Recent advances in dopamine D2 receptor ligands in the treatment of neuropsychiatric disorders
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36111795
DOI
10.1002/med.21923
Knihovny.cz E-zdroje
- Klíčová slova
- D2 receptor agonist, D2 receptor antagonist, D2 receptor modulators, D2 receptor partial agonist, Parkinson's disease, anxiety, depression, dopamine, dopamine D2 receptor, schizophrenia,
- MeSH
- dopamin * metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- receptory dopaminu D2 * agonisté metabolismus MeSH
- receptory spřažené s G-proteiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- dopamin * MeSH
- ligandy MeSH
- receptory dopaminu D2 * MeSH
- receptory spřažené s G-proteiny MeSH
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Biomedical Research Centre University Hospital Hradec Kralove Hradec Kralove Czech Republic
Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
Zobrazit více v PubMed
Clemens S, Rye D, Hochman S. Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology. 2006;67(1):125-130.
Manconi M, Garcia-Borreguero D, Schormair B, et al. Restless legs syndrome. Nat Rev Dis Primers. 2021;7(1):1-18.
Gustavsson A, Svensson M, Jacobi F, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21(10):718-779.
Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules. 2018;23(8):2087.
Osuch E, Marais A. The pharmacological management of depression-update 2017. S Afr Fam Pract. 2017;59(1):6-16.
Bystritsky A, Khalsa SS, Cameron ME, Schiffman J. Current diagnosis and treatment of anxiety disorders. P T. 2013;38(1):30-57.
Connolly BS, Lang AE. Pharmacological treatment of parkinson disease: a review. JAMA. 2014;311(16):1670-1683.
Brust TF, Hayes MP, Roman DL, Burris KD, Watts VJ. Bias analyses of preclinical and clinical D2 dopamine ligands: studies with immediate and complex signaling pathways. J Pharmacol Exp Ther. 2015;352:480-493.
Portoghese PS. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J Med Chem. 2001;44(14):2259-2269.
McRobb FM, Crosby IT, Yuriev E, Lane JR, Capuano B. Homobivalent ligands of the atypical antipsychotic clozapine: design, synthesis, and pharmacological evaluation. J Med Chem. 2012;55(4):1622-1634.
Valant C, Robert Lane J, Sexton PM, Christopoulos A. The best of both worlds? bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu Rev Pharmacol Toxicol. 2012;52(1):153-178.
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signaling. 2013;11(1):34.
Delcambre S, Nonnenmacher Y, Hiller K. Dopamine metabolism and reactive oxygen species production. In: Buhlman LM, ed. Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer International Publishing; 2016:25-47.
Nolan R, Gaskill PJ. The role of catecholamines in HIV neuropathogenesis. Brain Res. 2019;1702:54-73.
Mezey É, Eisenhofer G, Hansson S, Hunyady B, Hoffman BJ. Dopamine produced by the stomach May act as a paracrine/autocrine hormone in the rat. Neuroendocrinology. 1998;67(5):336-348.
Nurse CA, Fearon IM. Carotid body chemoreceptors in dissociated cell culture. Microsc Res Tech. 2002;59(3):249-255.
Pilipović I, Vidić-Danković B, Perišić M, et al. Sexual dimorphism in the catecholamine-containing thymus microenvironment: a role for gonadal hormones. J Neuroimmunol. 2008;195(1):7-20.
Ayano G. Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat. 2016;2:2.
Omiatek DM, Bressler AJ, Cans A-S, Andrews AM, Heien ML, Ewing AG. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci Rep. 2013;3(1):1447.
Scimemi A, Beato M. Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol. 2009;40(3):289-306.
Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it? dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol. 2020;15(1):114-164.
Agnati LF, Zoli M, Strömberg I, Fuxe K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience. 1995;69(3):711-726.
Eiden LE, Schäfer MK-H, Weihe E, Schütz B. The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch. 2004;447(5):636-640.
Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser PS. Dopamine secretion is mediated by sparse active zone-like release sites. Cell. 2018;172(4):706-718.e15.
Lévesque D, Diaz J, Pilon C, et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci USA. 1992;89(17):8155-8159.
Gardner B, Hall DA, Strange PG. Pharmacological analysis of dopamine stimulation of [35S]-GTPγS binding via human D2short and D2long dopamine receptors expressed in recombinant cells. Br J Pharmacol. 1996;118(6):1544-1550.
Gardner BR, Hall DA, Strange PG. Agonist action at D2(short) dopamine receptors determined in ligand binding and functional assays. J Neurochem. 1997;69(6):2589-2598.
Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13-22.
Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64(3):327-337.
Palij P, Bull DR, Sheehan MJ, et al. Presynaptic regulation of dopamine release in corpus striatum monitored in vitro in real time by fast cyclic voltammetry. Brain Res. 1990;509(1):172-174.
Kennedy RT, Jones SR, Wightman RM. Dynamic observation of dopamine autoreceptor effects in rat striatal slices. J Neurochem. 1992;59(2):449-455.
Benoit-Marand M, Ballion B, Borrelli E, Boraud T, Gonon F. Inhibition of dopamine uptake by D2 antagonists: an in vivo study. J Neurochem. 2011;116(3):449-458.
Anzalone A, Lizardi-Ortiz JE, Ramos M, et al. Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors. J Neurosci. 2012;32(26):9023-9034.
Cass WA, Gerhardt GA. Direct in vivo evidence that D2 dopamine receptors can modulate dopamine uptake. Neurosci Lett. 1994;176(2):259-263.
Dickinson SD, Sabeti J, Larson GA, et al. Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J Neurochem. 1999;72(1):148-156.
Mayfield RD, Zahniser NR. Dopamine D2 receptor regulation of the dopamine transporter expressed in Xenopus laevis oocytes is voltage-independent. Mol Pharmacol. 2001;59(1):113-121.
Schmitz Y, Schmauss C, Sulzer D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors. J Neurosci. 2002;22(18):8002-8009.
Wu Q, Reith MEA, Walker QD, Kuhn CM, Carroll FI, Garris PA. Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci. 2002;22(14):6272-6281.
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther. 2020;213:213107583.
Chen R, Daining CP, Sun H, et al. Protein kinase Cβ is a modulator of the dopamine D2 autoreceptor-activated trafficking of the dopamine transporter. J Neurochem. 2013;125(5):663-672.
Gowrishankar R, Gresch PJ, Davis GL, et al. Region-specific regulation of presynaptic dopamine homeostasis by D2 autoreceptors shapes the in vivo impact of the neuropsychiatric disease-associated DAT variant Val559. J Neurosci. 2018;38(23):5302-5312.
Kehr W, Carlsson A, Lindqvist M, Magnusson T, Atack C. Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J Pharm Pharmacol. 1972;24(9):744-747.
Wolf ME, Roth RH. Autoreceptor regulation of dopamine synthesis. Ann N Y Acad Sci. 1990;604:323-343.
Molinoff PB, Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem. 1971;40:465-500.
Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508(1):1-12.
Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259-288.
Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30(5):194-202.
Dahlström A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia. 1964;20(7):398-399.
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39(1):31-59.
Basu S, Dasgupta PS. Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol. 2000;102(2):113-124.
Goldberg LI, Volkman PH, Kohli JD. A comparison of the vascular dopamine receptor with other dopamine receptors. Annu Rev Pharmacol Toxicol. 1978;18:57-79.
Contreras F, Fouillioux C, Bolívar A, et al. Dopamine, hypertension and obesity. J Hum Hypertens. 2002;16(1):S13-S17.
Aperia AC. Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol. 2000;62:621-647.
Willems JL, Buylaert WA, Lefebvre RA, Bogaert MG. Neuronal dopamine receptors on autonomic ganglia and sympathetic nerves and dopamine receptors in the gastrointestinal system. Pharmacol Rev. 1985;37(2):165-216.
Liu X-Y, Zheng L-F, Fan Y-Y, et al. Activation of dopamine D2 receptor promotes pepsinogen secretion by suppressing somatostatin release from the mouse gastric mucosa. Am J Physiol-Cell Physiol. 2022;322(3):C327-C337.
Farino ZJ, Morgenstern TJ, Maffei A, et al. New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry. 2020;25(9):2070-2085.
Aslanoglou D, Bertera S, Sánchez-Soto M, et al. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl Psychiatry. 2021;11(1):1-18.
Ballon JS, Pajvani UB, Mayer LE, et al. Pathophysiology of drug induced weight and metabolic effects: findings from an RCT in healthy volunteers treated with olanzapine, iloperidone, or placebo. J Psychopharmacol. 2018;32(5):533-540.
Hisahara S, Shimohama S. Dopamine receptors and parkinson's disease. Int J Med Chem. 2011;2011: 403039.
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217.
Seeman P. Historical overview: introduction to the dopamine receptors. In: Neve KA, ed. The Dopamine Receptors. Humana Press; 2010:1-21.
Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses. 2010;4(1):56-73.
Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol. 2002;42:437-467.
Heidbreder CA, Newman AH. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders. Ann N Y Acad Sci. 2010;1187:4-34.
Chien EYT, Liu W, Zhao Q, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science. 2010;330(6007):1091-1095.
Newman AH, Grundt P, Cyriac G, et al. N-(4-(4-(2,3-Dichloro- or 2-methoxyphenyl)piperazin-1-yl)-butyl)-heterobiarylcarboxamides with functionalized linking chains as high affinity and enantioselective D3 receptor antagonists. J Med Chem. 2009;52(8):2559-2570.
Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. 2018;555(7695):269-273.
Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189-225.
Fan L, Tan L, Chen Z, et al. Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands. Nat Commun. 2020;11(1):1074.
Im D, Inoue A, Fujiwara T, et al. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone. Nat Commun. 2020;11(1):6442.
Yin J, Chen K-YM, Clark MJ, et al. Structure of a D2 dopamine receptor-g-protein complex in a lipid membrane. Nature. 2020;584(7819):125-129.
Xu P, Huang S, Mao C, et al. Structures of the human dopamine D3 receptor-gi complexes. Mol Cell. 2021;81(6):1147-1159.e4.
Giros B, Sokoloff P, Martres MP, Riou JF, Emorine LJ, Schwartz JC. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature. 1989;342(6252):923-926.
Monsma FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR. Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature. 1989;342(6252):926-929.
Usiello A, Baik JH, Rougé-Pont F, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature. 2000;408(6809):199-203.
De Mei C, Ramos M, Iitaka C, Borrelli E. Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol. 2009;9(1):53-58.
Gerfen CR. Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci. 2000;23(suppl 10):S64-S70.
Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24(1):125-132.
Seeman P. Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets. 2006;10(4):515-531.
Durdagi S, Erol I, Salmas RE, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRs from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett. 2019;700:30-37.
Zawarynski P, Tallerico T, Seeman P, Lee SP, O'Dowd BF, George SR. Dopamine D2 receptor dimers in human and rat brain. FEBS Lett. 1998;441(3):383-386.
Kebabian JW, Greengard P. Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science. 1971;174(4016):1346-1349.
Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature. 1979;277(5692):93-96.
Enjalbert A, Bockaert J. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol Pharmacol. 1983;23(3):576-584.
Beaulieu J-M, Sotnikova TD, Yao W-D, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA. 2004;101(14):5099-5104.
Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3(9):639-650.
Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of g-protein-coupled receptor signals. J Cell Sci. 2002;115(pt 3):455-465.
Luttrell LM, Ferguson SS, Daaka Y, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-src protein kinase complexes. Science. 1999;283(5402):655-661.
Beaulieu J-M, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell. 2005;122(2):261-273.
Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG. Paradoxical striatal cellular signaling responses to psychostimulants in hyperactive mice. J Biol Chem. 2006;281(43):32072-32080.
Sotnikova TD, Beaulieu J-M, Barak LS, Wetsel WC, Caron MG, Gainetdinov RRDopamine-independent locomotor actions of amphetamines in a novel acute mouse model of parkinson disease. PLoS Biol. 2005;3(8):e271.
Beaulieu J-M, Del'guidice T, Sotnikova TD, Lemasson M, Gainetdinov RR. Beyond cAMP: the regulation of akt and GSK3 by dopamine receptors. Front Mol Neurosci. 2011;4:438.
Ferguson SS, Barak LS, Zhang J, Caron MG. G-protein-coupled receptor regulation: role of g-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol. 1996;74(10):1095-1110.
Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53(1):1-24.
Claing A, Laporte SA, Caron MG, Lefkowitz RJ. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol. 2002;66(2):61-79.
Claing A, Laporte SA. Novel roles for arrestins in G protein-coupled receptor biology and drug discovery. Curr Opin Drug Discov Devel. 2005;8(5):585-589.
Marcsisin MJ, Rosenstock JB, Gannon JM. Schizophrenia and Related Disorders. Oxford University Press.
Brown AS, Lau FS. Chapter 2-A review of the epidemiology of schizophrenia. In: Pletnikov MV, Waddington JL, eds. Handbook of Behavioral Neuroscience. Elsevier; 2016:17-30.
Häfner H, Maurer K, Löffler W, Riecher-Rössler A. The influence of age and sex on the onset and early course of schizophrenia. Br J Psychiatry. 1993;162(1):80-86.
Singh SP, Cooper JE, Fisher HL, et al. Determining the chronology and components of psychosis onset: the nottingham onset schedule (NOS). Schizophr Res. 2005;80(1):117-130.
Wójciak P, Remlinger-Molenda A, Rybakowski J. Stages of the clinical course of schizophrenia-staging concept. Psychiatr Pol. 2016;50(4):717-730.
Siever LJ, Davis KL. The pathophysiology of schizophrenia disorders: perspectives from the spectrum. Am J Psychiatry. 2004;161(3):398-413.
Ebenezer I. Neuropsychopharmacology and Therapeutics. Wiley-Blackwell; 2015.
Sun J, Kuo P-H, Riley BP, Kendler KS, Zhao Z. Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet, Part B. 2008;147B(7):1173-1181.
Os JV, Selten J-P. Prenatal exposure to maternal stress and subsequent schizophrenia: the May 1940 invasion of the Netherlands. Br J Psychiatry. 1998;172(4):324-326.
Malaspina D, Corcoran C, Kleinhaus K, et al. Acute maternal stress in pregnancy and schizophrenia in offspring: a cohort prospective study. BMC Psychiatry. 2008;8(1):71.
Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187-1192.
vanRossum JM. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966;160(2):492-494.
Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol. 1963;20(2):140-144.
Baumeister AA, Hawkins MF. The serotonin hypothesis of schizophrenia: a historical case study on the heuristic value of theory in clinical neuroscience. J Hist Neurosci. 2004;13(3):277-291.
Eggers AE. A serotonin hypothesis of schizophrenia. Med Hypotheses. 2013;80(6):791-794.
Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73(5):204-215.
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci. 2015;1338:38-57.
Yang AC, Tsai S-J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 2017;18(8):1689.
de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic mechanisms in schizophrenia: linking postmortem and in vivo studies. Front Psychiatry. 2017;8:8118.
Raedler TJ, Tandon R. Cholinergic mechanisms in schizophrenia: current concepts. Curr Psychos Ther Rep. 2006;4(1):20-26.
Young D, Scoville WB. Paranoid psychosis in narcolepsy and the possible danger of benzedrine treatment. Med Clin North Am. 1938;22(3):637-646.
Connell PH. Amphetamine psychosis. Br Med J. 1957;1(5018):582.
Randrup A, Munkvad I. Special antagonism of amphetamine-induced abnormal behaviour. Psychopharmacologia. 1965;7(6):416-422.
Phillips MI, Bradley PB. The effect of chlorpromazine and d-amphetamine mixtures on spontaneous behaviour. Int J Neuropharmacol. 1969;8(2):169-176.
Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986;396(2):157-198.
Curran C, Byrappa N, McBride A. Stimulant psychosis: systematic review. Br J Psychiatry. 2004;185:196-204.
Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci. 2010;47(1):4-16.
Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015;29(2):97-115.
Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38(5):950-957.
Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35(1):57-67.
Nakazawa K, Zsiros V, Jiang Z, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62(3):1574-1583.
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr Bull. 2009;35(3):549-562.
Lau C-I, Wang H-C, Hsu J-L, Liu M-E. Does the dopamine hypothesis explain schizophrenia? Rev Neurosci. 2013;24(4):389-400.
Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148(11):1474-1486.
Carbon M, Correll CU. Thinking and acting beyond the positive: the role of the cognitive and negative symptoms in schizophrenia. CNS Spectr. 2014;19(S1):138-152.
De Berardis D, Rapini G, Olivieri L, et al. Safety of antipsychotics for the treatment of schizophrenia: a focus on the adverse effects of clozapine. Ther Adv Drug Saf. 2018;9(5):237-256.
Celanire S, Poli S. Small Molecule Therapeutics for Schizophrenia. Springer; 2014:327.
Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology. 2020;172:172107704.
Stroup TS, Lieberman JA, Swartz MS, McEvoy JP. Comparative effectiveness of antipsychotic drugs in schizophrenia. Dialogues Clin Neurosci. 2000;2(4):373-379.
