/jch.12945 PubMed DOI PMC

Chih HJ, Elias FTS, Gaudet L, Velez MP. Assisted reproductive technology and hypertensive disorders of pregnancy: systematic review and meta-analyses. BMC Pregnancy Childbirth. (2021) 21:449. 10.1186/s12884-021-03938-8 PubMed DOI PMC

Meister TA, Rimoldi SF, Soria R, von Arx R, Messerli FH, Sartori C, et al. . Association of assisted reproductive technologies with arterial hypertension during adolescence. J Am Coll Cardiol. (2018) 72:1267–74. 10.1016/j.jacc.2018.06.060 PubMed DOI

Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. . 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. (2018) 39:3165–241. 10.1093/eurheartj/ehy478 PubMed DOI

Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. . The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. (2018) 13:291–310. 10.1016/j.preghy.2018.05.004 PubMed DOI

Leddy MA, Power ML, Schulkin J. The impact of maternal obesity on maternal and fetal health. Rev Obstet Gynecol. (2008) 1:170–8. PubMed PMC

ACOG Committee Opinion No. 767 Summary: emergent therapy for acute-onset, severe hypertension during pregnancy and the postpartum period. Obstet Gynecol. (2019) 133:409–12. 10.1097/AOG.0000000000003082 PubMed DOI

Abalos E, Duley L, Steyn DW, Gialdini C. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev. (2018) 10:Cd002252. 10.1002/14651858.CD002252.pub4 PubMed DOI PMC

Bone JN, Sandhu A, Abalos ED, Khalil A, Singer J, Prasad S, et al. . Oral antihypertensives for nonsevere pregnancy hypertension: systematic review, network meta- and trial sequential analyses. Hypertension. (2022) 79:614–28. 10.1161/HYPERTENSIONAHA.121.18415 PubMed DOI PMC

Tita AT, Szychowski JM, Boggess K, Dugoff L, Sibai B, Lawrence K, et al. . Treatment for mild chronic hypertension during pregnancy. N Engl J Med. (2022) 386:1781–92. 10.1056/NEJMoa2201295 PubMed DOI PMC

Grandi SM, Filion KB, Yoon S, Ayele HT, Doyle CM, Hutcheon JA, et al. . Cardiovascular disease-related morbidity and mortality in women with a history of pregnancy complications. Circulation. (2019) 139:1069–79. 10.1161/CIRCULATIONAHA.118.036748 PubMed DOI

Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. (2013) 28:1–19. 10.1007/s10654-013-9762-6 PubMed DOI

Groenhof TKJ, Zoet GA, Franx A, Gansevoort RT, Bots ML, Groen H, et al. . Trajectory of cardiovascular risk factors after hypertensive disorders of pregnancy. Hypertension. (2019) 73:171–8. 10.1161/HYPERTENSIONAHA.118.11726 PubMed DOI

Heida KY, Bots ML, de Groot CJ, van Dunné FM, Hammoud NM, Hoek A, et al. . Cardiovascular risk management after reproductive and pregnancy-related disorders: a Dutch multidisciplinary evidence-based guideline. Eur J Prev Cardiol. (2016) 23:1863–79. 10.1177/2047487316659573 PubMed DOI

Wang Z, Wang Z, Wang L, Qiu M, Wang Y, Hou X, et al. . Hypertensive disorders during pregnancy and risk of type 2 diabetes in later life: a systematic review and meta-analysis. Endocrine. (2017) 55:809–21. 10.1007/s12020-016-1075-6 PubMed DOI

Hermes W, Ket JC, van Pampus MG, Franx A, Veenendaal MV, Kolster C, et al. . Biochemical cardiovascular risk factors after hypertensive pregnancy disorders: a systematic review and meta-analysis. Obstet Gynecol Surv. (2012) 67:793–809. 10.1097/OGX.0b013e31827682fc PubMed DOI

Stuebe AM, Rich-Edwards JW. The reset hypothesis: lactation and maternal metabolism. Am J Perinatol. (2009) 26:81–8. 10.1055/s-0028-1103034 PubMed DOI PMC

Tigas S, Sunehag A, Haymond MW. Metabolic adaptation to feeding and fasting during lactation in humans. J Clin Endocrinol Metab. (2002) 87:302–7. 10.1210/jcem.87.1.8178 PubMed DOI

