Extracting individual characteristics from population data reveals a negative social effect during honeybee defence
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36107824
PubMed Central
PMC9477262
DOI
10.1371/journal.pcbi.1010305
PII: PCOMPBIOL-D-22-00031
Knihovny.cz E-resources
- MeSH
- Behavior, Animal * physiology MeSH
- Pheromones physiology MeSH
- Social Behavior * MeSH
- Bees * physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Pheromones MeSH
Honeybees protect their colony against vertebrates by mass stinging and they coordinate their actions during this crucial event thanks to an alarm pheromone carried directly on the stinger, which is therefore released upon stinging. The pheromone then recruits nearby bees so that more and more bees participate in the defence. However, a quantitative understanding of how an individual bee adapts its stinging response during the course of an attack is still a challenge: Typically, only the group behaviour is effectively measurable in experiment; Further, linking the observed group behaviour with individual responses requires a probabilistic model enumerating a combinatorial number of possible group contexts during the defence; Finally, extracting the individual characteristics from group observations requires novel methods for parameter inference. We first experimentally observed the behaviour of groups of bees confronted with a fake predator inside an arena and quantified their defensive reaction by counting the number of stingers embedded in the dummy at the end of a trial. We propose a biologically plausible model of this phenomenon, which transparently links the choice of each individual bee to sting or not, to its group context at the time of the decision. Then, we propose an efficient method for inferring the parameters of the model from the experimental data. Finally, we use this methodology to investigate the effect of group size on stinging initiation and alarm pheromone recruitment. Our findings shed light on how the social context influences stinging behaviour, by quantifying how the alarm pheromone concentration level affects the decision of each bee to sting or not in a given group size. We show that recruitment is curbed as group size grows, thus suggesting that the presence of nestmates is integrated as a negative cue by individual bees. Moreover, the unique integration of exact and statistical methods provides a quantitative characterisation of uncertainty associated to each of the inferred parameters.
Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
Department of Biology University of Konstanz Konstanz Germany
Department of Computer and Information Sciences University of Konstanz Konstanz Germany
Systems Biology Laboratory Faculty of Informatics Masaryk University Brno Czech Republic
See more in PubMed
Czaczkes TJ, Gruter C, Jones SM, Ratnieks FL. Synergy between social and private information increases foraging efficiency in ants. Biology Letters. 2011;7(4):521–4. doi: 10.1098/rsbl.2011.0067 PubMed DOI PMC
Dussutour A, Deneubourg JL, Fourcassie V. Amplification of individual preferences in a social context: the case of wall-following in ants. Proceedings of the Royal Society of London, Series B: Biological Sciences. 2005;272(1564):705–14. PubMed PMC
Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID. Emergent sensing of complex environments by mobile animal groups. Science. 2013;339(6119):574–6. doi: 10.1126/science.1225883 PubMed DOI
Crall JD, Souffrant AD, Akandwanaho D, Hescock SD, Callan SE, Coronado WM, et al.. Social context modulates idiosyncrasy of behaviour in the gregarious cockroach Blaberus discoidalis. Animal Behaviour. 2016;111:297–305. doi: 10.1016/j.anbehav.2015.10.032 DOI
Garrison LK, Kleineidam CJ, Weidenmuller A. Behavioral flexibility promotes collective consistency in a social insect. Sci Rep. 2018;8(1):15836. doi: 10.1038/s41598-018-33917-7 PubMed DOI PMC
Kleineidam CJ, Heeb EL, Neupert S. Social interactions promote adaptive resource defense in ants. PLoS One. 2017;12(9):e0183872. doi: 10.1371/journal.pone.0183872 PubMed DOI PMC
