Suitability of anaerobic fungi culture supernatant or mixed ruminal fluid as novel silage additives
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
101623
Austrian Federal Ministry of Agriculture, Regions and Tourism
PubMed
36100752
PubMed Central
PMC9529681
DOI
10.1007/s00253-022-12157-w
PII: 10.1007/s00253-022-12157-w
Knihovny.cz E-zdroje
- Klíčová slova
- Anaerobic fungi, Enzymes, Forage, Ruminant, Silage additive,
- MeSH
- acetáty metabolismus MeSH
- anaerobióza MeSH
- bachor * mikrobiologie MeSH
- celulosa metabolismus MeSH
- fermentace MeSH
- houby MeSH
- kyselina mléčná metabolismus MeSH
- lipnicovité MeSH
- potravní vláknina metabolismus MeSH
- siláž * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- celulosa MeSH
- kyselina mléčná MeSH
- potravní vláknina MeSH
This study investigated silage quality characteristics and ruminal fiber degradability of grass and straw ensiled with either anaerobic fungi (AF) supernatant with active fungal enzymes or mixed ruminal fluid as novel silage additives. Compared to control silages, AF supernatant improved the quality of grass and straw silages as evidenced by decreased pH, acetic acid concentration, and dry matter losses. Likewise, mixed ruminal fluid enhanced lactic acid fermentation, which further resulted in lower pH of the treated grass silage. The ruminal fiber degradability was determined using in situ incubations and, compared to controls, the cellulose degradability was higher for grass silage with AF supernatant, whereas ruminal degradability of straw silage was reduced by this treatment. In contrast, mixed ruminal fluid did not influence fiber degradability of silages in the rumen. Concluding, both novel additives improved silage quality, whereas only AF supernatant enhanced ruminal fiber degradability of grass silage and therefore may represent an approach for improving forage utilization by ruminants. KEY POINTS: • Enzymes of anaerobic fungi supernatant improve quality of grass and straw silages. • Mixed ruminal fluid enhances lactic acid fermentation when ensiling grass and straw. • Enzymes of anaerobic fungi supernatant increase ruminal grass silage degradability.
Zobrazit více v PubMed
Ambye-Jensen M, Johansen KS, Didion T, Kádár Z, Schmidt JE, Meyer AS. Ensiling as biological pretreatment of grass (Festulolium Hykor): the effect of composition, dry matter, and inocula on cellulose convertibility. Biomass Bioenergy. 2013;58:303–312. doi: 10.1016/j.biombioe.2013.08.015. DOI
Bidochka MJ, Tong KI, Khachatourians GG. Partial purification and characterization of two extracellular N-acetyl-D-glucosaminidases produced by the entomopathogenic fungus Beauveria bassiana. Can J Microbiol. 1993;39:40–45. doi: 10.1139/m93-006. PubMed DOI
Borreani G, Tabacco E, Schmidt RJ, Holmes BJ, Muck RE. Silage review: factors affecting dry matter and quality losses in silages. J Dairy Sci. 2018;101:3952–3979. doi: 10.3168/jds.2017-13837. PubMed DOI
Caldwell DR, Bryant MP. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966;14:794–801. doi: 10.1128/am.14.5.794-801.1966. PubMed DOI PMC
Dagar SS, Kumar S, Mudgil P, Puniya AK. Comparative evaluation of lignocellulolytic activities of filamentous cultures of monocentric and polycentric anaerobic fungi. Anaerobe. 2018;50:76–79. doi: 10.1016/j.anaerobe.2018.02.004. PubMed DOI
Danner H, Holzer M, Mayrhuber E, Braun R. Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol. 2003;69:562–567. doi: 10.1128/AEM.69.1.562-567.2003. PubMed DOI PMC
Dewar WA, McDonald P, Whittenbury R. The hydrolysis of grass hemicelluloses during ensilage. J Sci Food Agric. 1963;14:411–417. doi: 10.1002/jsfa.2740140610. DOI
Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerová K. Anaerobic fungi and their potential for biogas production. In: Gübitz GM, Bauer A, Bochmann G, Gronauer A, Weiss S, editors. Biogas science and technology. Cham: Springer; 2015. pp. 41–61. PubMed
Ekinci M, Özköse E, Akyol I. Effects of sequential sub-culturing on the survival and enzyme activity of Neocallimastix hurleyensis. Turk J Biol. 2006;30:157–162.
Forzieri G, Feyen L, Rojas R, Flörke M, Wimmer F, Bianchi A. Ensemble projections of future streamflow droughts in Europe. Hydrol Earth Syst Sci. 2014;18:85–108. doi: 10.5194/hess-18-85-2014. DOI
Futterkonservierung B. Praxishandbuch Futter- und Substratkonservierung. 8. Frankfurt am Main: DLG-Verl; 2011.