López-Muñoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G. History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry. 2005;17(3):113-135.
Fitton A, Heel RC. Clozapine. A review of its pharmacological properties, and therapeutic use in schizophrenia. Drugs. 1990;40(5):722-747.
Crilly J. The history of clozapine and its emergence in the US market: a review and analysis. Hist Psychiatry. 2007;18(1):39-60.
Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157(4):514-520.
Nordström A-L, Farde L, Wiesel F-A, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry. 1993;33(4):227-235.
Richtand NM, Welge JA, Logue AD, Keck PE, Strakowski SM, McNamara RK. Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology. 2007;32(8):1715-1726.
Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976;261(5562):717-719.
Richelson E, Nelson A. Antagonism by neuroleptics of neurotransmitter receptors of normal human brain in vitro. Eur J Pharmacol. 1984;103(3-4):197-204.
Richelson E, Souder T. Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci. 2000;68(1):29-39.
Maeda K, Sugino H, Akazawa H, et al. In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther. 2014;350(3):589-604.
Kiss B, Horváth A, Némethy Z, et al. Cariprazine (RGH-188), a dopamine D3 receptor-preferring, D3/D2 dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Ther. 2010;333(1):328-340.
Karlsson P, Farde L, Härnryd C, Sedvall G, Smith L, Wiesel F-A. Lack of apparent antipsychotic effect of the D1-dopamine recepotr antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology. 1995;121(3):309-316.
Redden L, Rendenbach-Mueller B, Abi-Saab W, et al. A double-blind, randomized, placebo-controlled study of the dopamine D-3 receptor antagonist ABT-925 in patients with acute schizophrenia. J Clin Psychopharmacol. 2011;31:221-225.
Bristow LJ, Kramer MS, Kulagowski J, Patel S, Ragan CI, Seabrook GR. Schizophrenia and L-745, 870, a novel dopamine D4 receptor antagonist. Trends Pharmacol Sci. 1997;18(6):186-188.
George MS, Molnar CE, Grenesko EL, et al. A single 20 mg dose of dihydrexidine (DAR-0100), a full dopamine D1 agonist, is safe and tolerated in patients with schizophrenia. Schizophr Res. 2007;93(1-3):42-50.
Girgis RR, Van Snellenberg JX, Glass A, et al. A proof-of-concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. J Psychopharmacol. 2016;30(5):428-435.
Rosell D, Zaluda L, McClure M, et al. Effects of the D1 dopamine receptor agonist dihydrexidine (DAR-0100A) on working memory in schizotypal personality disorder. Neuropsychopharmacology. 2015;40(2):446-453.
Zheng W, Li XH, Cai DB, et al. Adjunctive azapirone for schizophrenia: a meta-analysis of randomized, double-blind, placebo-controlled trials. Eur Neuropsychopharmacol. 2018;28(1):149-158.
Meltzer H, Huang M. In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res. 2008;172:177-197.
Schneider LS. Pimavanserin for patients with alzheimer's disease psychosis. Lancet Neurol. 2018;17(3):194-195.
Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev. 2020;40(5):1593-1678.
Fijał K, Popik P, Nikiforuk A. Co-administration of 5-HT6 receptor antagonists with clozapine, risperidone, and a 5-HT2A receptor antagonist: effects on prepulse inhibition in rats. Psychopharmacology. 2014;231(1):269-281.
De Bruin N, Kruse C. 5-HT6 receptor antagonists: potential efficacy for the treatment of cognitive impairment in schizophrenia. Curr Pharm Des. 2015;21:3739-3759.
Nikiforuk A. Targeting the serotonin 5-HT 7 receptor in the search for treatments for CNS disorders: rationale and progress to date. CNS Drugs. 2015;29(4):265-275.
Tagawa M, Kano M, Okamura N, et al. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. Br J Clin Pharmacol. 2001;52:52501-52509.
Yanai K, Tashiro M. The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther. 2007;113:1-15.
Raveendran NS, Tharyan P, Alexander J, Adams CE. Rapid tranquillisation in psychiatric emergency settings in India: pragmatic randomised controlled trial of intramuscular olanzapine versus intramuscular haloperidol plus promethazine. BMJ. 2007;335(7625):865.
Xu M, Wang Y, Yang F, et al. Synthesis and biological evaluation of a series of multi-target n-substituted cyclic imide derivatives with potential antipsychotic effect. Eur J Med Chem. 2018;38:14574-14585.
Weston-Green K, Huang X-F, Deng C. Second generation antipsychotic-induced type 2 diabetes: a role for the muscarinic M3 receptor. CNS Drugs. 2013;27(12):1069-1080.
Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel. Cell. 1995;81(2):299-307.
Richelson E. Receptor pharmacology of neuroleptics: relation to clinical effects. J Clin Psychiatry. 1999;60(suppl 10):5-14.
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17(12):1206-1227.
Knegtering R, Moolen AEGM, Castelein S, Kluiter H, Bosch RJ. What are the effects of antipsychotics on sexual dysfunctions and endocrine functioning? Psychoneuroendocrinology. 2003;28(suppl 2):109-123.
Hasin DS, Goodwin RD, Stinson FS, Grant BF. Epidemiology of major depressive disorder: results from The National epidemiologic survey on alcoholism and related conditions. Arch Gen Psychiatry. 2005;62(10):1097-1106.
Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study 2015. The Lancet. 2016;388(10053):1545-1602.
Boas GRV, de Lacerda RB, Paes MM, et al. Molecular aspects of depression: a review from neurobiology to treatment. Eur J Pharmacol. 2019;851:99-121.
Kuehner C. Gender differences in unipolar depression: an update of epidemiological findings and possible explanations. Acta Psychiatr Scand. 2003;108(3):163-174.
Anda RF, Felitti VJ, Bremner JD, et al. The enduring effects of abuse and related adverse experiences in childhood. Eur Arch Psychiatry Clin Neurosci. 2006;256(3):174-186.
Kaplow JB, Widom CS. Age of onset of child maltreatment predicts long-term mental health outcomes. J Abnorm Psychol. 2007;116(1):176-187.
Schoedl AF, Costa MCP, Mari JJ, et al. The clinical correlates of reported childhood sexual abuse: an association between age at trauma onset and severity of depression and PTSD in adults. J Child Sex Abus. 2010;19(2):156-170.
Shore PA, Silver SL, Brodie BB. Interaction of reserpine, serotonin, and lysergic acid diethylamide in brain. Science. 1955;122(3163):284-285.
Holzbauer M, Vogt M. Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J Neurochem. 1956;1(1):8-11.
Zeller EA, Blanksma LA, Burkard WP, Pacha WL, Lazanas JC. In vitro and in vivo inhibition of amine oxidases. Ann NY Acad Sci. 1959;80(3):583-589.
Steinberg H, Himmerich H. Roland Kuhn-100th birthday of an innovator of clinical psychopharmacology. Psychopharmacol Bull. 2012;45(1):48-50.
Bunney WE, Davis JM. Norepinephrine in depressive reactions: a review. Arch Gen Psychiatry. 1965;13(6):483-494.
Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122(5):509-522.
Coppen A. The biochemistry of affective disorders. Br J Psychiatry. 1967;113(504):1237-1264.
Hoyer D, Clarke DE, Fozard JR, et al. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev. 1994;46(2):157-203.
Perez DM. The Adrenergic Receptors-In the 21st Century. Humana Press; 2005.
Charpentier G, Béhue N, Fournier F. Phospholipase C activates protein kinase C during induction of slow na current in xenopus oocytes. Pflugers Arch. 1995;429(6):825-831.
Taylor SS, Kim C, Cheng CY, Brown SHJ, Wu J, Kannan N. Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta. 2008;1784(1):16-26.
Luo Y, Kuang S, Li H, Ran D, Yang J. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress. Oncotarget. 2017;8(22):35558-35572.
D'haenen HA, Bossuyt A. Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry. 1994;35(2):128-132.
Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP. Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol Med. 1997;27(6):1247-1256.
Peciña M, Sikora M, Avery ET, et al. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: implications for anhedonia, anxiety and treatment response. Eur Neuropsychopharmacol. 2017;27(10):977-986.
Ebert D, Loew T, Feistel H, Pirner A. Dopamine and depression-striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology. 1996;126(1):91-94.
Hirvonen J, Hietala J, Kajander J, et al. Effects of antidepressant drug treatment and psychotherapy on striatal and thalamic dopamine D2/3 receptors in major depressive disorder studied with [11C]raclopride PET. J Psychopharmacol. 2010;25(10):1329-1336.
Klimke A, Larisch R, Janz A, Vosberg H, Müller-Gärtner H-W, Gaebel W. Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatry Res. 1999;90(2):91-101.
Montgomery AJ, Stokes P, Kitamura Y, Grasby PM. Extrastriatal D2 and striatal D2 receptors in depressive illness: pilot PET studies using [11C]FLB 457 and [11C]raclopride. J Affect Disord. 2007;101(1):113-122.
Yang YK, Yeh TL, Yao WJ, et al. Greater availability of dopamine transporters in patients with major depression-a dual-isotope SPECT study. Psychiatry Res. 2008;162(3):230-235.
de Kwaasteniet BP, Pinto C, Ruhé HG, van Wingen GA, Booij J, Denys D. Striatal dopamine D2/3 receptor availability in treatment resistant depression. PLoS One. 2014;9(11):e113612.
Busto UE, Redden L, Mayberg H, Kapur S, Houle S, Zawertailo LA. Dopaminergic activity in depressed smokers: a positron emission tomography study. Synapse. 2009;63(8):681-689.
Hanada Y, Kawahara Y, Ohnishi YN, et al. p11 in cholinergic interneurons of the nucleus accumbens is essential for dopamine responses to rewarding stimuli. eNeuro. 2018;5(5):1-21.
Clark L, Watson D. Tripartite model of anxiety and depression: psychometric evidence and taxonomic implications. J Abnorm Psychol. 1991;100:3316-3336.
Szczypiński JJ, Gola M. Dopamine dysregulation hypothesis: the common basis for motivational anhedonia in major depressive disorder and schizophrenia? Rev Neurosci. 2018;29(7):727-744.
Nestler EJ, Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59(12):1151-1159.
Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012;35(1):68-77.
Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015;86(3):646-664.
Shelton RC, Tomarken AJ. Can recovery from depression be achieved? PS (Wash DC). 2001;52(11):1469-1478.
Craske MG, Meuret AE, Ritz T, Treanor M, Dour HJ. Treatment for anhedonia: a neuroscience driven approach. Depress Anxiety. 2016;33(10):927-938.
Chen J, Gao K, Kemp DE. Second-generation antipsychotics in major depressive disorder: update and clinical perspective. Curr Opin Psychiatry. 2011;24(1):10-17.
Wang P, Si T. Use of antipsychotics in the treatment of depressive disorders. Shanghai Arch Psychiatry. 2013;25(3):134-140.
Goodwin G, Fleischhacker W, Arango C, et al. Advantages and disadvantages of combination treatment with antipsychotics: ECNP consensus meeting, March 2008, nice. Eur Neuropsychopharmacol. 2009;19(7):520-532.
Kennedy S, Lam R, Cohen N, Ravindran A. Clinical guidelines for the treatment of depressive disorders. IV. Medications and other biological treatments. Can J Psychiatry. 2001;46(suppl 1):138S-158S.
Konstantinidis A, Papageorgiou K, Grohmann R, Horvath A, Engel R, Kasper S. Increase of antipsychotic medication in depressive inpatients from 2000 to 2007: results from the AMSP international pharmacovigilance program. Int J Neuropsychopharmacol. 2012;15(4):449-457.
Sagud M, Peles A, Begić D, et al. Antipsychotics as antidepressants: what is the mechanism? Psychiatr Danubina. 2011;23(3):302-307.
Wang S-M, Han C, Lee S-J, et al. Second generation antipsychotics in the treatment of major depressive disorder: an update. Chonnam Med J. 2016;52(3):159-172.
Giménez S, Clos S, Romero S, Grasa E, Morte A, Barbanoj MJ. Effects of olanzapine, risperidone and haloperidol on sleep after a single oral morning dose in healthy volunteers. Psychopharmacology. 2007;190(4):507-516.
Sharpley AL, Elliott JM, Attenburrow M-J, Cowen PJ. Slow wave sleep in humans: role of 5-HT2A and 5-HT2C receptors. Neuropharmacology. 1994;33(3):467-471.
Thase M, Corya S, Osuntokun O, et al. A randomized, double-blind comparison of olanzapine/fluoxetine combination, olanzapine, and fluoxetine in treatment-resistant major depressive disorder. J Clin Psychiatry. 2007;68:224-236.
Shelton RC, Tollefson GD, Tohen M, et al. A novel augmentation strategy for treating resistant major depression. Am J Psychiatry. 2001;158(1):131-134.
Brunner E, Tohen M, Osuntokun O, Landry J, Thase ME. Efficacy and safety of olanzapine/fluoxetine combination vs fluoxetine monotherapy following successful combination therapy of treatment-resistant major depressive disorder. Neuropsychopharmacology. 2014;39(11):2549-2559.
Yargic LI, Corapcioglu A, Kocabasoglu N, Erdogan A, Koroglu G, Yilmaz D. A prospective randomized single-blind, multicenter trial comparing the efficacy and safety of paroxetine with and without quetiapine therapy in depression associated with anxiety. Int J Psychiatry Clin Pract. 2004;8(4):205-211.
McIntyre A, Gendron A, McIntyre A. Quetiapine adjunct to selective serotonin reuptake inhibitors or venlafaxine in patients with major depression, comorbid anxiety, and residual depressive symptoms: a randomized, placebo-controlled pilot study. Depress Anxiety. 2007;24(7):487-494.
Bauer M, Pretorius HW, Constant EL, Earley WR, Szamosi J, Brecher M. Extended-release quetiapine as adjunct to an antidepressant in patients with major depressive disorder: results of a randomized, placebo-controlled, double-blind study. J Clin Psychiatry. 2009;70(4):540-549.
El-Khalili N, Joyce M, Atkinson S, et al. Extended-release quetiapine fumarate (quetiapine XR) as adjunctive therapy in major depressive disorder (MDD) in patients with an inadequate response to ongoing antidepressant treatment: a multicentre, randomized, double-blind, placebo-controlled study. Int J Neuropsychopharmacol. 2010;13(7):917-932.
Locklear JC, Svedsäter H, Datto C, Endicott J. Effects of once-daily extended release quetiapine fumarate (quetiapine XR) on quality of life and sleep in elderly patients with major depressive disorder. J Affect Disord. 2013;149(1):189-195.
McIntyre A, Paisley D, Kouassi E, Gendron A. Quetiapine fumarate extended-release for the treatment of major depression with comorbid fibromyalgia syndrome: a double-blind, randomized, placebo-controlled study. Arthritis Rheum. 2014;66(2):451-461.
Alexopoulos GS, Canuso CM, Gharabawi GM, et al. Placebo-controlled study of relapse prevention with risperidone augmentation in older patients with resistant depression. Am J Geriatr Psychiatry. 2008;16(1):21-30.
Mahmoud RA, Pandina GJ, Turkoz I, et al. Risperidone for treatment-refractory major depressive disorder. Ann Intern Med. 2007;147(9):593-602.
Keitner GI, Garlow SJ, Ryan CE, et al. A randomized, placebo-controlled trial of risperidone augmentation for patients with difficult-to-treat unipolar, non-psychotic major depression. J Psychiatr Res. 2009;43(3):205-214.
Papakostas GI, Fava M, Baer L, et al. Ziprasidone augmentation of escitalopram for major depressive disorder: efficacy results from a randomized, double-blind, placebo-controlled study. Am J Psychiatry. 2015;172(12):1251-1258.
Berman RM, Marcus RN, Swanink R, et al. The efficacy and safety of aripiprazole as adjunctive therapy in major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2007;68(6):843-853.
Marcus RN, McQuade RD, Carson WH, et al. The efficacy and safety of aripiprazole as adjunctive therapy in major depressive disorder: a second multicenter, randomized, double-blind, placebo-controlled study. J Clin Psychopharmacol. 2008;28(2):156-165.
Berman RM, Fava M, Thase ME, et al. Aripiprazole augmentation in major depressive disorder: a double-blind, placebo-controlled study in patients with inadequate response to antidepressants. CNS Spectr. 2009;14(4):197-206.
Berman RM, Thase ME, Trivedi MH, et al. Long-term safety and tolerability of open-label aripiprazole augmentation of antidepressant therapy in major depressive disorder. Neuropsychiatr Dis Treat. 2011;262:7303-7312.
Kamijima K, Higuchi T, Ishigooka J, et al. Aripiprazole augmentation to antidepressant therapy in Japanese patients with major depressive disorder: a randomized, double-blind, placebo-controlled study (ADMIRE study). J Affect Disord. 2013;151(3):899-905.
Lenze EJ, Mulsant BH, Blumberger DM, et al. Efficacy, safety, and tolerability of augmentation pharmacotherapy with aripiprazole for treatment-resistant depression in late life: a randomized placebo-controlled trial. Lancet. 2015;386(10011):2404-2412.