Cook CN, Breed MD. Social context influences the initiation and threshold of thermoregulatory behaviour in honeybees. Animal Behaviour. 2013;86(2):323–329. doi: 10.1016/j.anbehav.2013.05.021 DOI
Laurent Salazar MO, Nicolis SC, Calvo Martin M, Sempo G, Deneubourg JL, Planas-Sitja I. Group choices seemingly at odds with individual preferences. Royal Society Open Science. 2017;4(7):170232. doi: 10.1098/rsos.170232 PubMed DOI PMC
Calvo Martin M, Nicolis SC, Planas-Sitja I, Deneubourg JL. Conflictual influence of humidity during shelter selection of the American cockroach (Periplaneta americana). Scientific Reports. 2019;9(1):20331. doi: 10.1038/s41598-019-56504-w PubMed DOI PMC
Nouvian M, Reinhard J, Giurfa M. The defensive response of the honeybee Apis mellifera. J Exp Biol. 2016;219(22):3505–3517. doi: 10.1242/jeb.143016 PubMed DOI
London KB, Jeanne RL. Effects of colony size and stage of development on defense response by the swarm-founding wasp Polybia occidentalis. Behavioral Ecology and Sociobiology. 2003;54(6):539–546. doi: 10.1007/s00265-003-0662-8 DOI
Moritz RFA, Burgin H. Group response to alarm pheromones in social wasp and the honeybee. Ethology. 1987;76:15–26. doi: 10.1111/j.1439-0310.1987.tb00668.x DOI
Nieh JC, Kruizinga K, Barreto LS, Contrera FAL, Imperatriz-Fonseca VL. Effect of group size on the aggression strategy of an extirpating stingless bee, Trigona spinipes. Insectes Sociaux. 2005;52:1–8. doi: 10.1007/s00040-004-0785-6 DOI
Nouvian M, Hotier L, Claudianos C, Giurfa M, Reinhard J. Appetitive floral odours prevent aggression in honeybees. Nature communications. 2015;6(1):1–10. doi: 10.1038/ncomms10247 PubMed DOI PMC
Dehnert C, Junges S, Jansen N, Corzilius F, Volk M, Bruintjes H, et al.. Prophesy: A probabilistic parameter synthesis tool. In: Computer Aided Verification. Springer; 2015. p. 214–231.
Hahn EM, Hermanns H, Wachter B, Zhang L. PARAM: A Model Checker for Parametric Markov Models. In: Touili T, Cook B, Jackson P, editors. Computer Aided Verification. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 660–664.
Junges S, Ábrahám E, Hensel C, Jansen N, Katoen J, Quatmann T, et al.. Parameter Synthesis for Markov Models. CoRR. 2019;abs/1903.07993.
Katoen JP. The probabilistic model checking landscape. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. ACM; 2016. p. 31–45.
Polgreen E, Wijesuriya VB, Haesaert S, Abate A. Data-efficient Bayesian verification of parametric Markov chains. In: Quantitative Evaluation of Systems. Springer; 2016. p. 35–51.
Chib S. Markov chain Monte Carlo methods: computation and inference. Handbook of econometrics. 2001;5:3569–3649. doi: 10.1016/S1573-4412(01)05010-3 DOI
Lopez-Incera A, Nouvian M, Ried K, Muller T, Briegel HJ. Honeybee communication during collective defence is shaped by predation. BMC Biology. 2021;19(1):106. doi: 10.1186/s12915-021-01028-x PubMed DOI PMC
Bod’ová K, Mitchell GJ, Harpaz R, Schneidman E, Tkačik G. Probabilistic models of individual and collective animal behavior. PloS one. 2018;13(3):e0193049. doi: 10.1371/journal.pone.0193049 PubMed DOI PMC
Dehnert C, Junges S, Katoen JP, Volk M. A STORM is coming: A modern probabilistic model checker. In: Computer Aided Verification. Springer; 2017. p. 592–600.
de Moura LM, Bjørner N. Z3: An Efficient SMT Solver. In: TACAS’08. vol. 4963 of LNCS. Springer; 2008. p. 337–340.
Gao S, Kong S, Clarke EM. dReal: An SMT Solver for Nonlinear Theories over the Reals. In: CADE-24. vol. 7898 of LNCS. Springer; 2013. p. 208–214.
Taschini S. Interval arithmetic: python implementation and applications. In: Proc 7th Python Sci Conf (ScyPy 2008); 2008.
Schnoerr D, Sanguinetti G, Grima R. Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. Journal of Physics A: Mathematical and Theoretical. 2017;50(9):093001. doi: 10.1088/1751-8121/aa54d9 DOI
Hansson H, Jonsson B. A logic for reasoning about time and reliability. Formal Aspects of Computing. 1994;6(5):512–535. doi: 10.1007/BF01211866 DOI
Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification of probabilistic real-time systems. In: International conference on computer aided verification. Springer; 2011. p. 585–591.