Wiklund P, Xu L, Lyytikäinen A, Saltevo J, Wang Q, Völgyi E, et al. . Prolonged breast-feeding protects mothers from later-life obesity and related cardio-metabolic disorders. Public Health Nutr. (2012) 15:67–74. 10.1017/S1368980011002102 PubMed DOI

Bartick MC, Stuebe AM, Schwarz EB, Luongo C, Reinhold AG, Foster EM. Cost analysis of maternal disease associated with suboptimal breastfeeding. Obstet Gynecol. (2013) 122:111–9. 10.1097/AOG.0b013e318297a047 PubMed DOI

Faupel-Badger JM, Arcaro KF, Balkam JJ, Eliassen AH, Hassiotou F, Lebrilla CB, et al. . Postpartum remodeling, lactation, and breast cancer risk: summary of a National Cancer Institute-sponsored workshop. J Natl Cancer Inst. (2013) 105:166–74. 10.1093/jnci/djs505 PubMed DOI PMC

Bonifacino E, Schwartz EB, Jun H, Wessel CB, Corbelli JA. Effect of lactation on maternal hypertension: a systematic review. Breastfeed Med. (2018) 13:578–88. 10.1089/bfm.2018.0108 PubMed DOI

Qu G, Wang L, Tang X, Wu W, Sun Y. Association between duration of breastfeeding and maternal hypertension: a systematic review and meta-analysis. Breastfeed Med. (2018) 13:318–26. 10.1089/bfm.2017.0180 PubMed DOI

Stuebe AM, Michels KB, Willett WC, Manson JE, Rexrode K, Rich-Edwards JW. Duration of lactation and incidence of myocardial infarction in middle to late adulthood. Am J Obstet Gynecol. (2009) 200:138.e1–8. 10.1016/j.ajog.2008.10.001 PubMed DOI PMC

Devereux RB, Alderman MH. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation. (1993) 88:1444–55. 10.1161/01.CIR.88.4.1444 PubMed DOI

Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. . 2007 guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. (2007) 25:1105–87. 10.1097/HJH.0b013e3281fc975a PubMed DOI

Cordero A, Morillas P, Bertomeu-Gonzalez V, Quiles J, Mazón P, Guindo J, et al. . Clustering of target organ damage increases mortality after acute coronary syndromes in patients with arterial hypertension. J Hum Hypertens. (2011) 25:600–7. 10.1038/jhh.2010.109 PubMed DOI

Greve SV, Blicher MK, Sehestedt T, Gram-Kampmann EM, Rasmussen S, Vishram JK, et al. . Effective risk stratification in patients with moderate cardiovascular risk using albuminuria and atherosclerotic plaques in the carotid arteries. J Hypertens. (2015) 33:1563–70. 10.1097/HJH.0000000000000584 PubMed DOI

Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K, et al. . Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan intervention for endpoint reduction in hypertension study. Hypertension. (2008) 51:1109–14. 10.1161/HYPERTENSIONAHA.107.107474 PubMed DOI

Gerdts E, Izzo R, Mancusi C, Losi MA, Manzi MV, Canciello G, et al. . Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int J Cardiol. (2018) 258:257–61. 10.1016/j.ijcard.2017.12.086 PubMed DOI

Izzo R, Losi MA, Stabile E, Lönnebakken MT, Canciello G, Esposito G, et al. . Development of left ventricular hypertrophy in treated hypertensive outpatients: the Campania salute network. Hypertension. (2017) 69:136–42. 10.1161/HYPERTENSIONAHA.116.08158 PubMed DOI

de Simone G, Devereux RB, Izzo R, Girfoglio D, Lee ET, Howard BV, et al. . Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. (2013) 2:e000144. 10.1161/JAHA.113.000144 PubMed DOI PMC

Mancusi C, Canciello G, Izzo R, Damiano S, Grimaldi MG, de Luca N, et al. . Left atrial dilatation: a target organ damage in young to middle-age hypertensive patients. The Campania salute network. Int J Cardiol. (2018) 265:229–33. 10.1016/j.ijcard.2018.03.120 PubMed DOI

Gerdts E, Oikarinen L, Palmieri V, Otterstad JE, Wachtell K, Boman K, et al. . Correlates of left atrial size in hypertensive patients with left ventricular hypertrophy: the Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Hypertension. (2002) 39:739–43. 10.1161/hy0302.105683 PubMed DOI