Thase ME, Youakim JM, Skuban A, et al. Efficacy and safety of adjunctive brexpiprazole 2 mg in major depressive disorder: a phase 3, randomized, placebo-controlled study in patients with inadequate response to antidepressants. J Clin Psychiatry. 2015;76(9):1224-1231.
Thase ME, Youakim JM, Skuban A, et al. Adjunctive brexpiprazole 1 and 3 mg for patients with major depressive disorder following inadequate response to antidepressants: a phase 3, randomized, double-blind study. J Clin Psychiatry. 2015;76(9):1232-1240.
Durgam S, Earley W, Guo H, et al. Efficacy and safety of adjunctive cariprazine in inadequate responders to antidepressants: a randomized, double-blind, placebo-controlled study in adult patients with major depressive disorder. J Clin Psychiatry. 2016;77(3):371-378.
Wright BM, Eiland III EH, Lorenz R. Augmentation with atypical antipsychotics for depression: a review of evidence-based support from the medical literature. Pharmacotherapy. 2013;33(3):344-359.
Zhou X, Keitner GI, Qin B, et al. Atypical antipsychotic augmentation for treatment-resistant depression: a systematic review and network meta-analysis . Int J Neuropsychopharmacol. 2015;18(11):pyv060.
Mulder R, Hamilton A, Irwin L, et al. Treating depression with adjunctive antipsychotics. Bipolar Disord. 2018;20(S2):17-24.
Romeo B, Blecha L, Locatelli K, Benyamina A, Martelli C. Meta-analysis and review of dopamine agonists in acute episodes of mood disorder: efficacy and safety. J Psychopharmacol. 2018;32(4):385-396.
Maher AR, Theodore G. Summary of the comparative effectiveness review on off-label use of atypical antipsychotics. J Manag Care Pharm. 2012;18(5 suppl B):S1-S20.
Willner P. The mesolimbic dopamine system as a target for rapid antidepressant action. Int Clin Psychopharmacol. 1997;12(suppl 3):S7-S14.
Yadid G, Friedman A. Dynamics of the dopaminergic system as a key component to the understanding of depression. In: Di Giovann G, Di Matteo V, Esposito E, eds. Progress in Brain Research. Elsevier; 2008:265-286.
Hori H, Kunugi H. Dopamine agonist-responsive depression. Psychogeriatrics. 2013;13(3):189-195.
Inoue T, Tsuchiya K, Miura J, et al. Bromocriptine treatment of tricyclic and heterocyclic antidepressant-resistant depression. Biol Psychiatry. 1996;40(2):151-153.
Inoue T, Izumi T, Honma H, et al. Survey and treatment strategy of antidepressant-resistant depression. Seishin Shinkeigaku Zasshi. 1996;98(5):329-342.
Takahashi H, Yoshida K, Higuchi H, Shimizu T, Inoue T, Koyama T. Addition of a dopamine agonist, cabergoline, to a serotonin-noradrenalin reuptake inhibitor, milnacipran as a therapeutic option in the treatment of refractory depression: two case reports. Clin Neuropharmacol. 2003;26(5):230-232.
Bouckoms A, Mangini L. Pergolide: an antidepressant adjuvant for mood disorders? Psychopharmacol Bull. 1993;29(2):207-211.
Izumi T, Inoue T, Kitagawa N, et al. Open pergolide treatment of tricyclic and heterocyclic antidepressant-resistant depression. J Affect Disord. 2000;61(1):127-132.
Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL. Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depress Anxiety. 2000;11(2):58-65.
Sporn J, Ghaemi SN, Sambur MR, et al. Pramipexole augmentation in the treatment of unipolar and bipolar depression: a retrospective chart review. Ann Clin Psychiatry. 2000;12(3):137-140.
Lattanzi L, Dell'Osso L, Cassano P, et al. Pramipexole in treatment-resistant depression: a 16-week naturalistic study. Bipolar Disord. 2002;4(5):307-314.
Cassano P, Lattanzi L, Soldani F, et al. Pramipexole in treatment-resistant depression: an extended follow-up. Depress Anxiety. 2004;20(3):131-138.
Inoue T, Kitaichi Y, Masui T, et al. Pramipexole for stage 2 treatment-resistant major depression: an open study. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(8):1446-1449.
Hori H, Kunugi H. The efficacy of pramipexole, a dopamine receptor agonist, as an adjunctive treatment in treatment-resistant depression: an open-label trial. ScientificWorldJournal. 2012;2012:372474.
Cassano P, Lattanzi L, Fava M, et al. Ropinirole in treatment-resistant depression: a 16-week pilot study. Can J Psychiatry. 2005;50(6):357-360.
Kessler RC, Ruscio AM, Shear K, Wittchen H-U. Epidemiology of anxiety disorders. Curr Top Behav Neurosci. 2010;2:21-35.
Beesdo K, Pine DS, Lieb R, Wittchen H-U. Incidence and risk patterns of anxiety and depressive disorders and categorization of generalized anxiety disorder. Arch Gen Psychiatry. 2010;67(1):47-57.
Cover KK, Maeng LY, Lebrón-Milad K, Milad MR. Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology. Transl Psychiatry. 2014;4(8):e422.
Lebron-Milad K, Milad MR. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol Mood Anxiety Disord. 2012;2:23.
Craske MG, Stein MB, Eley TC, et al. Anxiety disorders. Nat Rev Dis Primers. 2017;3(1):1-19.
Feinstein JS, Adolphs R, Damasio AR, Tranel D. The human amygdala and the induction and experience of fear. Curr Biol. 2011;21(1):34-38.
Staut CCV, Naidich TP. Urbach-Wiethe disease(lipoid proteinosis). Pediatr Neurosurg. 1998;28(4):212-214.
Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517(7534):284-292.
McClure EB, Monk CS, Nelson EE, et al. Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Arch Gen Psychiatry. 2007;64(1):97-106.
Monk CS, Telzer EH, Mogg K, et al. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry. 2008;65(5):568-576.
Phan KL, Fitzgerald DA, Nathan PJ, Tancer ME. Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biol Psychiatry. 2006;59(5):424-429.
Tillfors M, Furmark T, Marteinsdottir I, et al. Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. Am J Psychiatry. 2001;158(8):1220-1226.
Lorberbaum JP, Kose S, Johnson MR, et al. Neural correlates of speech anticipatory anxiety in generalized social phobia. Neuroreport. 2004;15(18):2701-2705.
Nitschke JB, Sarinopoulos I, Oathes DJ, et al. Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response. Am J Psychiatry. 2009;166(3):302-310.
Pfleiderer B, Zinkirciran S, Arolt V, Heindel W, Deckert J, Domschke K. fMRI amygdala activation during a spontaneous panic attack in a patient with panic disorder. World J Biol Psychiatry. 2007;8(4):269-272.
van den Heuvel OA, Veltman DJ, Groenewegen HJ, et al. Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis. Arch Gen Psychiatry. 2005;62(8):922-933.
Fischer H, Andersson JL, Furmark T, Fredrikson M. Brain correlates of an unexpected panic attack: a human positron emission tomographic study. Neurosci Lett. 1998;251(2):137-140.
Atmaca M, Yildirim H, Gurok MG, Akyol M. Orbito-frontal cortex volumes in panic disorder. Psychiatry Investig. 2012;9(4):408-412.
Myers-Schulz B, Koenigs M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry. 2012;17(2):132-141.
Borkovec TD, Robinson E, Pruzinsky T, DePree JA. Preliminary exploration of worry: some characteristics and processes. Behav Res Ther. 1983;21(1):9-16.
Forster S, Nunez Elizalde AO, Castle E, Bishop SJ. Unraveling the anxious mind: anxiety, worry, and frontal engagement in sustained attention versus off-task processing. Cereb Cortex. 2015;25(3):609-618.
Zarrindast M-R, Khakpai F. The modulatory role of dopamine in anxiety-like behavior. Arch Iran Med. 2015;18:591-603.
Reis FLV, Masson S, deOliveira AR, Brandão ML. Dopaminergic mechanisms in the conditioned and unconditioned fear as assessed by the two-way avoidance and light switch-off tests. Pharmacol Biochem Behav. 2004;79(2):359-365.
LeBlanc J, Ducharme MB. Plasma dopamine and noradrenaline variations in response to stress. Physiol Behav. 2007;91(2):208-211.
Dias Melo Carvalho J, de Oliveira AR, Barbosa da Silva RC, Brandão ML. A comparative study on the effects of the benzodiazepine midazolam and the dopamine agents, apomorphine and sulpiride, on rat behavior in the two-way avoidance test. Pharmacol Biochem Behav. 2009;92(2):351-356.
Hostetler CM, Harkey SL, Bales KL. D2 antagonist during development decreases anxiety and infanticidal behavior in adult female prairie voles (Microtus ochrogaster). Behav Brain Res. 2010;210(1):127-130.
Ferreira TB, Kasahara TM, Barros PO, et al. Dopamine up-regulates Th17 phenotype from individuals with generalized anxiety disorder. J Neuroimmunol. 2011;238(1):58-66.
Zweifel LS, Fadok JP, Argilli E, et al. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci. 2011;14(5):620-626.
Falco AM, McDonald CG, Bachus SE, Smith RF. Developmental alterations in locomotor and anxiety-like behavior as a function of D1 and D2 mRNA expression. Behav Brain Res. 2014;260:25-33.
Radke AK, Gewirtz JC. Increased dopamine receptor activity in the nucleus accumbens shell ameliorates anxiety during drug withdrawal. Neuropsychopharmacology. 2012;37(11):2405-2415.
Trainor BC. Stress responses and the mesolimbic dopamine system: social contexts and sex differences. Horm Behav. 2011;60(5):457-469.
Nasehi M, Mafi F, Oryan S, Nasri S, Zarrindast MR. The effects of dopaminergic drugs in the dorsal hippocampus of mice in the nicotine-induced anxiogenic-like response. Pharmacol Biochem Behav. 2011;98(3):468-473.
Lecourtier L, de Vasconcelos AP, Cosquer B, Cassel J-C. Combined lesions of GABAergic and cholinergic septal neurons increase locomotor activity and potentiate the locomotor response to amphetamine. Behav Brain Res. 2010;213(2):175-182.
Engin E, Treit D. The effects of intra-cerebral drug infusions on animals' unconditioned fear reactions: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(6):1399-1419.
de laMora MP, Gallegos-Cari A, Arizmendi-García Y, Marcellino D, Fuxe K. Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: structural and functional analysis. Prog Neurobiol. 2010;90(2):198-216.
Diaz MR, Chappell AM, Christian DT, Anderson NJ, McCool BA. Dopamine D3-like receptors modulate anxiety-like behavior and regulate GABAergic transmission in the rat lateral/basolateral amygdala. Neuropsychopharmacology. 2011;36(5):1090-1103.
Schneier FR, Liebowitz MR, Abi-Dargham A, Zea-Ponce Y, Lin S-H, Laruelle M. Low dopamine D2 receptor binding potential in social phobia. Am J Psychiatry. 2000;157(3):457-459.
Schneier FR, Martinez D, Abi-Dargham A, et al. Striatal dopamine D2 receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress Anxiety. 2008;25(1):1-7.
Schneier FR, Abi-Dargham A, Martinez D, et al. Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depress Anxiety. 2009;26(5):411-418.
Cervenka S, Hedman E, Ikoma Y, et al. Changes in dopamine D2-receptor binding are associated to symptom reduction after psychotherapy in social anxiety disorder. Transl Psychiatry. 2012;2(5):e120.
Plavén-Sigray P, Hedman E, Victorsson P, et al. Extrastriatal dopamine D2-receptor availability in social anxiety disorder. Eur Neuropsychopharmacol. 2017;27(5):462-469.
Fedoroff IC, Taylor S. Psychological and pharmacological treatments of social phobia: a meta-analysis. J Clin Psychopharmacol. 2001;21(3):311-324.
Jørstad-Stein EC, Heimberg RG. Social phobia: an update on treatment. Psychiatr Clin North Am. 2009;32(3):641-663.
Cuijpers P, Sijbrandij M, Koole SL, Andersson G, Beekman AT, Reynolds CF. Adding psychotherapy to antidepressant medication in depression and anxiety disorders: a meta-analysis. World Psychiatry. 2014;13(1):56-67.
Griebel G, Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov. 2013;12(9):667-687.
Murrough JW, Yaqubi S, Sayed S, Charney DS. Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs. 2015;20(3):393-406.
Zarrindast MR, Eslahi N, Rezayof A, Rostami P, Zahmatkesh M. Modulation of ventral tegmental area dopamine receptors inhibit nicotine-induced anxiogenic-like behavior in the central amygdala. Prog Neuropsychopharmacol Biol Psychiatry. 2013;41:11-17.
Zarrindast MR, Khalifeh S, Rezayof A, Rostami P, Aghamohammadi Sereshki A, Zahmatkesh M. Involvement of rat dopaminergic system of nucleus accumbens in nicotine-induced anxiogenic-like behaviors. Brain Res. 2012;1460:25-32.
Zarrindast MR, Mahboobi S, Sadat-Shirazi M-S, Ahmadi S. Anxiolytic-like effect induced by the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA), in the rat amygdala is mediated through the D1 and D2 dopaminergic systems. J Psychopharmacol. 2010;25(1):131-140.
Zarrindast M-R, Naghdi-Sedeh N, Nasehi M, Sahraei H, Bahrami F, Asadi F. The effects of dopaminergic drugs in the ventral hippocampus of rats in the nicotine-induced anxiogenic-like response. Neurosci Lett. 2010;475(3):156-160.
de laMora MP, Gallegos-Cari A, Crespo-Ramirez M, Marcellino D, Hansson AC, Fuxe K. Distribution of dopamine D2-like receptors in the rat amygdala and their role in the modulation of unconditioned fear and anxiety. Neuroscience. 2012;201:252-266.
Bast T, Feldon J. Hippocampal modulation of sensorimotor processes. Prog Neurobiol. 2003;70(4):319-345.
deOliveira AR, Reimer AE, Macedo CEA, et al. Conditioned fear is modulated by D2 receptor pathway connecting the ventral tegmental area and basolateral amygdala. Neurobiol Learn Mem. 2011;95(1):37-45.
Bananej M, Karimi-Sori A, Zarrindast MR, Ahmadi S. D1 and D2 dopaminergic systems in the rat basolateral amygdala are involved in anxiogenic-like effects induced by histamine. J Psychopharmacol. 2011;26(4):564-574.
Zarrindast M-R, Sroushi A, Bananej M, Vousooghi N, Hamidkhaniha S. Involvement of the dopaminergic receptors of the rat basolateral amygdala in anxiolytic-like effects of the cholinergic system. Eur J Pharmacol. 2011;672(1):106-112.
Rezayof A, Hosseini S, Zarrindast M-R. Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors. Behav Brain Res. 2009;202:171-178.
Zarrindast MR, Nasehi M, Pournaghshband M, Ghorbani Yekta B. Dopaminergic system in CA1 modulates MK-801 induced anxiolytic-like responses. Pharmacol Biochem Behav. 2012;103(1):102-110.
Simon P, Panissaud C, Constentin J. Anxiogenic-like effects induced by stimulation of dopamine receptors. Pharmacol Biochem Behav. 1993;45(3):685-690.
Hershenberg R, Gros DF, Brawman-Mintzer O. Role of atypical antipsychotics in the treatment of generalized anxiety disorder. CNS Drugs. 2014;28(6):519-533.
Mi G, Liu S, Zhang J, et al. Levo-tetrahydroberberrubine produces anxiolytic-like effects in mice through the 5-HT1A receptor. PLoS One. 2017;12(1):e0168964.
Pytka K, Partyka A, Jastrzębska-Więsek M, et al. Antidepressant- and anxiolytic-like effects of new dual 5-HT1A and 5-HT7 antagonists in animal models. PLoS One. 2015;10(11):e0142499.
Budden MG. A comparative study of haloperidol and diazepam in the treatment of anxiety. Curr Med Res Opin. 1979;5(10):759-765.
Rickels K, Weise CC, Whalen EM, Csanalosi I, Jenkins BW, Stepansky W. Haloperidol in anxiety. J Clin Pharmacol New Drugs. 1971;11(6):440-449.
Simon NM, Hoge EA, Fischmann D, et al. An open-label trial of risperidone augmentation for refractory anxiety disorders. J Clin Psychiatry. 2006;67(3):381-385.
Pollack MH, Simon NM, Zalta AK, et al. Olanzapine augmentation of fluoxetine for refractory generalized anxiety disorder: a placebo controlled study. Biol Psychiatry. 2006;59(3):211-215.
Snyderman SH, Rynn MA, Rickels K. Open-label pilot study of ziprasidone for refractory generalized anxiety disorder. J Clin Psychopharmacol. 2005;25(5):497-499.
Bandelow B, Chouinard G, Bobes J, et al. Extended-release quetiapine fumarate (quetiapine XR): a once-daily monotherapy effective in generalized anxiety disorder. data from a randomized, double-blind, placebo- and active-controlled study. Int J Neuropsychopharmacol. 2010;13(3):305-320.