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. The journal of chemical physics. 1953;21(6):1087–1092. doi: 10.1063/1.1699114 DOI
Farine DR, Aplin LM, Sheldon BC, Hoppitt W. Interspecific social networks promote information transmission in wild songbirds. Proceedings of the Royal Society B: Biological Sciences. 2015;282. doi: 10.1098/rspb.2014.2804 PubMed DOI PMC
Akaike H. Information theory and an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory. B.N. Petrov and B.F. Csaki (Eds.). Academiai Kiado: Budapest; 1973. p. 267–281.
Hunt GJ. Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J Insect Physiol. 2007;53(5):399–410. doi: 10.1016/j.jinsphys.2007.01.010 PubMed DOI PMC
Robinson GE. Modulation of alarm pheromone perception in the honey bee: evidence for division of labor based on hormonally regulated response thresholds. Journal of Comparative Physiology, A. 1987;160(5):613–619. doi: 10.1007/BF00611934 DOI
Robinson GE. Regulation of division of labor in insect societies. Annual Review of Entomology. 1992;37:637–65. doi: 10.1146/annurev.en.37.010192.003225 PubMed DOI
Boch R, Shearer DA, Stone BC. Identification of isoamyl acetate as an active component in the sting pheromone of the honey bee. Nature. 1962;195:1018–20. doi: 10.1038/1951018b0 PubMed DOI
Koeniger N, Kurze C, Phiancharoen M, Koeniger G. “Up” or “down” that makes the difference. How giant honeybees (Apis dorsata) see the world. PLoS One. 2017;12(11):e0185325. doi: 10.1371/journal.pone.0185325 PubMed DOI PMC
Nouvian M, Mandal S, Jamme C, Claudianos C, d’Ettorre P, Reinhard J, et al.. Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. Proceedings of the Royal Society of London, Series B: Biological Sciences. 2018;285 (1871). doi: 10.1098/rspb.2017.2653 PubMed DOI PMC
Kastberger G, Thenius R, Stabentheiner A, Hepburn R. Aggressive and Docile Colony Defence Patterns in Apis mellifera. A Retreater–Releaser Concept. Journal of Insect Behavior. 2009;22(1):65–85. doi: 10.1007/s10905-008-9155-y DOI
Wager BR, Breed MD. Does Honey Bee sting alarm pheromone give orientation information to defensive bees? Ann Entomol Soc Am. 2000;93:1329–1332. doi: 10.1603/0013-8746(2000)093[1329:DHBSAP]2.0.CO;2 DOI
Free JB. The stimuli releasing the stinging response of honeybees. Anim Behav. 1961;9:193–196. doi: 10.1016/0003-3472(61)90008-2 DOI
Rittschof CC. Sequential social experiences interact to modulate aggression but not brain gene expression in the honey bee (Apis mellifera). Front Zool. 2017;14:16. doi: 10.1186/s12983-017-0199-8 PubMed DOI PMC
Butler CG, Free JB. The Behaviour of Worker Honeybees At the Hive Entrance. Behaviour. 1952;4:262–292.
Couvillon MJ, Barton SN, Cohen JA, Fabricius OK, Karcher MH, Cooper LS, et al.. Alarm pheromones do not mediate rapid shifts in honey bee guard acceptance threshold. J Chem Ecol. 2010;36(12):1306–8. doi: 10.1007/s10886-010-9881-4 PubMed DOI
Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID. Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences. 2011;108(46):18720–18725. doi: 10.1073/pnas.1107583108 PubMed DOI PMC
Lukeman R, Li YX, Edelstein-Keshet L. Inferring individual rules from collective behavior. Proceedings of the National Academy of Sciences. 2010;107(28):12576–12580. doi: 10.1073/pnas.1001763107 PubMed DOI PMC
Itai A, Rodeh M. Symmetry Breaking in Distributed Networks. Information and Computation. 1990;88(1). doi: 10.1016/0890-5401(90)90004-2 DOI