Losi MA, Mancusi C, Midtbø H, Saeed S, de Simone G, Gerdts E. Impact of estimated left atrial volume on prognosis in patients with asymptomatic mild to moderate aortic valve stenosis. Int J Cardiol. (2019) 297:121–5. 10.1016/j.ijcard.2019.10.004 PubMed DOI

Townsend RR. Arterial stiffness: recommendations and standardization. Pulse. (2017) 4:3–7. 10.1159/000448454 PubMed DOI PMC

Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. . Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. (2002) 39:10–5. 10.1161/hy0102.099031 PubMed DOI

Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. . Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. (2001) 37:1236–41. 10.1161/01.HYP.37.5.1236 PubMed DOI

Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, et al. . Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. (2003) 34:1203–6. 10.1161/01.STR.0000065428.03209.64 PubMed DOI

Niiranen TJ, Kalesan B, Hamburg NM, Benjamin EJ, Mitchell GF, Vasan RS. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: the framingham heart study. J Am Heart Assoc. (2016) 5:e004271. 10.1161/JAHA.116.004271 PubMed DOI PMC

Coutinho T. Arterial stiffness and its clinical implications in women. Can J Cardiol. (2014) 30:756–64. 10.1016/j.cjca.2014.03.020 PubMed DOI

Kalibala J, Pechère-Bertschi A, Desmeules J. Gender differences in cardiovascular pharmacotherapy-the example of hypertension: a mini review. Front Pharmacol. (2020) 11:564. 10.3389/fphar.2020.00564 PubMed DOI PMC

Burnier M, Egan BM. Adherence in hypertension. Circ Res. (2019) 124:1124–40. 10.1161/CIRCRESAHA.118.313220 PubMed DOI

Biffi A, Rea F, Iannaccone T, Filippelli A, Mancia G, Corrao G. Sex differences in the adherence of antihypertensive drugs: a systematic review with meta-analyses. BMJ Open. (2020) 10:e036418. 10.1136/bmjopen-2019-036418 PubMed DOI PMC

Gupta P, Patel P, Štrauch B, Lai FY, Akbarov A, Marešová V, et al. . Risk factors for nonadherence to antihypertensive treatment. Hypertension. (2017) 69:1113–20. 10.1161/HYPERTENSIONAHA.116.08729 PubMed DOI

Wang PS, Bohn RL, Knight E, Glynn RJ, Mogun H, Avorn J. Non-compliance with antihypertensive medications: the impact of depressive symptoms and psychosocial factors. J Gen Intern Med. (2002) 17:504–11. 10.1046/j.1525-1497.2002.00406.x PubMed DOI PMC

Gueyffier F, Subtil F, Bejan-Angoulvant T, Zerbib Y, Baguet JP, Boivin JM, et al. . Can we identify response markers to antihypertensive drugs? First results from the IDEAL Trial. J Hum Hypertens. (2015) 29:22–7. 10.1038/jhh.2014.29 PubMed DOI

Zanchetti A, Julius S, Kjeldsen S, McInnes GT, Hua T, Weber M, et al. . Outcomes in subgroups of hypertensive patients treated with regimens based on valsartan and amlodipine: an analysis of findings from the VALUE trial. J Hypertens. (2006) 24:2163–8. 10.1097/01.hjh.0000249692.96488.46 PubMed DOI

Rosano GM, Lewis B, Agewall S, Wassmann S, Vitale C, Schmidt H, et al. . Gender differences in the effect of cardiovascular drugs: a position document of the working group on pharmacology and drug therapy of the ESC. Eur Heart J. (2015) 36:2677–80. 10.1093/eurheartj/ehv161 PubMed DOI

Rabi DM, Khan N, Vallee M, Hladunewich MA, Tobe SW, Pilote L. Reporting on sex-based analysis in clinical trials of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker efficacy. Can J Cardiol. (2008) 24:491–6. 10.1016/S0828-282X(08)70624-X PubMed DOI PMC

Turnbull F, Woodward M, Neal B, Barzi F, Ninomiya T, Chalmers J, et al. . Do men and women respond differently to blood pressure-lowering treatment? Results of prospectively designed overviews of randomized trials. Eur Heart J. (2008) 29:2669–80. 10.1093/eurheartj/ehn427 PubMed DOI

Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ. (2020) 11:31. 10.1186/s13293-020-00306-7 PubMed DOI PMC

Yu Y, Chen J, Li D, Wang L, Wang W, Liu H. Systematic analysis of adverse event reports for sex differences in adverse drug events. Sci Rep. (2016) 6:24955. 10.1038/srep24955 PubMed DOI PMC

Rydberg DM, Mejyr S, Loikas D, Schenck-Gustafsson K, von Euler M, Malmström RE. Sex differences in spontaneous reports on adverse drug events for common antihypertensive drugs. Eur J Clin Pharmacol. (2018) 74:1165–73. 10.1007/s00228-018-2480-y PubMed DOI PMC

Hendriksen LC, van der Linden PD, Lagro-Janssen ALM, van den Bemt P, Siiskonen SJ, Teichert M, et al. . Sex differences associated with adverse drug reactions resulting in hospital admissions. Biol Sex Differ. (2021) 12:34. 10.1186/s13293-021-00377-0 PubMed DOI PMC

Rodenburg EM, Stricker BH, Visser LE. Sex-related differences in hospital admissions attributed to adverse drug reactions in the Netherlands. Br J Clin Pharmacol. (2011) 71:95–104. 10.1111/j.1365-2125.2010.03811.x PubMed DOI PMC

Lovegrove E, Robson J, McGettigan P. Pregnancy protection and pregnancies in women prescribed ACE inhibitors or ARBs: a cross-sectional study in primary care. Br J Gen Pract. (2020) 70:e778–e84. 10.3399/bjgp20X712997 PubMed DOI PMC

Cadeddu C, Franconi F, Cassisa L, Campesi I, Pepe A, Cugusi L, et al. . Arterial hypertension in the female world: pathophysiology and therapy. J Cardiovasc Med. (2016) 17:229–36. 10.2459/JCM.0000000000000315 PubMed DOI

Thürmann PA, Haack S, Werner U, Szymanski J, Haase G, Drewelow B, et al. . Tolerability of beta-blockers metabolized via cytochrome P450 2D6 is sex-dependent. Clin Pharmacol Ther. (2006) 80:551–3. 10.1016/j.clpt.2006.08.004 PubMed DOI

Franconi F, Omboni S, Ambrosioni E, Reggiardo G, Campesi I, Borghi C. Effects of treatment with zofenopril in men and women with acute myocardial infarction: gender analysis of the SMILE Program. PLoS ONE. (2014) 9:e111558. 10.1371/journal.pone.0111558 PubMed DOI PMC

Zucker I, Prendergast BJ. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol Sex Differ. (2020) 11:32. 10.1186/s13293-020-00308-5 PubMed DOI PMC

Zhao M, Woodward M, Vaartjes I, Millett ERC, Klipstein-Grobusch K, Hyun K, et al. . Sex differences in cardiovascular medication prescription in primary care: a systematic review and meta-analysis. J Am Heart Assoc. (2020) 9:e014742. 10.1161/JAHA.119.014742 PubMed DOI PMC

Clayton JA. Studying both sexes: a guiding principle for biomedicine. FASEB J. (2016) 30:519–24. 10.1096/fj.15-279554 PubMed DOI PMC

Effects of treatment on morbidity in hypertension . Results in patients with diastolic blood pressures averaging 115 through 129 mmHg. JAMA. (1967) 202:1028–34. 10.1001/jama.202.11.1028 PubMed DOI

Effects of treatment on morbidity in hypertension. II . Results in patients with diastolic blood pressure averaging 90 through 114 mmHg. JAMA. (1970) 213:1143–52. 10.1001/jama.213.7.1143 PubMed DOI

Mauvais-Jarvis F, Berthold HK, Campesi I, Carrero JJ, Dakal S, Franconi F, et al. . Sex- and gender-based pharmacological response to drugs. Pharmacol Rev. (2021) 73:730–62. 10.1124/pharmrev.120.000206 PubMed DOI PMC

MacMahon SW, Cutler JA, Furberg CD, Payne GH. The effects of drug treatment for hypertension on morbidity and mortality from cardiovascular disease: a review of randomized controlled trials. Prog Cardiovasc Dis. (1986) 29:99–118. 10.1016/0033-0620(86)90038-1 PubMed DOI