Khan A, Joyce M, Atkinson S, Eggens I, Baldytcheva I, Eriksson H. A randomized, double-blind study of once-daily extended release quetiapine fumarate (quetiapine XR) monotherapy in patients with generalized anxiety disorder. J Clin Psychopharmacol. 2011;31(4): 418-428.
Merideth C, Cutler AJ, She F, Eriksson H. Efficacy and tolerability of extended release quetiapine fumarate monotherapy in the acute treatment of generalized anxiety disorder: a randomized, placebo controlled and active-controlled study. Int Clin Psychopharmacol. 2012;27(1):40-54.
Maneeton N, Maneeton B, Woottiluk P, et al. Quetiapine monotherapy in acute treatment of generalized anxiety disorder: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2016;10:259-276.
Sheehan DV, Svedsäter H, Locklear JC, Eriksson H. Effects of extended-release quetiapine fumarate on long-term functioning and sleep quality in patients with generalized anxiety disorder (GAD): data from a randomized-withdrawal, placebo-controlled maintenance study. J Affect Disord. 2013;151(3):906-913.
Endicott J, Svedsäter H, Locklear JC. Effects of once-daily extended release quetiapine fumarate on patient-reported outcomes in patients with generalized anxiety disorder. Neuropsychiatr Dis Treat. 2012;8:301-311.
Katzman MA, Brawman-Mintzer O, Reyes EB, Olausson B, Liu S, Eriksson H. Extended release quetiapine fumarate (quetiapine XR) monotherapy as maintenance treatment for generalized anxiety disorder: a long-term, randomized, placebo-controlled trial. Int Clin Psychopharmacol. 2011;26(1):11-24.
Katzman MA, Vermani M, Jacobs L, et al. Quetiapine as an adjunctive pharmacotherapy for the treatment of non-remitting generalized anxiety disorder: a flexible-dose, open-label pilot trial. J Anxiety Disord. 2008;22(8):1480-1486.
Gabriel A. The extended-release formulation of quetiapine fumarate (quetiapine XR) adjunctive treatment in partially responsive generalized anxiety disorder (GAD): an open label naturalistic study. Clin Ter. 2011;162:113-118.
Altamura AC, Serati M, Buoli M, Dell'Osso B. Augmentative quetiapine in partial/nonresponders with generalized anxiety disorder: a randomized, placebo-controlled study. Int Clin Psychopharmacol. 2011;26(4):201-205.
Mezhebovsky I, Mägi K, She F, Datto C, Eriksson H. Double-blind, randomized study of extended release quetiapine fumarate (quetiapine XR) monotherapy in older patients with generalized anxiety disorder. Int J Geriatr Psychiatry. 2013;28(6):615-625.
Hoge EA, Worthington JJ, Kaufman RE, Delong HR, Pollack MH, Simon NM. Aripiprazole as augmentation treatment of refractory generalized anxiety disorder and panic disorder. CNS Spectr. 2008;13(6):522-525.
Barnett SD, Kramer ML, Casat CD, Connor KM, Davidson JRT. Efficacy of olanzapine in social anxiety disorder: a pilot study. J Psychopharmacol. 2002;16(4):365-368.
Schutters SIJ, vanMegen HJGM, Westenberg HGM. Efficacy of quetiapine in generalized social anxiety disorder: results from an open-label study. J Clin Psychiatry. 2005;66(4):540-542.
Sepede G, De Berardis D, Gambi F, et al. Olanzapine augmentation in treatment-resistant panic disorder: a 12-week, fixed-dose, open-label trial. J Clin Psychopharmacol. 2006;26(1):45-49.
Hollifield M, Thompson PM, Ruiz JE, Uhlenhuth E. Potential effectiveness and safety of olanzapine in refractory panic disorder. Depress Anxiety. 2005;21(1):33-40.
Nunes EA, Freire RC, Dos Reis M, et al. Sulpiride and refractory panic disorder. Psychopharmacology. 2012;223(2):247-249.
Pignon B, Montcel CT, du Carton L, Pelissolo A. The place of antipsychotics in the therapy of anxiety disorders and obsessive-compulsive disorders. Curr Psychiatry Rep. 2017;19(12):1-11.
Vulink NCC, Figee M, Denys D. Review of atypical antipsychotics in anxiety. Eur Neuropsychopharmacol. 2011;21(6):429-449.
Pies R. Should psychiatrists use atypical antipsychotics to treat nonpsychotic anxiety? Psychiatry. 2009;6(6):29-37.
Kouli A, Torsney KM, Kuan W-L. Parkinson's disease: etiology, neuropathology, and pathogenesis. In: Stoker TB, Greenland JC, eds. Parkinson's Disease: Pathogenesis and Clinical Aspects. Codon Publications; 2021:3-26.
Eeden VD, K S, Tanner CM, et al. Incidence of parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157(11):1015-1022.
Baldereschi M, Di Carlo A, Rocca WA, et al. Parkinson's disease and parkinsonism in a longitudinal study. Neurology. 2000;55(9):1358-1363.
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):1-21.
Lees AJ, Hardy J, Revesz T. Parkinson's disease. Lancet. 2009;373(9680):2055-2066.
Xia Q, Liao L, Cheng D, et al. Proteomic identification of novel proteins associated with lewy bodies. Front Biosci. 2008;13:3850-3856.
Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of parkinson's disease: review of recent trials. Mov Disorders. 2013;28(2):131-144.
Chaudhuri KR, Schapira AH. Non-motor symptoms of parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464-474.
Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of parkinson's disease: diagnosis and management. Lancet Neurol. 2006;5(3):235-245.
Chen JJ. Treatment of psychotic symptoms in patients with parkinson disease. Ment Health Clin. 2018;7(6):262-270.
Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates parkinson-like neurodegeneration in non-transgenic mice. Science. 2012;338(6109):949-953.
Xilouri M, Brekk OR, Stefanis L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol. 2013;47(2):537-551.
Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in lewy body disease. Neurobiol Dis. 2011;43(3):690-697.
Dehay B, Bové J, Rodríguez-Muela N, et al. Pathogenic lysosomal depletion in parkinson's disease. J Neurosci. 2010;30(37):12535-12544.
Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH. Alterations in lysosomal and proteasomal markers in parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol Dis. 2009;35(3):385-398.
Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, et al. Chaperone-mediated autophagy markers in parkinson disease brains. Arch Neurol. 2010;67(12):1464-1472.
Hirsch EC, Hunot S. Neuroinflammation in parkinson's disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382-397.
Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of parkinson's disease. Neurobiol Aging. 2008;29(11):1690-1701.
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777-783.
Gao H-M, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM-Y. Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. J Neurosci. 2008;28(30):7687-7698.
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of parkinson and huntington. clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20(4):415-455.
Vingerhoets FJG, Schulzer M, Calne DB, Snow BJ. Which clinical sign of parkinson's disease best reflects the nigrostriatal lesion? Ann Neurol. 1997;41(1):58-64.
Meder D, Herz DM, Rowe JB, Lehéricy S, Siebner HR. The role of dopamine in the brain-lessons learned from parkinson's disease. Neuroimage. 2019;190:79-93.
Hauser RA. Levodopa: past, present, and future. Eur Neurol. 2009;62(1):1-8.
Hassan MN, Thakar JH. Dopamine receptors in parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry. 1988;12(2):173-182.
Fahn S, Libsch LR, Cutler RW. Monoamines in the human neostriatum: topographic distribution in normals and in parkinson's disease and their role in akinesia, rigidity, chorea, and tremor. J Neurol Sci. 1971;14(4):427-455.
Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in parkinson's disease. Brain Res. 1983;275(2):321-328.
Lee T, Seeman P, Rajput A, Farley IJ, Hornykiewicz O. Receptor basis for dopaminergic supersensitivity in parkinson's disease. Nature. 1978;273(5657):59-61.
Guttman M, Seeman P. L-DOPA reverses the elevated density of D2 dopamine receptors in parkinson's diseased striatum. J Neural Transm. 1985;64(2):93-103.
Antonini A, Schwarz J, Oertel WH, Beer HF, Madeja UD, Leenders KL. [11C]raclopride and positron emission tomography in previously untreated patients with parkinson's disease. Neurology. 1994;44(7):1325.
Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL. Long-term changes of striatal dopamine D2 receptors in patients with parkinson's disease: a study with positron emission tomography and [11C]Raclopride. Mov Disorders. 1997;12(1):33-38.
Cools R, Lewis SJG, Clark L, Barker RA, Robbins TW. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in parkinson's disease. Neuropsychopharmacology. 2007;32(1):180-189.
Arnsten AFT, Cai JX, Murphy BL, Goldman-Rakic PS. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology. 1994;116(2):143-151.
Cools R. Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in parkinson's disease. Neurosci Biobehav Rev. 2006;30(1):1-23.
Cools R, Barker RA, Sahakian BJ, Robbins TW. Enhanced or impaired cognitive function in parkinson's disease as a function of dopaminergic medication and task demands. Cereb Cortex. 2001;11(12):1136-1143.
Robbins TW. Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res. 2000;133(1):130-138.
Cilia R, Ko JH, Cho SS, et al. Reduced dopamine transporter density in the ventral striatum of patients with parkinson's disease and pathological gambling. Neurobiol Dis. 2010;39(1):98-104.
Voon V, Rizos A, Chakravartty R, et al. Impulse control disorders in parkinson's disease: decreased striatal dopamine transporter levels. J Neurol Neurosurg Psychiatry. 2014;85(2):148-152.
Koller WC, Rueda MG. Mechanism of action of dopaminergic agents in parkinson's disease. Neurology. 1998;50(6 suppl 6):S11-S14.
Schapira AHV, Fox SH, Hauser RA, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol. 2017;74(2):216-224.
Murata M. Pharmacokinetics of l-dopa. J Neurol. 2006;253(3):iii47-iii52.
Gille G, Rausch W-D, Hung S-T, et al. Pergolide protects dopaminergic neurons in primary culture under stress conditions. J Neural Transm. 2002;109(5):633-643.
Le W-D, Jankovic J. Are dopamine receptor agonists neuroprotective in parkinson's disease? Drugs Aging. 2001;18(6):389-396.
Schapira AHV. Neuroprotection in PD-a role for dopamine agonists? Neurology. 2003;61(6 suppl 3):S34-S42.
Kitamura Y, Taniguchi T, Shimohama S, Akaike A, Nomura Y. Neuroprotective mechanisms of antiparkinsonian dopamine D 2-receptor subfamily agonists. Neurochem Res. 2003;28(7):1035-1040.
Pirtošek Z, Flisar D. Neuroprotection and dopamine agonists. In: Vécsei L, ed. Frontiers in Clinical Neuroscience. Springer; 2004:55-74.
Weiner WJ, Factor SA, Jankovic J, et al. The long-term safety and efficacy of pramipexole in advanced parkinson's disease. Parkinsonism Rel Disord. 2001;7(2):115-120.
Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on parkinson disease progression. JAMA. 2002;287(13):1653-1661.
Reichmann H, Brecht MH, Köster J, Kraus PH, Lemke MR. Pramipexole in routine clinical practice. CNS Drugs. 2003;17(13):965-973.
Zou L, Jankovic J, Rowe DB, Xie W, Appel SH, Le W. Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity. Life Sci. 1999;64(15):1275-1285.
Ferger B, Teismann P, Mierau J. The dopamine agonist pramipexole scavenges hydroxyl free radicals induced by striatal application of 6-hydroxydopamine in rats: an in vivo microdialysis study. Brain Res. 2000;883(2):216-223.
Parkinson Study Group. Pramipexole vs levodopa as initial treatment for parkinson disease: a randomized controlled trial. JAMA. 2000;284(15):1931-1938.
Parkinson Study Group. Pramipexole vs levodopa as initial treatment for parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61(7):1044-1053.
Parkinson Study Group CALM Cohort Investigators. Long-term effect of initiating pramipexole vs levodopa in early parkinson disease. Arch Neurol. 2009;66(5):563-570.
Pinter M, Pogarell O, Oertel W. Efficacy, safety, and tolerance of the non-ergoline dopamine agonist pramipexole in the treatment of advanced parkinson's disease: a double blind, placebo controlled, randomised, multicentre study. J Neurol Neurosurg Psychiatry. 1999;66(4):436-441.
Lieberman A, Ranhosky A, Korts D. Clinical evaluation of pramipexole in advanced parkinson's disease: results of a double-blind, placebo-controlled, parallel-group study. Neurology. 1997;49(1):162-168.
Piercey MF, Hoffmann WE, Smith MW, Hyslop DK. Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol. 1996;312(1):35-44.
Hubble JP, Koller WC, Cutler NR, et al. Pramipexole in patients with early parkinson's disease. Clin Neuropharmacol. 1995;18(4):338-347.
Dooley M, Markham A. Pramipexole. Drugs Aging. 1998;12(6):495-514.
Cacabelos R. Parkinson's disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18(3):551.
Korczyn AD, Brunt ER, Larsen JP, Nagy Z, Poewe WH, Ruggieri S. A 3-year randomized trial of ropinirole and bromocriptine in early parkinson's disease. Neurology. 1999;53(2):364.
Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early parkinson's disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484-1491.
Cristina S, Zangaglia R, Mancini F, Martignoni E, Nappi G, Pacchetti C. High-dose ropinirole in advanced parkinson's disease with severe dyskinesias. Clin Neuropharmacol. 2003;26(3):146-150.
Brooks D, Torjanski N, Burn D. Ropinirole in the symptomatic treatment of parkinson's disease. J Neural Transm Suppl. 1995;45:231-238.
Adler CH, Sethi KD, Hauser RA, et al. Ropinirole for the treatment of early parkinson's disease. Neurology. 1997;49(2):393-399.
Brooks D, Abbott R, Lees A, et al. A placebo-controlled evaluation of ropinirole, a novel D2 agonist, as sole dopaminergic therapy in parkinson's disease. Clin Neuropharmacol. 1998;21(2):101-107.
Sethi KD, O'Brien CF, Hammerstad JP, et al. Ropinirole for the treatment of early parkinson disease: a 12-month experience. Arch Neurol. 1998;55(9):1211-1216.
Hauser RA, Rascol O, Korczyn AD, et al. Ten-year follow-up of parkinson's disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disorders. 2007;22(16):2409-2417.
Hubble JP. Long-term studies of dopamine agonists. Neurology. 2002;58(suppl 1):S42-S50.
Pahwa R, Stacy MA, Factor SA, et al. Ropinirole 24-hour prolonged release. Neurology. 2007;68(14):1108-1115.
Lieberman A, Olanow CW, Sethi K, et al. A multicenter trial of ropinirole as adjunct treatment for parkinson's disease. Neurology. 1998;51(4):1057-1062.
Watts RL, Jankovic J, Waters C, Rajput A, Boroojerdi B, Rao J. Randomized, blind, controlled trial of transdermal rotigotine in early parkinson disease. Neurology. 2007;68(4):272-276.
Pham DQ, Nogid A. Rotigotine transdermal system for the treatment of parkinson's disease. Clin Ther. 2008;30(5):813-824.
Giladi N, Boroojerdi B, Korczyn AD, et al. Rotigotine transdermal patch in early parkinson's disease: a randomized, double-blind, controlled study versus placebo and ropinirole. Mov Disorders. 2007;22(16):2398-2404.
LeWitt PA, Lyons KE, Pahwa R. Advanced parkinson disease treated with rotigotine transdermal system. Neurology. 2007;68(16):1262-1267.
Poewe WH, Rascol O, Quinn N, et al. Efficacy of pramipexole and transdermal rotigotine in advanced parkinson's disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 2007;6(6):513-520.
Trenkwalder C, Kies B, Rudzinska M, et al. Rotigotine effects on early morning motor function and sleep in parkinson's disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord. 2011;26(1):90-99.
Ziegler M, Castro-Caldas A, Del Signore S, Rascol O. Efficacy of piribedil as early combination to levodopa in patients with stable parkinson's disease: a 6-month, randomized, placebo-controlled study. Mov Disorders. 2003;18(4):418-425.
Peihua L, Jianqin W. Clinical effects of piribedil in adjuvant treatment of parkinson's disease: a meta-analysis. Open Med (Wars). 2018;13:270-277.
Rascol O, Dubois B, Caldas AC, Senn S, Del Signore S, Lees A. Early piribedil monotherapy of parkinson's disease: a planned seven-month report of the REGAIN study. Mov Disorders. 2006;21(12):2110-2115.
Goetz CG, Poewe W, Rascol O, Sampaio C. Evidence-based medical review update: pharmacological and surgical treatments of parkinson's disease: 2001 to 2004. Mov Disorders. 2005;20(5):523-539.
Alonso Cánovas A, Luquin Piudo R, García Ruiz-Espiga P, et al. Dopaminergic agonists in parkinson's disease. Neurología (English Edition). 2014;29(4):230-241.
Brooks D. Dopamine agonists: their role in the treatment of parkinson's disease. J Neurol Neurosurg Psychiatry. 2000;68(6):685-689.