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294x.1993.tb00005.x. PubMed DOI
Hagen LH, Brooke CG, Shaw CA, Norbeck AD, Piao H, Arntzen MØ, Olson HM, Copeland A, Isern N, Shukla A, Roux S, Lombard V, Henrissat B, O’Malley MA, Grigoriev IV, Tringe SG, Mackie RI, Pasa-Tolic L, Pope PB, Hess M. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME J. 2020 doi: 10.1038/s41396-020-00769-x. PubMed DOI PMC
Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O’Malley MA. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol. 2017;2:17087. doi: 10.1038/nmicrobiol.2017.87. PubMed DOI
Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O’Malley MA. Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng. 2014;111:1471–1482. doi: 10.1002/bit.25264. PubMed DOI
Hartinger T, Grabher L, Pacífico C, Angelmayr B, Faas J, Zebeli Q. Short-term exposure to the mycotoxins zearalenone or fumonisins affects rumen fermentation and microbiota, and health variables in cattle. Food Chem Toxicol. 2022;162:112900 . doi: 10.1016/j.fct.2022.112900. PubMed DOI
Hartinger T, Gresner N, Südekum K-H. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J Anim Sci Biotechnol. 2018;9:33. doi: 10.1186/s40104-018-0249-x. PubMed DOI PMC
Hartinger T, Zebeli Q. The present role and new potentials of anaerobic fungi in ruminant nutrition. J Fungi (basel) 2021;7:200. doi: 10.3390/jof7030200. PubMed DOI PMC
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K (2020) Anaerobic fungi: past, present, and future. Front Microbiol 11. 10.3389/fmicb.2020.584893 PubMed PMC
Hinds AA, Lowe LE. Application of the Berthelot reaction to the determination of ammonium-N in soil extracts and soil digests. Commun Soil Sci Plant Anal. 1980;11:469–475. doi: 10.1080/00103628009367054. DOI
Kung L, Shaver RD, Grant RJ, Schmidt RJ. Silage review: interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci. 2018;101:4020–4033. doi: 10.3168/jds.2017-13909. PubMed DOI
Lauer J. The effects of drought and poor corn pollination on corn. Field Crops. 2012;28:493–495.
Lee SM, Guan LL, Eun J-S, Kim C-H, Lee SJ, Kim ET, Lee SS. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. J Appl Microbiol. 2015;118:565–573. doi: 10.1111/jam.12724. PubMed DOI
Lever M. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem. 1977;81:21–27. doi: 10.1016/0003-2697(77)90594-2. PubMed DOI
McDonald P. A revised model for the estimation of protein degradability in the rumen. J Agric Sci. 1981;96:251–252. doi: 10.1017/S0021859600032081. DOI
McDonald P, Henderson N, Heron S. The biochemistry of silage. 2. Marlow, Bucks, UK: Chalcombe Publications; 1991.
Muck RE. Factors influencing silage quality and their implications for management. J Dairy Sci. 1988;71:2992–3002. doi: 10.3168/jds.S0022-0302(88)79897-5. DOI
Mura E, Edwards J, Kittelmann S, Kaerger K, Voigt K, Mrázek J, Moniello G, Fliegerova K. Anaerobic fungal communities differ along the horse digestive tract. Fungal Biol. 2019;123:240–246. doi: 10.1016/j.funbio.2018.12.004. PubMed DOI
Offner A, Bach A, Sauvant D. Quantitative review of in situ starch degradation in the rumen. Anim Feed Sci Technol. 2003;106:81–93. doi: 10.1016/S0377-8401(03)00038-5. DOI
Olaisen V, Mejdell T, Volden H, Nesse N. Simplified in situ method for estimating ruminal dry matter and protein degradability of concentrates. J Anim Sci. 2003;81:520–528. doi: 10.2527/2003.812520x. PubMed DOI
Puniya AK, Singh R, Kamra DN (ed) (2015) Rumen microbiology: from evolution to revolution. Springer India, New Delhi, India
Susmel P, Stefanon B. Aspects of lignin degradation by rumen microorganisms. J Biotechnol. 1993;30:141–148. doi: 10.1016/0168-1656(93)90035-L. DOI
Swift CL, Brown JL, Seppälä S, O’Malley MA. Co-cultivation of the anaerobic fungus Anaeromyces robustus with Methanobacterium bryantii enhances transcription of carbohydrate active enzymes. J Ind Microbiol Biotechnol. 2019;46:1427–1433. doi: 10.1007/s10295-019-02188-0. PubMed DOI
VDLUFA (2012) VDLUFA-Methodenbuch Bd. III Die chemische Untersuchung von Futtermitteln, 3rd edn. VDLUFA-Verlag, Darmstadt, Germany
Wallace R, Joblin KN. Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol Lett. 1985;29:19–25. doi: 10.1111/j.1574-6968.1985.tb00828.x. DOI
Wang D, Zhao C, Liu S, Zhang T, Yao J, Cao Y. Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate of whole crop maize silage. AMB Express. 2019;9:121. doi: 10.1186/s13568-019-0846-x. PubMed DOI PMC
Wang T-Y, Chen H-L, Lu M-YJ, Chen Y-C, Sung H-M, Mao C-T, Cho H-Y, Ke H-M, Hwa T-Y, Ruan S-K, Hung K-Y, Chen C-K, Li J-Y, Wu Y-C, Chen Y-H, Chou S-P, Tsai Y-W, Chu T-C, Shih C-CA, Li W-H, Shih M-C. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuels. 2011;4:1–16. doi: 10.1186/1754-6834-4-24. PubMed DOI PMC
Weiß K, Kaiser E. Milchsäurebestimmung in Silageextrakten mit Hilfe der HPLC. Wirtschaftseig Futter. 1995;41:69–80.
Weißbach F, Kuhla S. Stoffverluste bei der Bestimmung des Trockenmassegehaltes von Silagen und Grünfutter - entstehende Fehler und Möglichenkeiten der Korrektur. Uebers Tierernaehr. 1995;23:189–214.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols: a guide to methods and applications. United States: Academic Press; 1990. pp. 315–322.
Zabel RA, Morrell JJ. Chemical changes in wood caused by decay fungi. In: Morrell JJ, Zabel RA, editors. Wood microbiology 2E: decay and its prevention. Cambridge, USA: Academic Press; 2020. pp. 215–244.
Zhao J, Dong Z, Li J, Chen L, Bai Y, Jia Y, Shao T. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour Technol. 2018;266:158–165. doi: 10.1016/j.biortech.2018.06.058. PubMed DOI