Five-year findings of the hypertension detection and follow-up program. II . Mortality by race-sex and age. Hypertension detection and follow-up program cooperative group. JAMA. (1979) 242:2572–7. 10.1001/jama.1979.03300230028022 PubMed DOI

Daugherty SA. Mortality findings beyond five years in the hypertension detection and follow-up program (HDFP). J Hypertens Suppl. (1988) 6:S597–601. 10.1097/00004872-198812040-00187 PubMed DOI

Staessen JA, Gasowski J, Wang JG, Thijs L, Den Hond E, Boissel JP, et al. . Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet. (2000) 355:865–72. 10.1016/S0140-6736(99)07330-4 PubMed DOI

Jamerson K, Weber MA, Bakris GL, Dahlöf B, Pitt B, Shi V, et al. . Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. (2008) 359:2417–28. 10.1056/NEJMoa0806182 PubMed DOI

Oparil S, Davis BR, Cushman WC, Ford CE, Furberg CD, Habib GB, et al. . Mortality and morbidity during and after antihypertensive and lipid-lowering treatment to prevent heart attack trial: results by sex. Hypertension. (2013) 61:977–86. 10.1161/HYPERTENSIONAHA.111.00213 PubMed DOI PMC

Wing LM, Reid CM, Ryan P, Beilin LJ, Brown MA, Jennings GL, et al. . A comparison of outcomes with angiotensin-converting–enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J Med. (2003) 348:583–92. 10.1056/NEJMoa021716 PubMed DOI

Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. (2000) 342:145–53. 10.1056/NEJM200001203420301 PubMed DOI

Kjeldsen SE, Warnold I, Hansson L. Influence of gender on prevention of myocardial infarction by antihypertensives and acetylsalicylic acid: the HOT study. J Gend Specif Med. (2000) 3:35–8. PubMed

Okin PM, Gerdts E, Kjeldsen SE, Julius S, Edelman JM, Dahlöf B, et al. . Gender differences in regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy. Hypertension. (2008) 52:100–6. 10.1161/HYPERTENSIONAHA.108.110064 PubMed DOI

Gueyffier F, Boutitie F, Boissel JP, Pocock S, Coope J, Cutler J, et al. . Effect of antihypertensive drug treatment on cardiovascular outcomes in women and men. A meta-analysis of individual patient data from randomized, controlled trials The INDANA Investigators. Ann Intern Med. (1997) 126:761–7. 10.7326/0003-4819-126-10-199705150-00002 PubMed DOI

Joffres MR, Hamet P, MacLean DR, L'Italien G J, Fodor G. Distribution of blood pressure and hypertension in Canada and the United States. Am J Hypertens. (2001) 14:1099–105. 10.1016/S0895-7061(01)02211-7 PubMed DOI

Yamal JM, Oparil S, Davis BR, Alderman MH, Calhoun DA, Cushman WC, et al. . Stroke outcomes among participants randomized to chlorthalidone, amlodipine or lisinopril in ALLHAT. J Am Soc Hypertens. (2014) 8:808–19. 10.1016/j.jash.2014.08.003 PubMed DOI PMC

Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. (1996) 275:1557–62. 10.1001/jama.275.20.1557 PubMed DOI

Foy CG, Lovato LC, Vitolins MZ, Bates JT, Campbell R, Cushman WC, et al. . Gender, blood pressure, and cardiovascular and renal outcomes in adults with hypertension from the systolic blood pressure intervention trial. J Hypertens. (2018) 36:904–15. 10.1097/HJH.0000000000001619 PubMed DOI PMC

Kjeldsen SE, Hedner T, Syvertsen JO, Lund-Johansen P, Hansson L, Lanke J, et al. . Influence of age, sex and blood pressure on the principal endpoints of the Nordic Diltiazem (NORDIL) Study. J Hypertens. (2002) 20:1231–7. 10.1097/00004872-200206000-00038 PubMed DOI

Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, et al. . A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. (2003) 290:2805–16. 10.1001/jama.290.21.2805 PubMed DOI

Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Franconi F, Gerdts E, Foryst-Ludwig A, et al. . Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J. (2016) 37:24–34. 10.1093/eurheartj/ehv598 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...