Hermanowicz N, Edwards K. Parkinson's disease psychosis: symptoms, management, and economic burden. Am J Manag Care. 2015;21:s199-s206.
Aarsland D, Ballard C, Larsen JP, McKeith I. A comparative study of psychiatric symptoms in dementia with lewy bodies and parkinson's disease with and without dementia. Int J Geriatr Psychiatry. 2001;16(5):528-536.
Yuan M, Sperry L, Malhado-Chang N, et al. Atypical antipsychotic therapy in parkinson's disease psychosis: a retrospective study. Brain Behav. 2017;7(6):e00639.
Zhang H, Wang L, Fan Y, et al. Atypical antipsychotics for parkinson's disease psychosis: a systematic review and meta-analysis. Neuropsychiatr Dis Treat. 2019;15:2137-2149.
Mocci G, Jiménez-Sánchez L, Adell A, Cortés R, Artigas F. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. potential relevance for atypical antipsychotic action. Neuropharmacology. 2014;79:49-58.
Rolland B, Jardri R, Amad A, Thomas P, Cottencin O, Bordet R. Pharmacology of hallucinations: several mechanisms for one single symptom? BioMed Res Int. 2014;2014:1-9.
Kiferle L, Ceravolo R, Giuntini M, et al. Caudate dopaminergic denervation and visual hallucinations: evidence from a 123I-FP-CIT SPECT study. Parkinsonism Rel Disord. 2014;20(7):761-765.
Goldman GJ, Vaughan CL, Goetz CG. An update expert opinion on management and research strategies in parkinson's disease psychosis. Expert Opin Pharmacother. 2011;12(13):2009-2024.
Hacksell U, Burstein ES, McFarland K, Mills RG, Williams H. On the discovery and development of pimavanserin: a novel drug candidate for parkinson's psychosis. Neurochem Res. 2014;39(10):2008-2017.
Cruz MP. Pimavanserin (nuplazid). P T. 2017;42(6):368-371.
Jethwa KD, Onalaja OA. Antipsychotics for the management of psychosis in parkinson's disease: systematic review and meta-analysis. BJPsych Open. 2015;1(1):27-33.
Gingrich JA, Caron MG. Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci. 1993;16:299-321.
Adhikari P, Xie B, Semeano A, et al. Chirality of novel bitopic agonists determines unique pharmacology at the dopamine D3 receptor. Biomolecules. 2021;11(4):570.
Levant B. The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol Rev. 1997;49(3):231-252.
Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347(6289):146-151.
Newman AH, Ku T, Jordan CJ, Bonifazi A, Xi Z-X. New drugs, old targets: tweaking the dopamine system to treat psychostimulant use disorders. Annu Rev Pharmacol Toxicol. 2021;61:609-628.
Bello FD, Giannella M, Giorgioni G, Piergentili A, Quaglia W. Receptor ligands as helping hands to L-DOPA in the treatment of parkinson's disease. Biomolecules. 2019;9(4):142.
Galaj E, Newman AH, Xi Z-X. Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: rationale, progress, and challenges. Neurosci Biobehav Rev. 2020;114:38-52.
Das B, Modi G, Dutta A. Dopamine D3 agonists in the treatment of parkinson's disease. Curr Top Med Chem. 2015;15(10):908-926.
Joyce JN. Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol Ther. 2001;90(2-3):231-259.
Heidbreder CA, Gardner EL, Xi Z-X, et al. The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Brain Res Rev. 2005;49(1):77-105.
Sokoloff P, Diaz J, Le Foll B, et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets. 2006;5(1):25-43.
Newman AH, Blaylock BL, Nader MA, Bergman J, Sibley DR, Skolnick P. Medication discovery for addiction: translating the dopamine D3 receptor hypothesis. Biochem Pharmacol. 2012;84(7):882-890.
Leggio GM, Bucolo C, Platania CBM, Salomone S, Drago F. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther. 2016;165:164-177.
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: a neglected participant in parkinson disease pathogenesis and treatment? Ageing Res Rev. 2020;57:100994.
Huang M, Kwon S, He W, Meltzer HY. Neurochemical arguments for the use of dopamine D4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacol Biochem Behav. 2017;157:16-23.
Miyauchi M, Neugebauer NM, Meltzer HY. Dopamine D4 receptor stimulation contributes to novel object recognition: relevance to cognitive impairment in schizophrenia. J Psychopharmacol. 2017;31(4):442-452.
Andersson RH, Johnston A, Herman PA, et al. Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proc Natl Acad Sci. 2012;109(32):13118-13123.
Rondou P, Haegeman G, Van Craenenbroeck K. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci. 2010;67(12):1971-1986.
Tomlinson A, Grayson B, Marsh S, Hayward A, Marshall KM, Neill JC. Putative therapeutic targets for symptom subtypes of adult ADHD: D4 receptor agonism and COMT inhibition improve attention and response inhibition in a novel translational animal model. Eur Neuropsychopharmacol. 2015;25(4):454-467.
Keck TM, Free RB, Day MM, et al. Dopamine D4 receptor-selective compounds reveal structure-activity relationships that engender agonist efficacy. J Med Chem. 2019;62(7):3722-3740.
Di Ciano P, Grandy D, Le Foll B. Dopamine D4 receptors in psychostimulant addiction. Adv Pharmacol. 2014;69:301-321.
Lauzon NM, Laviolette SR. Dopamine D4-receptor modulation of cortical neuronal network activity and emotional processing: implications for neuropsychiatric disorders. Behav Brain Res. 2010;208(1):12-22.
Bergman J, Rheingold CG. Dopamine D₄ receptor antagonists for the treatment of cocaine use disorders. CNS Neurol Disord Drug Targets. 2015;14(6):707-715.
Lindsley CW, Hopkins CR. Return of D4 dopamine receptor antagonists in drug discovery. J Med Chem. 2017;60(17):7233-7243.
Huot P, Johnston TH, Koprich JB, Aman A, Fox SH, Brotchie JM. L-745,870 reduces L-DOPA-induced dyskinesia in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of parkinson's disease. J Pharmacol Exp Ther. 2012;342(2):576-585.
Sebastianutto I, Maslava N, Hopkins CR, Cenci MA. Validation of an improved scale for rating l-DOPA-induced dyskinesia in the mouse and effects of specific dopamine receptor antagonists. Neurobiol Dis. 2016;96:156-170.
Xiao J, Free RB, Barnaeva E, et al. Optimization, and characterization of novel D2 dopamine receptor selective antagonists. J Med Chem. 2014;57(8):3450-3463.
Moritz AE, Free RB, Sibley DR. Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. Cell Signal. 2018;41:75-81.
Xu W, Wang X, Tocker AM, et al. Functional characterization of a novel series of biased signaling dopamine D3 receptor agonists. ACS Chem Neurosci. 2017;8(3):486-500.
De Simone A, Russo D, Ruda GF, et al. Design, synthesis, structure-activity relationship studies, and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of o-biphenyl carbamates as dual modulators of dopamine D3 receptor and fatty acid amide hydrolase. J Med Chem. 2017;60(6):2287-2304.
Ananthan S, Saini SK, Zhou G, et al. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity. J Med Chem. 2014;57(16):7042-7060.
Taylor M, Grundt P, Griffin SA, Newman AH, Luedtke RR. Dopamine D3 receptor selective ligands with varying intrinsic efficacies at adenylyl cyclase inhibition and mitogenic signaling pathways. Synapse. 2010;64(3):251-266.
Chen J, Collins GT, Levant B, Woods J, Deschamps JR, Wang S. CJ-1639: a potent and highly selective dopamine D3 receptor full agonist. ACS Med Chem Lett. 2011;2(8):620-625.
Keck TM, Burzynski C, Shi L, Newman AH. Beyond small-molecule Sar: using the dopamine D3 receptor crystal structure to guide drug design. Adv Pharmacol. 2014;69:267-300.
Li A, Mishra Y, Malik M, et al. Evaluation of n-phenyl homopiperazine analogs as potential dopamine D3 receptor selective ligands. Bioorg Med Chem. 2013;21(11):2988-2998.
Chen J, Levant B, Jiang C, Keck TM, Newman AH, Wang S. Tranylcypromine substituted cis-hydroxycyclobutylnaphthamides as potent and selective dopamine D3 receptor antagonists. J Med Chem. 2014;57(11):4962-4968.
Boateng CA, Bakare OM, Zhan J, et al. High affinity dopamine D3 receptor (D3R)-selective antagonists attenuate heroin self-administration in wild-type but not D3R knockout mice. J Med Chem. 2015;58(15):6195-6213.
Micheli F, Cremonesi S, Semeraro T, et al. Novel morpholine scaffolds as selective dopamine (DA) D3 receptor antagonists. Bioorg Med Chem Lett. 2016;26(4):1329-1332.
Capet M, Calmels T, Levoin N, et al. Improving selectivity of dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2016;26(3):885-888.
Ortega R, Hübner H, Gmeiner P, Masaguer CF. Aromatic ring functionalization of benzolactam derivatives: new potent dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2011;21(9):2670-2674.
Tschammer N, Elsner J, Goetz A, et al. Highly potent 5-aminotetrahydropyrazolopyridines: enantioselective dopamine D3 receptor binding, functional selectivity, and analysis of receptor−ligand interactions. J Med Chem. 2011;54(7):2477-2491.
Jean M, Renault J, Levoin N, et al. Synthesis and evaluation of amides surrogates of dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2010;20(18):5376-5379.
Kumar V, Bonifazi A, Ellenberger MP, et al. Highly selective dopamine D3 receptor (D3R) antagonists and partial agonists based on eticlopride and the D3R crystal structure: new leads for opioid dependence treatment. J Med Chem. 2016;59(16):7634-7650.
Kumar V, Moritz AE, Keck TM, et al. Synthesis and pharmacological characterization of novel trans-cyclopropylmethyl-linked bivalent ligands that exhibit selectivity and allosteric pharmacology at the dopamine D3 receptor (D3R). J Med Chem. 2017;60(4):1478-1494.
Brindisi M, Butini S, Franceschini S, et al. Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies. J Med Chem. 2014;57(22):9578-9597.
Cao Y, Sun N, Zhang J, et al. Design, synthesis, and evaluation of bitopic arylpiperazine-phthalimides as selective dopamine D3 receptor agonists. Med Chem Commun. 2018;9(9):1457-1465.
Bonifazi A, Newman AH, Keck TM, et al. Scaffold hybridization strategy leads to the discovery of dopamine D3 receptor-selective or multitarget bitopic ligands potentially useful for central nervous system disorders. ACS Chem Neurosci. 2021;12(19):3638-3649.
Chen P-J, Taylor M, Griffin SA, et al. Design, synthesis, and evaluation of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamides as selective dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2019;29(18):2690-2694.
Cheung THC, Nolan BC, Hammerslag LR, et al. Phenylpiperazine derivatives with selectivity for dopamine D3 receptors modulate cocaine self-administration in rats. Neuropharmacology. 2012;63(8):1346-1359.
Sampson D, Zhu XY, Eyunni SVK, et al. Identification of a new selective dopamine D4 receptor ligand. Bioorg Med Chem. 2014;22(12):3105-3114.
Del Bello F, Bonifazi A, Giorgioni G, et al. 1-[3-(4-butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1) as a model for the rational design of a novel class of brain penetrant ligands with high affinity and selectivity for dopamine D4 receptor. J Med Chem. 2018;61(8):3712-3725.
Peprah K, Zhu XY, Eyunni SVK, Setola V, Roth BL, Ablordeppey SY. Multi-receptor drug design: haloperidol as a scaffold for the design and synthesis of atypical antipsychotic agents. Bioorg Med Chem. 2012;20(3):1291-1297.
Zou M-F, Keck TM, Kumar V, et al. Novel analogues of (R)-5-(methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (sumanirole) provide clues to dopamine D2/d3 receptor agonist selectivity. J Med Chem. 2016;59(7):2973-2988.
Battiti FO, Zaidi SA, Katritch V, Newman AH, Bonifazi A. Chiral cyclic aliphatic linkers as building blocks for selective dopamine D2 or D3 receptor agonists. J Med Chem. 2021;64(21):16088-16105.
Hayatshahi HS, Luedtke RR, Taylor M, Chen P-J, Blass BE, Liu J. Factors governing selectivity of dopamine receptor binding compounds for D2R and D3R subtypes. J Chem Inf Model. 2021;61(6):2829-2843.
Banala AK, Levy BA, Khatri SS, et al. N-(3-fluoro-4-(4-(2-methoxy or 2,3-dichlorophenyl) piperazine-1-yl)-butyl)-aryl carboxamides as selective dopamine D3 receptor ligands: critical role of the carboxamide linker for D3 receptor selectivity. J Med Chem. 2011;54(10):3581-3594.
Battiti FO, Newman AH, Bonifazi A. Exception that proves the rule: investigation of privileged stereochemistry in designing dopamine D3R bitopic agonists. ACS Med Chem Lett. 2020;11(10):1956-1964.
Furman CA, Roof RA, Moritz AE, et al. Investigation of the binding and functional properties of extended length D3 dopamine receptor-selective antagonists. Eur Neuropsychopharmacol. 2015;25(9):1448-1461.
Hayatshahi HS, Xu K, Griffin SA, et al. Analogues of arylamide phenylpiperazine ligands to investigate the factors influencing D3 dopamine receptor bitropic binding and receptor subtype selectivity. ACS Chem Neurosci. 2018;9(12):2972-2983.
Michino M, Donthamsetti P, Beuming T, et al. A single glycine in extracellular loop 1 is the critical determinant for pharmacological specificity of dopamine D2 and D3 receptors. Mol Pharmacol. 2013;84(6):854-864.
Michino M, Boateng CA, Donthamsetti P, et al. Toward understanding the structural basis of partial agonism at the dopamine D3 receptor. J Med Chem. 2017;60(2):580-593.
Moritz AE, Bonifazi A, Guerrero AM, et al. Evidence for a stereoselective mechanism for bitopic activity by extended-length antagonists of the D3 dopamine receptor. ACS Chem Neurosci. 2020;11(20):3309-3320.
Newman AH, Beuming T, Banala AK, et al. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor. J Med Chem. 2012;55(15):6689-6699.
Shaik AB, Kumar V, Bonifazi A, et al. Investigation of novel primary and secondary pharmacophores and 3-substitution in the linking chain of a series of highly selective and bitopic dopamine D3 receptor antagonists and partial agonists. J Med Chem. 2019;62(20):9061-9077.
Franco R, Aguinaga D, Jiménez J, Lillo J, Martínez-Pinilla E, Navarro G. Biased receptor functionality versus biased agonism in g-protein-coupled receptors. Biomol Concepts. 2018;9(1):143-154.
Urban JD, Clarke WP, vonZastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007;320(1):1-13.
Perez-Aguilar JM, Shan J, LeVine MV, Khelashvili G, Weinstein H. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc. 2014;136(45):16044-16054.
Zhou L, Bohn LM. Functional selectivity of GPCR signaling in animals. Curr Opin Cell Biol. 2014;27:102-108.
Urs NM, Peterson SM, Caron MG. New concepts in dopamine D2 receptor biased signaling and implications for schizophrenia therapy. Biol Psychiatry. 2017;81(1):78-85.
Lane JR, May LT, Parton RG, Sexton PM, Christopoulos A. A kinetic view of GPCR allostery and biased agonism. Nat Chem Biol. 2017;13(9):929-937.
Klein Herenbrink C, Sykes DA, Donthamsetti P, et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat Commun. 2016;7(1):10842.
Kopinathan A, Scammells PJ, Lane JR, Capuano B. Multivalent approaches and beyond: novel tools for the investigation of dopamine D2 receptor pharmacology. Future Med Chem. 2016;8(11):1349-1372.
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev. 2010;62(2):265-304.
Kenakin T, Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov. 2013;12(3):205-216.
Stallaert W, Christopoulos A, Bouvier M. Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opin Drug Discov. 2011;6(8):811-825.
Ehrlich K, Götz A, Bollinger S, et al. Dopamine D2, D3, and D4 selective phenylpiperazines as molecular probes to explore the origins of subtype specific receptor binding. J Med Chem. 2009;52(15):4923-4935.
Tschammer N, Bollinger S, Kenakin T, Gmeiner P. Histidine 6.55 is a major determinant of ligand-biased signaling in dopamine D2L receptor. Mol Pharmacol. 2011;79(3):575-585.
Dörfler M, Tschammer N, Hamperl K, Hübner H, Gmeiner P. Novel D3 selective dopaminergics incorporating enyne units as nonaromatic catechol bioisosteres: synthesis, bioactivity, and mutagenesis studies. J Med Chem. 2008;51(21):6829-6838.
Hiller C, Kling RC, Heinemann FW, Meyer K, Hübner H, Gmeiner P. Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety. J Med Chem. 2013;56(12):5130-5141.
Weichert D, Banerjee A, Hiller C, Kling RC, Hübner H, Gmeiner P. Molecular determinants of biased agonism at the dopamine D2 receptor. J Med Chem. 2015;58(6):2703-2717.
Cannon JG. Structure-activity relationships of dopamine agonists. Annu Rev Pharmacol Toxicol. 1983;23:103-129.
Lane JR, Sexton PM, Christopoulos A. Bridging the gap: bitopic ligands of g-protein-coupled receptors. Trends Pharmacol Sci. 2013;34(1):59-66.
Mohr K, Tränkle C, Kostenis E, Barocelli E, De Amici M, Holzgrabe U. Rational design of dualsteric GPCR ligands: quests and promise. Br J Pharmacol. 2010;159(5):997-1008.
Valant C, Sexton PM, Christopoulos A. Orthosteric/allosteric bitopic ligands: going hybrid at GPCRs. Mol Interv. 2009;9(3):125-135.
Silvano E, Millan MJ, Mannoury la Cour C, et al. The tetrahydroisoquinoline derivative SB269,652 is an allosteric antagonist at dopamine D3 and D2 receptors. Mol Pharmacol. 2010;78(5):925-934.
Lane JR, Donthamsetti P, Shonberg J, et al. A new mechanism of allostery in a G protein-coupled receptor dimer. Nat Chem Biol. 2014;10(9):745-752.
Rossi M, Fasciani I, Marampon F, Maggio R, Scarselli M. The first negative allosteric modulator for dopamine D2 and D3 receptors, SB269652 May lead to a new generation of antipsychotic drugs. Mol Pharmacol. 2017;91(6):586-594.
Wheatley M, Wootten D, Conner MT, et al. Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol. 2012;165(6):1688-1703.
Chu W, Tu Z, McElveen E, et al. Synthesis and in vitro binding of n-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorg Med Chem. 2005;13(1):77-87.
Rangel-Barajas C, Malik M, Taylor M, Neve KA, Mach RH, Luedtke RR. Characterization of [3H]LS-3-134, a novel arylamide phenylpiperazine D3 dopamine receptor selective radioligand. J Neurochem. 2014;131(4):418-431.
Yan W, Fan L, Yu J, et al. 2-phenylcyclopropylmethylamine derivatives as dopamine D2 receptor partial agonists: design, synthesis, and biological evaluation. J Med Chem. 2021;64(23):17239-17258.
Löber S, Hübner H, Tschammer N, Gmeiner P. Recent advances in the search for D3- and D4-selective drugs: probes, models and candidates. Trends Pharmacol Sci. 2011;32(3):148-157.
Fronik P, Gaiser BI, Sejer Pedersen D. Bitopic ligands and metastable binding sites: opportunities for G protein-coupled receptor (GPCR) medicinal chemistry. J Med Chem. 2017;60(10):4126-4134.
Newman AH, Battiti FO, Bonifazi A. 2016 philip S. portoghese medicinal chemistry lectureship: designing bivalent or bitopic molecules for g-protein coupled receptors. the whole is greater than the sum of its parts. J Med Chem. 2020;63(5):1779-1797.
Fasciani I, Petragnano F, Aloisi G, et al. Allosteric modulators of G protein-coupled dopamine and serotonin receptors: a new class of atypical antipsychotics. Pharmaceuticals (Basel). 2020;13(11):E388.
Shonberg J, Scammells PJ, Capuano B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem. 2011;6(6):963-974.
Berque-Bestel I, Lezoualc'h F, Jockers R. Bivalent ligands as specific pharmacological tools for G protein-coupled receptor dimers. Curr Drug Discov Technol. 2008;5(4):312-318.
Vivo M, Lin H, Strange PG. Investigation of cooperativity in the binding of ligands to the D2 dopamine receptor. Mol Pharmacol. 2006;69(1):226-235.
Ng GYK, O'Dowd BF, Lee SP, et al. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Commun. 1996;227(1):200-204.
Guo W, Shi L, Filizola M, Weinstein H, Javitch JA. Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. PNAS. 2005;102(48):17495-17500.
Guo W, Urizar E, Kralikova M, et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 2008;27(17):2293-2304.
Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000;288(5463):154-157.
Koschatzky S, Tschammer N, Gmeiner P. Cross-receptor interactions between dopamine D2L and neurotensin NTS1 receptors modulate binding affinities of dopaminergics. ACS Chem Neurosci. 2011;2(6):308-316.
Wang M, Pei L, Fletcher PJ, Kapur S, Seeman P, Liu F. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization. Mol Brain. 2010;3:325.
Kühhorn J, Hübner H, Gmeiner P. Bivalent dopamine D2 receptor ligands: synthesis and binding properties. J Med Chem. 2011;54(13):4896-4903.
Fischer E. Einfluss der configuration auf die wirkung der enzyme. Ber Dtsch Chem Ges. 1894;27(3):2985-2993.
Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today. 2013;18(9-10):495-501.
Bolognesi ML. Polypharmacology in a single drug: multitarget drugs. Curr Med Chem. 2013;20(13):1639-1645.
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent advances in the rational drug design based on multi-target ligands. Curr Med Chem. 2020;27(28):4720-4740.
Ma H, Huang B, Zhang Y. Recent advances in multitarget-directed ligands targeting g-protein-coupled receptors. Drug Discov Today. 2020;25(9):1682-1692.
Morphy R, Rankovic Z. Designed multiple ligands. an emerging drug discovery paradigm. J Med Chem. 2005;48(21):6523-6543.
Cavalli A, Bolognesi ML, Minarini A, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51(3):347-372.
Morphy R, Rankovic Z. Designing multiple ligands-medicinal chemistry strategies and challenges. Curr Pharm Des. 2009;15(6):587-600.
Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16(1):127-136.
Benek O, Korabecny J, Soukup O. A perspective on multi-target drugs for alzheimer's disease. Trends Pharmacol Sci. 2020;41(7):434-445.
Gupta M, Lee HJ, Barden CJ, Weaver DF. The blood-brain barrier (BBB) score. J Med Chem. 2019;62(21):9824-9836.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. Adv Drug Deliv Rev. 2001;46(1):3-26.
van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and h-bonding descriptors. J Drug Target. 1998;6(2):151-165.
Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50-68.
Ghose AK, Ott GR, Hudkins RL. Technically extended multiparameter optimization (TEMPO): an advanced robust scoring scheme to calculate central nervous system druggability and monitor lead optimization. ACS Chem Neurosci. 2017;8(1):147-154.
Gunaydin H. Probabilistic approach to generating MPOs and its application as a scoring function for CNS drugs. ACS Med Chem Lett. 2016;7(1):89-93.
Wager TT, Chandrasekaran RY, Hou X, et al. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci. 2010;1(6):420-434.
Wager TT, Hou X, Verhoest PR, Villalobos A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci. 2010;1(6):435-449.
Wager TT, Hou X, Verhoest PR, Villalobos A. Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci. 2016;7(6):767-775.
Hitchcock SA, Pennington LD. Structure−brain exposure relationships. J Med Chem. 2006;49(26):7559-7583.
Leeson PD, Davis AM. Time-related differences in the physical property profiles of oral drugs. J Med Chem. 2004;47(25):6338-6348.
Norinder U, Haeberlein M. Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev. 2002;54(3):291-313.
Kelder J, Grootenhuis PDJ, Bayada DM, Delbressine LPC, Ploemen J-P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16(10):1514-1519.
Juza R, Stefkova K, Dehaen W, et al. Synthesis and in vitro evaluation of novel dopamine receptor D2 3,4-dihydroquinolin-2(1H)-one derivatives related to aripiprazole. Biomolecules. 2021;11(9):1262.
Juza R, Vojtechova I, Stefkova-Mazochova K, et al. Novel D2/5-HT receptor modulators related to cariprazine with potential implication to schizophrenia treatment. Eur J Med Chem. 2022;232:114193.
Bettinetti L, Schlotter K, Hübner H, Gmeiner P. Interactive Sar studies: rational discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists. J Med Chem. 2002;45(21):4594-4597.
Leopoldo M, Berardi F, Colabufo NA, et al. Structure−affinity relationship study on N-[4-(4-arylpiperazin-1-yl)butyl]arylcarboxamides as potent and selective dopamine D3 receptor ligands. J Med Chem. 2002;45(26):5727-5735.
Hackling A, Ghosh R, Perachon S, et al. N-(ω-(4-(2-methoxyphenyl)piperazin-1-yl)alkyl)carboxamides as dopamine D2 and D3 receptor ligands. J Med Chem. 2003;46(18):3883-3899.
Newman AH, Grundt P, Nader MA. Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J Med Chem. 2005;48(11):3663-3679.
Grundt P, Prevatt KM, Cao J, et al. Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents. J Med Chem. 2007;50(17):4135-4146.
Ortega R, Raviña E, Masaguer CF, et al. Synthesis, binding affinity and Sar of new benzolactam derivatives as dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2009;19(6):1773-1778.
Hübner H, Kraxner J, Gmeiner P. Cyanoindole derivatives as highly selective dopamine D4 receptor partial agonists: solid-phase synthesis, binding assays, and functional experiments. J Med Chem. 2000;43(23):4563-4569.
Sanner MA. Selective dopamine D4 receptor antagonists. Expert Opin Ther Pat. 1998;8(4):383-393.
Kulagowski JJ, Broughton HB, Curtis NR, et al. 3-[[4-(4-chlorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-b]pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J Med Chem. 1996;39(10):1941-1942.
Löber S, Hübner H, Gmeiner P. Azaindole derivatives with high affinity for the dopamine D4 receptor: synthesis, ligand binding studies and comparison of molecular electrostatic potential maps. Bioorg Med Chem Lett. 1999;9(1):97-102.
Löber S, Hübner H, Gmeiner P. Synthesis and biological investigations of dopaminergic partial agonists preferentially recognizing the D4 receptor subtype. Bioorg Med Chem Lett. 2006;16(11):2955-2959.
Löber S, Tschammer N, Hübner H, Melis MR, Argiolas A, Gmeiner P. The azulene framework as a novel arene bioisostere: design of potent dopamine D4 receptor ligands inducing penile erection. ChemMedChem. 2009;4(3):325-328.
Campbell RH, Diduch M, Gardner KN, Thomas C. Review of cariprazine in management of psychiatric illness. Ment Health Clin. 2018;7(5):221-229.
Pae C-U, Forbes A, Patkar A. Aripiprazole as adjunctive therapy for patients with major depressive disorder. CNS Drugs. 2011;25:109-127.
Jauhar S, Young AH. Controversies in bipolar disorder; role of second-generation antipsychotic for maintenance therapy. Int J Bipolar Disord. 2019;7(1):1-9.
Yatham LN. A clinical review of aripiprazole in bipolar depression and maintenance therapy of bipolar disorder. J Affect Disord. 2011;128(suppl 1):S21-S28.
Żmudzki P, Satała G, Bojarski A, Chłoń-Rzepa G, Popik P, Zajdel P. N-(4-arylpiperazinoalkyl)acetamide derivatives of 1,3- and 3,7-dimethyl-1H-purine-2,6(3H,7H)- diones and their 5-HT6, 5-HT7, and D2 receptors affinity. Heterocycl Commun. 2015;21:13-18.
Chen X, Sassano MF, Zheng L, et al. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J Med Chem. 2012;55(16):7141-7153.
Chen X, McCorvy JD, Fischer MG, et al. Discovery of G protein-biased D2 dopamine receptor partial agonists. J Med Chem. 2016;59(23):10601-10618.
Simone AD, Ruda GF, Albani C, et al. Applying a multitarget rational drug design strategy: the first set of modulators with potent and balanced activity toward dopamine D3 receptor and fatty acid amide hydrolase. Chem Commun. 2014;50(38):4904-4907.
Gmeiner P, Huebner H, Skultety M. Indolizines and aza-analog derivatives thereof as cns active compounds. WO/2008/113559. 2008.
Möller D, Kling RC, Skultety M, Leuner K, Hübner H, Gmeiner P. Functionally selective dopamine D2, D3 receptor partial agonists. J Med Chem. 2014;57(11):4861-4875.
Männel B, Jaiteh M, Zeifman A, et al. Structure-guided screening for functionally selective D2 dopamine receptor ligands from a virtual chemical library. ACS Chem Biol. 2017;12(10):2652-2661.
Ágai-Csongor É, Domány G, Nógrádi K, et al. Discovery of cariprazine (RGH-188): a novel antipsychotic acting on dopamine D3/D2 receptors. Bioorg Med Chem Lett. 2012;22(10):3437-3440.
Ágai-Csongor É, Nógrádi K, Galambos J, et al. Novel sulfonamides having dual dopamine D2 and D3 receptor affinity show in vivo antipsychotic efficacy with beneficial cognitive and EPS profile. Bioorg Med Chem Lett. 2007;17(19):5340-5344.
Kiss B, Laszlovszky I, Horváth A, et al. Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: I. neurochemical characterisation of RG-15. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(5):515-528.
Gyertyán I, Sághy K, Laszy J, et al. Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: II. behavioural characterisation of RG-15. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(5):529-539.
Shonberg J, Herenbrink CK, López L, et al. A structure-activity analysis of biased agonism at the dopamine D2 receptor. J Med Chem. 2013;56(22):9199-9221.
Shen Y, McCorvy JD, Martini ML, et al. D2 dopamine receptor G protein-biased partial agonists based on cariprazine. J Med Chem. 2019;62(9):4755-4771.
Sun X, Gou H, Li F, et al. Y-QA31, a novel dopamine D3 receptor antagonist, exhibits antipsychotic-like properties in preclinical animal models of schizophrenia. Acta Pharmacol Sin. 2016;37(3):322-333.
Keck TM, Banala AK, Slack RD, et al. Using click chemistry toward novel 1,2,3-triazole-linked dopamine D3 receptor ligands. Bioorg Med Chem. 2015;23(14):4000-4012.
Peng X, Wang Q, Mishra Y, et al. Pharmacological evaluation and molecular modeling studies of triazole containing dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2015;25(3):519-523.
Chłoń-Rzepa G, Bucki A, Kołaczkowski M, et al. Arylpiperazinylalkyl derivatives of 8-amino-1,3-dimethylpurine-2,6-dione as novel multitarget 5-HT/D receptor agents with potential antipsychotic activity. J Enzyme Inhib Med Chem. 2016;31(6):1048-1062.
Partyka A, Chłoń-Rzepa G, Wasik A, et al. Antidepressant- and anxiolytic-like activity of 7-phenylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 5-HT1A receptor functional profile. Bioorg Med Chem. 2015;23(1):212-221.
Schübler M, Sadek B, Kottke T, Weizel L, Stark H. Synthesis, molecular properties estimations, and dual dopamine D2 and D3 receptor activities of benzothiazole-based ligands. Front Chem. 2017;5:64.
Möller D, Banerjee A, Uzuneser TC, et al. Discovery of G protein-biased dopaminergics with a pyrazolo[1,5-a]pyridine substructure. J Med Chem. 2017;60(7):2908-2929.
Insua I, Alvarado M, Masaguer CF, et al. Synthesis and binding affinity of new 1,4-disubstituted triazoles as potential dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2013;23(20):5586-5591.
Waszkielewicz AM, Pytka K, Rapacz A, et al. Synthesis and evaluation of antidepressant-like activity of some 4-substituted 1-(2-methoxyphenyl)piperazine derivatives. Chem Biol Drug Des. 2015;85(3):326-335.
Pańczyk K, Pytka K, Jakubczyk M, et al. Synthesis and activity of di- or trisubstituted n-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives on the central nervous system. Bioorg Med Chem Lett. 2018;28(11):2039-2049.
Chłoń-Rzepa G, Żmudzki P, Zajdel P, et al. 7-arylpiperazinylalkyl and 7-tetrahydroisoquinolinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and some of their purine-2,6,8-trione analogs as 5-HT1A, 5-HT2A, and 5-HT7 serotonin receptor ligands. Bioorg Med Chem. 2007;15(15):5239-5250.
Diefenderfer LA, Iuppa C. Brexpiprazole: a review of a new treatment option for schizophrenia and major depressive disorder. Ment Health Clin. 2017;7(5):207-212.
Chopko TC, Lindsley CW. Classics in chemical neuroscience: risperidone. ACS Chem Neurosci. 2018;9(7):1520-1529.
Younce JR, Davis AA, Black KJ. A systematic review and case series of ziprasidone for psychosis in parkinson's disease. J Parkinsons Dis. 2019;9(1):63-71.
Shim IH, Bahk W-M, Woo YS, Yoon B-H. Pharmacological treatment of major depressive episodes with mixed features: a systematic review. Clin Psychopharmacol Neurosci. 2018;16(4):376-382.
Macaluso M, Preskorn SH. Knowledge of the pharmacology of antidepressants and antipsychotics yields results comparable with pharmacogenetic testing. J Psychiatr Pract. 2018;24(6):416-419.
Bouchette D, Fariba K, Marwaha R. Ziprasidone. In: StatPearls. StatPearls Publishing; 2022.
Kołaczkowski M, Marcinkowska M, Bucki A, et al. Novel arylsulfonamide derivatives with 5-HT6/5-HT7 receptor antagonism targeting behavioral and psychological symptoms of dementia. J Med Chem. 2014;57(11):4543-4557.
Zhu C, Li X, Zhao B, Peng W, Li W, Fu W. Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy. Eur J Med Chem. 2020;193:112214.
Chen Y, Xu X, Liu X, Yu M, Liu B-F, Zhang G. Synthesis and evaluation of a series of 2-substituted-5-thiopropylpiperazine (piperidine)-1,3,4-oxadiazoles derivatives as atypical antipsychotics. PLoS One. 2012;7(4):e35186.
Chen Y, Wang S, Xu X, et al. Synthesis and biological investigation of coumarin piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. J Med Chem. 2013;56(11):4671-4690.
Chen Y, Lan Y, Wang S, et al. Synthesis and evaluation of new coumarin derivatives as potential atypical antipsychotics. Eur J Med Chem. 2014;74:427-439.
González-Gómez JC, Santana L, Uriarte E, et al. New arylpiperazine derivatives with high affinity for α1A, D2 and 5-HT2A receptors. Bioorg Med Chem Lett. 2003;13(2):175-178.
Terán C, Santana L, Uriarte E, Fall Y, Unelius L, Tolf B-R. Phenylpiperazine derivatives with strong affinity for 5HT1A, D2A and D3 receptors. Bioorg Med Chem Lett. 1998;8(24):3567-3570.
Cao X, Chen Y, Zhang Y, et al. Synthesis and biological evaluation of new 6-hydroxypyridazinone benzisoxazoles: potential multi-receptor-targeting atypical antipsychotics. Eur J Med Chem. 2016;124:713-728.
Cao X, Chen Y, Zhang Y, et al. Synthesis and biological evaluation of novel σ1 receptor ligands for treating neuropathic pain: 6-hydroxypyridazinones. J Med Chem. 2016;59(7):2942-2961.
Forbes IT, Dabbs S, Duckworth DM, et al. (R)-3,N-dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzenesulfonamide: the first selective 5-HT7 receptor antagonist. J Med Chem. 1998;41(5):655-657.
Kołaczkowski M, Kowalski P, Jaśkowska J, et al. Arylosulfonamides for the treatment of Cns diseases. WO/2012/035123.
Kołaczkowski M, Mierzejewski P, Bieńkowski P, Wesołowska A, Newman-Tancredi A. ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility. Br J Pharmacol. 2014;171(4):973-984.
Xu L, Zhou S, Yu K, et al. Molecular modeling of the 3D structure of 5-HT1AR: discovery of novel 5-HT1AR agonists via dynamic pharmacophore-based virtual screening. J Chem Inf Model. 2013;53(12):3202-3211.
Szabo M, Lim HD, Klein Herenbrink C, Christopoulos A, Lane JR, Capuano B. Proof of concept study for designed multiple ligands targeting the dopamine D2, serotonin 5-HT2A, and muscarinic M1 acetylcholine receptors. J Med Chem. 2015;58(3):1550-1555.
Anagnostaras SG, Murphy GG, Hamilton SE, et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 2003;6(1):51-58.
Shekhar A, Potter WZ, Lightfoot J, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry. 2008;165(8):1033-1039.
Sams AG, Hentzer M, Mikkelsen GK, et al. Discovery of N-{1-[3-(3-oxo-2,3-dihydrobenzo[1,4]oxazin-4-yl)propyl]piperidin-4-yl}-2-phenylacetamide (lu AE51090): an allosteric muscarinic M1 receptor agonist with unprecedented selectivity and procognitive potential. J Med Chem. 2010;53(17):6386-6397.
Shi W, Wang Y, Wu C, et al. Synthesis and biological investigation of triazolopyridinone derivatives as potential multireceptor atypical antipsychotics. Bioorg Med Chem Lett. 2020;30(8):127027.
Bergman J, Roof RA, Furman CA, et al. Modification of cocaine self-administration by buspirone (buspar®): potential involvement of D3 and D4 dopamine receptors. Int J Neuropsychopharmacol. 2013;16(2):445-458.
Strawn JR, Geracioti L, Rajdev N, Clemenza K, Levine A. Pharmacotherapy for generalized anxiety disorder in adult and pediatric patients: an evidence-based treatment review. Expert Opin Pharmacother. 2018;19(10):1057-1070.
Hamik A, Oksenberg D, Fischette C, Peroutka SJ. Analysis of tandospirone (SM-3997) interactions with neurotransmitter receptor binding sites. Biol Psychiatry. 1990;28(2):99-109.
Huang X, Yang J, Yang S, et al. Role of tandospirone, a 5-HT1A receptor partial agonist, in the treatment of central nervous system disorders and the underlying mechanisms. Oncotarget. 2017;8(60):102705-102720.
Cusack B, Nelson A, Richelson E. Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology. 1994;114(4):559-565.
Buoli M, Rovera C, Pozzoli SM, et al. Is trazodone more effective than clomipramine in major depressed outpatients? A single-blind study with intravenous and oral administration. CNS Spectr. 2019;24(2):258-264.
Odagaki Y, Toyoshima R, Yamauchi T. Trazodone and its active metabolite m-chlorophenylpiperazine as partial agonists at 5-HT1A receptors assessed by [35S]GTPγS binding. J Psychopharmacol. 2005;19(3):235-241.
Xiamuxi H, Wang Z, Li J, et al. Synthesis and biological investigation of tetrahydropyridopyrimidinone derivatives as potential multireceptor atypical antipsychotics. Bioorg Med Chem. 2017;25(17):4904-4916.
Prachayasittikul S, Pingaew R, Worachartcheewan A, et al. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini-Rev Med Chem. 2017;17(10):869-901.
Sinthupoom N, Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications. Eur Food Res Technol. 2015;240(1):1-17.
Hamada Y. Role of pyridines in medicinal chemistry and design of BACE1 inhibitors possessing a pyridine scaffold. In: Pandey PP, ed. Pyridine. 2018:9-26.
Altaf AA, Shahzad A, Gul Z, et al. A review on the medicinal importance of pyridine derivatives. J Drug Des Med Chem. 2015;1(1):1-11.
Sedehizadeh S, Keogh M, Maddison P. The use of aminopyridines in neurological disorders. Clin Neuropharmacol. 2012;35(4):191-200.
Jain KS, Arya N, Inamdar NN, et al. The chemistry and bio-medicinal significance of pyrimidines & condensed pyrimidines. Curr Top Med Chem. 2016;16(28):3133-3174.
Micheli V, Camici M, Tozzi MG, et al. Neurological disorders of purine and pyrimidine metabolism. Curr Top Med Chem. 2011;11(8):923-947.
López L, Selent J, Ortega R, et al. Synthesis, 3D-QSAR, and structural modeling of benzolactam derivatives with binding affinity for the D2 and D3 receptors. ChemMedChem. 2010;5(8):1300-1317.
Chun LS, Vekariya RH, Free RB, et al. Structure-activity investigation of a G protein-biased agonist reveals molecular determinants for biased signaling of the D2 dopamine receptor. Front Synaptic Neurosci. 2018;10:2.
Free RB, Chun LS, Moritz AE, et al. Discovery and characterization of a g protein-biased agonist that inhibits β-arrestin recruitment to the D2 dopamine receptor. Mol Pharmacol. 2014;86(1):96-105.
Kumari A, Singh RK. Medicinal chemistry of indole derivatives: current to future therapeutic prospectives. Bioorg Chem. 2019;89:103021.
Kaushik NK, Kaushik N, Attri P, et al. Biomedical importance of indoles. Molecules. 2013;18(6):6620-6662.
Singh TP, Singh OM. Recent progress in biological activities of indole and indole alkaloids. Mini Rev Med Chem. 2018;18(1):9-25.
Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand M, Bjorklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59:72-88.
McCorvy JD, Butler KV, Kelly B, et al. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat Chem Biol. 2018;14(2):126-134.
Christopher JA, Brown J, Doré AS, et al. Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J Med Chem. 2013;56(9):3446-3455.
Najafi A, Sequeira V, Kuster DWD, van der Velden J. β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur J Clin Invest. 2016;46(4):362-374.
Kołaczkowski M, Marcinkowska M, Bucki A, et al. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia. Eur J Med Chem. 2015;92:221-235.
Pullagurla M, Siripurapu U, Kolanos R, et al. Binding of amine-substituted N1-benzenesulfonylindoles at human 5-HT6 serotonin receptors. Bioorg Med Chem Lett. 2005;15(23):5298-5302.
Bucki A, Marcinkowska M, Śniecikowska J, et al. Novel 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-based multifunctional ligands with antipsychotic-like, mood-modulating, and procognitive activity. J Med Chem. 2017;60(17):7483-7501.
Kaczor AA, Silva AG, Loza MI, Kolb P, Castro M, Poso A. Structure-based virtual screening for dopamine D2 receptor ligands as potential antipsychotics. ChemMedChem. 2016;11(7):718-729.
Kondej M, Wróbel TM, Silva AG, et al. Synthesis, pharmacological and structural studies of 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles as multi-target ligands of aminergic GPCRs. Eur J Med Chem. 2019;180:673-689.
Kaczor AA, Targowska-Duda KM, Budzyńska B, Biała G, Silva AG, Castro M. In vitro, molecular modeling and behavioral studies of 3-{[4-(5-methoxy-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]methyl}-1,2-dihydroquinolin-2-one (D2AAK1) as a potential antipsychotic. Neurochem Int. 2016;96:84-99.
Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. The Lancet. 2013;382(9896):951-962.
Sykes DA, Moore H, Stott L, et al. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat Commun. 2017;8(1):1-11.
Fyfe TJ, Kellam B, Sykes DA, et al. Structure-kinetic profiling of haloperidol analogues at the human dopamine D2 receptor. J Med Chem. 2019;62(21):9488-9520.
Kohnen-Johannsen KL, Kayser O. Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules. 2019;24(4):796.
Drake LR, Scott PJH. DARK classics in chemical neuroscience: cocaine. ACS Chem Neurosci. 2018;9(10):2358-2372.
Matsui A, Alvarez VA. Cocaine inhibition of synaptic transmission in the ventral pallidum is pathway-specific and mediated by serotonin. Cell Rep. 2018;23(13):3852-3863.
Słowiński T, Stefanowicz J, Dawidowski M, et al. Synthesis and biological investigation of potential atypical antipsychotics with a tropane core. part 1. Eur J Med Chem. 2011;46(9):4474-4488.
Stefanowicz J, Słowiński T, Wróbel MZ, et al. Synthesis and biological investigation of new equatorial (β) stereoisomers of 3-aminotropane arylamides with atypical antipsychotic profile. Bioorg Med Chem. 2016;24(18):3994-4007.
Peprah K, Zhu XY, Eyunni SVK, et al. Structure-activity relationship studies of SYA 013, a homopiperazine analog of haloperidol. Bioorg Med Chem. 2012;20(5):1671-1678.
Ablordeppey SY, Altundas R, Bricker B, et al. Identification of A butyrophenone analog as a potential atypical antipsychotic agent: 4-[4-(4-chlorophenyl)-1,4-diazepan-1-yl]-1-(4-fluorophenyl)butan-1-one. Bioorg Med Chem. 2008;16(15):7291-7301.
Sampson D, Bricker B, Zhu XY, et al. Further evaluation of the tropane analogs of haloperidol. Bioorg Med Chem Lett. 2014;24(17):4294-4297.
Schmidt AW, Lebel LA, Howard HR, Zorn SH. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol. 2001;425(3):197-201.
Stefanowicz J, Słowiński T, Wróbel MZ, et al. Synthesis and biological investigations of 3β-aminotropane arylamide derivatives with atypical antipsychotic profile. Med Chem Res. 2018;27(8):1906-1928.
Capuano B, Crosby I, Lloyd E, Taylor D. Synthesis and preliminary pharmacological evaluation of 4′-arylmethyl analogues of clozapine. I. the effect of aromatic substituents. Aust J Chem. 2002;55:565-576.
Capuano B, Crosby I, Lloyd E, Podloucka A, Taylor D. Synthesis and preliminary pharmacological evaluation of 4′-arylalkyl analogues of clozapine. II. effect of the nature and length of the linker. Aust J Chem. 2003;56:875-886.
Capuano B, Crosby IT, Lloyd EJ, Podloucka A, Taylor DA. Synthesis and preliminary pharmacological evaluation of 4’-arylalkyl analogues of clozapine. IV. the effects of aromaticity and isosteric replacement. Aust J Chem. 2008;61:930-940.
Bhushan RG, Sharma SK, Xie Z, Daniels DJ, Portoghese PS. A bivalent ligand (KDN-21) reveals spinal δ and κ opioid receptors are organized as heterodimers that give rise to δ1 and κ2 phenotypes. selective targeting of δ−κ heterodimers. J Med Chem. 2004;47(12):2969-2972.
Portoghese PS, Larson DL, Sayre LM, et al. Opioid agonist and antagonist bivalent ligands. the relationship between spacer length and selectivity at multiple opioid receptors. J Med Chem. 1986;29(10):1855-1861.
Kühhorn J, Götz A, Hübner H, Thompson D, Whistler J, Gmeiner P. Development of a bivalent dopamine D2 receptor agonist. J Med Chem. 2011;54(22):7911-7919.
Huber D, Hübner H, Gmeiner P. 1,1′-disubstituted ferrocenes as molecular hinges in mono- and bivalent dopamine receptor ligands. J Med Chem. 2009;52(21):6860-6870.
Huber D, Löber S, Hübner H, Gmeiner P. Bivalent molecular probes for dopamine D2-like receptors. Bioorg Med Chem. 2012;20(1):455-466.
Salama I, Löber S, Hübner H, Gmeiner P. Synthesis and binding profile of haloperidol-based bivalent ligands targeting dopamine D(2)-like receptors. Bioorg Med Chem Lett. 2014;24(16):3753-3756.
Hübner H, Schellhorn T, Gienger M, et al. Structure-guided development of heterodimer-selective GPCR ligands. Nat Commun. 2016;7(1):12298.
Binder EB, Kinkead B, Owens MJ, Nemeroff CB. Neurotensin and dopamine interactions. Pharmacol Rev. 2001;53(4):453-486.
Boules MM, Fredrickson P, Muehlmann AM, Richelson E. Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel). 2014;4(2):125-153.
Borroto-Escuela DO, Ravani A, Tarakanov AO, et al. Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochem Biophys Res Commun. 2013;435(1):140-146.
Kinkead B, Binder EB, Nemeroff CB. Does neurotensin mediate the effects of antipsychotic drugs? Biol Psychiatry. 1999;46(3):340-351.
White JF, Noinaj N, Shibata Y, et al. Structure of the agonist-bound neurotensin receptor. Nature. 2012;490(7421):508-513.
Egloff P, Hillenbrand M, Klenk C, et al. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci. 2014;111(6):E655-E662.
Ullmann T, Gienger M, Budzinski J, et al. Homobivalent dopamine D2 receptor ligands modulate the dynamic equilibrium of D2 monomers and homo- and heterodimers. ACS Chem Biol. 2021;16(2):371-379.
Plach M, Schäfer T, Borroto-Escuela DO, et al. Differential allosteric modulation within dopamine D2R-neurotensin NTS1R and D2R-serotonin 5-HT2AR receptor complexes gives bias to intracellular calcium signalling. Sci Rep. 2019;9(1):16312.
Borroto-Escuela DO, Flajolet M, Agnati LF, Greengard P, Fuxe K. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. Methods Cell Biol. 2013;117:141-164.
Cortés A, Moreno E, Rodríguez-Ruiz M, Canela EI, Casadó V. Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin Drug Discovery. 2016;11(7):641-664.
Prieto GA. Abnormalities of dopamine D3 receptor signaling in the diseased brain. J Cent Nerv Syst Dis. 2017;9:1-8.
Pani L, Gessa GL. The substituted benzamides and their clinical potential on dysthymia and on the negative symptoms of schizophrenia. Mol Psychiatry. 2002;7(3):247-253.
Asif M. Pharmacological potential of benzamide analogues and their uses in medicinal chemistry. Mod Chem Appl. 2016;4(4):194.
Tu Z, Li S, Cui J, et al. Synthesis and pharmacological evaluation of fluorine-containing D3 dopamine receptor ligands. J Med Chem. 2011;54(6):1555-1564.
Abdel-Fattah MAO, Lehmann J, Abadi AH. An interactive Sar approach to discover novel hybrid thieno probes as ligands for D2-like receptors with affinities in the subnanomolar range. Chem Biodiversity. 2013;10(12):2247-2266.
Szabo M, Klein Herenbrink C, Christopoulos A, Lane JR, Capuano B. Structure-activity relationships of privileged structures lead to the discovery of novel biased ligands at the dopamine D2 receptor. J Med Chem. 2014;57(11):4924-4939.
Vangveravong S, Zhang Z, Taylor M, et al. Synthesis and characterization of selective dopamine D2 receptor ligands using aripiprazole as the lead compound. Bioorg Med Chem. 2011;19(11):3502-3511.
Männel B, Dengler D, Shonberg J, Hübner H, Möller D, Gmeiner P. Hydroxy-substituted heteroarylpiperazines: novel scaffolds for β-arrestin-biased D2R agonists. J Med Chem. 2017;60(11):4693-4713.
Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol. 2015;23(1):1-21.
Arroll B, Macgillivray S, Ogston S, et al. Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Ann Fam Med. 2005;3(5):449-456.
Chockalingam R, Gott BM, Conway CR. Tricyclic antidepressants and monoamine oxidase inhibitors: are they too old for a new look? In: Macaluso M, Preskorn SH, eds. Antidepressants: From Biogenic Amines to New Mechanisms of Action. Springer International Publishing; 2019:37-48.
Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151(6):737-748.
Cao X, Zhang Y, Chen Y, et al. Synthesis and biological evaluation of fused tricyclic heterocycle piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. J Med Chem. 2018;61(22):10017-10039.
Zaręba P, Jaśkowska J, Czekaj I, Satała G. Design, synthesis and molecular modelling of new bulky fananserin derivatives with altered pharmacological profile as potential antidepressants. Bioorg Med Chem. 2019;27(15):3396-3407.
Zaręba P, Jaśkowska J, Śliwa P, Satała G. New dual ligands for the D2 and 5-HT1A receptors from the group of 1,8-naphthyl derivatives of LCAP. Bioorg Med Chem Lett. 2019;29(16):2236-2242.
Zhou B, Ji M, Cai J. Design, synthesis and biological evaluation of bitopic arylpiperazine-hexahydro-pyrazinoquinolines as preferential dopamine D3 receptor ligands. Bioorg Chem. 2018;77:125-135.
Awasthi AK, Cho S, Graham JM, Nikam SS. Fused tricyclic heterocycles for the treatment of schizophrenia. WO/2008/015516 A1.
vanVliet LA, Tepper PG, Dijkstra D, et al. Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. relevance of D2 agonist binding for determination of receptor subtype selectivity. J Med Chem. 1996;39(21):4233-4237.
Karlsson A, Pettersson C, Björk L, Andén N-E, Hacksell U. (R)- and (S)-5-hydroxy-2-(dipropylamino)tetralin (5-OH DPAT): assessment of optical purities and dopaminergic activities. Chirality. 1990;2(2):90-95.
Ghosh B, Antonio T, Zhen J, Kharkar P, Reith MEA, Dutta AK. Development of (S)-N6-(2-(4-(isoquinolin-1-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and its analogue as a d3 receptor preferring agonist: potent in vivo activity in parkinson's disease animal models. J Med Chem. 2010;53(3):1023-1037.
Kvernmo T, Härtter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006;28(8):1065-1078.
Modi G, Voshavar C, Gogoi S, et al. Multifunctional D2/D3 agonist D-520 with high in vivo efficacy: modulator of toxicity of alpha-synuclein aggregates. ACS Chem Neurosci. 2014;5(8):700-717.
Modi G, Antonio T, Reith M, Dutta A. Structural modifications of neuroprotective anti-parkinsonian (−)-N6-(2-(4-(biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (D-264): an effort toward the improvement of in vivo efficacy of the parent molecule. J Med Chem. 2014;57(4):1557-1572.
Das B, Vedachalam S, Luo D, Antonio T, Reith MEA, Dutta AK. Development of a highly potent D2/D3 agonist and a partial agonist from structure-activity relationship study of N6-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine analogues: implication in the treatment of parkinson's disease. J Med Chem. 2015;58(23):9179-9195.
Dutta AK, Venkataraman SK, Fei X-S, Kolhatkar R, Zhang S, Reith MEA. Synthesis and biological characterization of novel hybrid 7-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol and their heterocyclic bioisosteric analogues for dopamine D2 and D3 receptors. Bioorg Med Chem. 2004;12(16):4361-4373.
Biswas S, Hazeldine S, Ghosh B, et al. Bioisosteric heterocyclic versions of 7-{[2-(4-phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: identification of highly potent and selective agonists for dopamine D3 receptor with potent in vivo activity. J Med Chem. 2008;51(10):3005-3019.
Biswas S, Zhang S, Fernandez F, et al. Further structure-activity relationships study of hybrid 7-{[2-(4-phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol analogues: identification of a high-affinity D3-preferring agonist with potent in vivo activity with long duration of action. J Med Chem. 2008;51(1):101-117.
Brown DA, Mishra M, Zhang S, et al. Investigation of various n-heterocyclic substituted piperazine versions of 5/7-{[2-(4-Aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol: effect on affinity and selectivity for dopamine D3 receptor. Bioorg Med Chem. 2009;17(11):3923-3933.
Zhen J, Antonio T, Jacob JC, et al. Efficacy of hybrid tetrahydrobenzo[d]thiazole based aryl piperazines D-264 and D-301 at D2 and D3 receptors. Neurochem Res. 2016;41(0):328-339.
Li C, Biswas S, Li X, Dutta Ak, Le W. Novel D3 dopamine receptor-preferring agonist D-264: evidence of neuroprotective property in parkinson's disease animal models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lactacystin. J Neurosci Res. 2010;88(11):2513-2523.
Mochizuki H, Choong C-J, Baba K. Parkinson's disease and iron. J Neural Transm. 2020;127(2):181-187.
Zecca L, Gallorini M, Schünemann V, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem. 2001;76(6):1766-1773.
Ghosh B, Antonio T, Reith MEA, Dutta AK. Discovery of 4-(4-(2-((5-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)-ethyl)piperazin-1-yl)quinolin-8-ol and its analogues as highly potent dopamine D2/D3 agonists and as iron chelator: in vivo activity indicates potential application in symptomatic and neuroprotective therapy for parkinson's disease. J Med Chem. 2010;53(5):2114-2125.
Youdim MBH, Fridkin M, Zheng H. Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in parkinson's disease and other neurodegenerative diseases. J Neural Transm. 2004;111(10):1455-1471.
Zheng H, Weiner LM, Bar-Am O, et al. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in alzheimer's, parkinson's, and other neurodegenerative diseases. Bioorg Med Chem. 2005;13(3):773-783.
Gogoi S, Antonio T, Rajagopalan S, Reith M, Andersen J, Dutta AK. Dopamine D2/D3 agonists with potent iron chelation, antioxidant and neuroprotective properties: potential implication in symptomatic and neuroprotective treatment of parkinson's disease. ChemMedChem. 2011;6(6):991-995.
Matuszak Z, Reszka KJ, Chignell CF. Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med. 1997;23(3):367-372.
Shertzer HG, Tabor MW, Hogan ITD, Brown SJ, Sainsbury M. Molecular modeling parameters predict antioxidant efficacy of 3-indolyl compounds. Arch Toxicol. 1996;70(12):830-834.
Johnson M, Antonio T, Reith MEA, Dutta AK. Structure-activity relationship study of N6-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine analogues: development of highly selective D3 dopamine receptor agonists along with a highly potent D2/D3 agonist and their pharmacological characterization. J Med Chem. 2012;55(12):5826-5840.
Santra S, Xu L, Shah M, Johnson M, Dutta A. D-512 and D-440 as novel multifunctional dopamine agonists: characterization of neuroprotection properties and evaluation of in vivo efficacy in a parkinson's disease animal model. ACS Chem Neurosci. 2013;4(10):1382-1392.
Shah M, Rajagopalan S, Xu L, et al. The high-affinity D2/D3 agonist D512 protects PC12 cells from 6-OHDA-induced apoptotic cell death and rescues dopaminergic neurons in the MPTP mouse model of parkinson's disease. J Neurochem. 2014;131(1):74-85.
Voshavar C, Shah M, Xu L, Dutta AK. Assessment of protective role of multifunctional dopamine agonist D-512 against oxidative stress produced by depletion of glutathione in PC12 cells: implication in neuroprotective therapy for parkinson's disease. Neurotox Res. 2015;28(4):302-318.
Sofic E, Lange KW, Jellinger K, Riederer P. Reduced and oxidized glutathione in the substantia nigra of patients with parkinson's disease. Neurosci Lett. 1992;142(2):128-130.
Martin HL, Teismann P. Glutathione-a review on its role and significance in parkinson's disease. FASEB J. 2009;23(10):3263-3272.
Lindenbach D, Das B, Conti MM, Meadows SM, Dutta AK, Bishop C. D-512, a novel dopamine D2/3 receptor agonist, demonstrates greater anti-parkinsonian efficacy than ropinirole in parkinsonian rats. Br J Pharmacol. 2017;174(18):3058-3071.
Paleologou KE, Irvine GB, El-Agnaf OMA. α-Synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochem Soc Trans. 2005;33(5):1106-1110.
Li H-T, Lin D-H, Luo X-Y, et al. Inhibition of α-synuclein fibrillization by dopamine analogs via reaction with the amino groups of α-synuclein. FEBS J. 2005;272(14):3661-3672.
Cappai R, Leck S-L, Tew DJ, et al. Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J. 2005;19(10):1377-1379.
Lee VM-Y, Trojanowski JQ. Mechanisms of parkinson's disease linked to pathological α-synuclein: new targets for drug discovery. Neuron. 2006;52(1):33-38.
Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78(5):1073-1082.
Meng X, Munishkina LA, Fink AL, Uversky VN. Effects of various flavonoids on the α-synuclein fibrillation process. Parkinsons Dis. 2010;2010:650794.
Caruana M, Högen T, Levin J, Hillmer A, Giese A, Vassallo N. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett. 2011;585(8):1113-1120.
Ono K, Yamada M. Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. J Neurochem. 2006;97(1):105-115.
Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α-synuclein induced cytotoxicity in parkinson's disease cell model. BMC Neurosci. 2010;11:1157.
Lu J-H, Ardah MT, Durairajan SSK, et al. Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents Aβ peptide fibrillation and oligomerisation. ChemBioChem. 2011;12(4):615-624.
Li J, Zhu M, Rajamani S, Uversky VN, Fink AL. Rifampicin inhibits α-synuclein fibrillation and disaggregates fibrils. Chem Biol. 2004;11(11):1513-1521.
Yedlapudi D, Joshi GS, Luo D, Todi SV, Dutta AK. Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo drosophila synucleinopathy model. Sci Rep. 2016;6(1):1-12.
Yedlapudi D, Xu L, Luo D, Marsh GB, Todi SV, Dutta AK. Targeting alpha synuclein and amyloid beta by a multifunctional, brain-penetrant dopamine D2/D3 agonist D-520: potential therapeutic application in parkinson's disease with dementia. Sci Rep. 2019;9(1):1-12.
Das B, Kandegedara A, Xu L, et al. A novel iron(II) preferring dopamine agonist chelator as potential symptomatic and neuroprotective therapeutic agent for parkinson's disease. ACS Chem Neurosci. 2017;8(4):723-730.
Das B, Rajagopalan S, Joshi GS, et al. A novel iron(II) preferring dopamine agonist chelator D-607 significantly suppresses α-Syn- and MPTP-induced toxicities in vivo. Neuropharmacology. 2017;123:88-99.
Elmabruk A, Das B, Yedlapudi D, et al. preferring dopamine agonist chelator as potential symptomatic and neuroprotective therapeutic agent for parkinson's disease. Design, synthesis, and pharmacological characterization of carbazole based dopamine agonists as potential symptomatic and neuroprotective therapeutic agents for parkinson's disease. ACS Chem Neurosci. 2019;10(1):396-411.
Głuszyńska A. Biological potential of carbazole derivatives. Eur J Med Chem. 2015;94:405-426.
Wu X, Kosaraju J, Zhou W, Tam KY. Neuroprotective effect of SLM, a novel carbazole-based fluorophore, on SH-SY5Y cell model and 3xTg-AD mouse model of alzheimer's disease. ACS Chem Neurosci. 2017;8(3):676-685.
Wang S, Xu T, Wang X, et al. Neuroprotective efficacy of an aminopropyl carbazole derivative P7C3-A20 in ischemic stroke. CNS Neurosci Ther. 2016;22(9):782-788.
MacMillan KS, Naidoo J, Liang J, et al. Development of proneurogenic, neuroprotective small molecules. J Am Chem Soc. 2011;133(5):1428-1437.
Pieper AA, Xie S, Capota E, et al. Discovery of a pro-neurogenic, neuroprotective chemical. Cell. 2010;142(1):39-51.
Loris ZB, Pieper AA, Dietrich WD. The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol. 2017;290:63-73.
Yoon HJ, Kong S-Y, Park M-H, et al. Aminopropyl carbazole analogues as potent enhancers of neurogenesis. Bioorg Med Chem. 2013;21(22):7165-7174.
Allen JA, Yost JM, Setola V, et al. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci USA. 2011;108(45):18488-18493.
Park SM, Chen M, Schmerberg CM, et al. Effects of β-arrestin-biased dopamine D2 receptor ligands on schizophrenia-like behavior in hypoglutamatergic mice. Neuropsychopharmacology. 2016;41(3):704-715.
Krystal JH, D'Souza DC, Petrakis IL, et al. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harvard Rev Psychiatry. 1999;7(3):125-143.
Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from nmda receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17(8):2921-2927.
Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci. 2012;12:251-318.
Johnson DS, Choi C, Fay LK, et al. Discovery of PF-00217830: aryl piperazine napthyridinones as D2 partial agonists for schizophrenia and bipolar disorder. Bioorg Med Chem Lett. 2011;21(9):2621-2625.
ClinicalTrials.gov [Internet]. Phase 2, multicenter, double-blind, randomized, fixed dose, parallel group, 3-week inpatient treatment study to evaluate the dose-response relationship, safety, efficacy, and pharmacokinetics of pf-00217830 compared with placebo, using aripiprazole as a positive control. The Treatment of Acute Exacerbation of Schizophrenia. National Library of Medicine (US); 2007-2008. Available from: https://clinicaltrials.gov/ct2/show/NCT00580125
Favor DA, Powers JJ, White AD, Fitzgerald LW, Groppi V, Serpa KA. 6-alkoxyisoindolin-1-one based dopamine D2 partial agonists as potential antipsychotics. Bioorg Med Chem Lett. 2010;20(19):5666-5669.
Neves G, Menegatti R, Antonio CB, et al. Searching for multi-target antipsychotics: discovery of orally active heterocyclic n-phenylpiperazine ligands of D2-like and 5-HT1A receptors. Bioorg Med Chem. 2010;18(5):1925-1935.
Menegatti R, Cunha AC, Ferreira VF, et al. Design, synthesis and pharmacological profile of novel dopamine D2 receptor ligands. Bioorg Med Chem. 2003;11(22):4807-4813.
Neves G, Fenner R, Heckler AP, et al. Dopaminergic profile of new heterocyclic n-phenylpiperazine derivatives. Braz J Med Biol Res. 2003;36(5):625-629.
Männel B, Hübner H, Möller D, Gmeiner P. β-Arrestin biased dopamine D2 receptor partial agonists: synthesis and pharmacological evaluation. Bioorg Med Chem. 2017;25(20):5613-5628.
Shaik AB, Boateng CA, Battiti FO, et al. Structure activity relationships for a series of eticlopride-based dopamine D2/D3 receptor bitopic ligands. J Med Chem. 2021;64(20):15313-15333.
Bonifazi A, Yano H, Guerrero AM, et al. Novel and potent dopamine D2 receptor go-protein biased agonists. ACS Pharmacol Transl Sci. 2019;2(1):52-65.
Bonifazi A, Yano H, Ellenberger MP, et al. Novel bivalent ligands based on the sumanirole pharmacophore reveal dopamine D2 receptor (D2R) biased agonism. J Med Chem. 2017;60(7):2890-2907.
Ullah N. Synthesis and dual D2 and 5-HT1A receptor binding affinities of 7-piperazinyl and 7-piperidinyl-3,4-dihydroquinazolin-2(1H)-ones. Med Chem. 2014;10(5):484-496.
Ullah N. Synthesis and dual D2 and 5-HT1A receptor binding affinities of 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones. J Enzyme Inhib Med Chem. 2014;29(2):281-291.
Sams AG, Larsen K, Mikkelsen GK, et al. Hit-to-lead investigation of a series of novel combined dopamine D2 and muscarinic M1 receptor ligands with putative antipsychotic and pro-cognitive potential. Bioorg Med Chem Lett. 2012;22(15):5134-5140.
Li P, Zhang Q, Robichaud AJ, et al. Discovery of a tetracyclic quinoxaline derivative as a potent and orally active multifunctional drug candidate for the treatment of neuropsychiatric and neurological disorders. J Med Chem. 2014;57(6):2670-2682.
Cordone P, Namballa HK, Muniz B, Pal RK, Gallicchio E, Harding WW. New tetrahydroisoquinoline-based D3R ligands with an o-xylenyl linker motif. Bioorg Med Chem Lett. 2021;42:128047.
Shonberg J, Draper-Joyce C, Mistry SN, et al. Structure-activity study of N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652), a bitopic ligand that acts as a negative allosteric modulator of the dopamine D2 receptor. J Med Chem. 2015;58(13):5287-5307.
Lucena-Serrano C, Lucena-Serrano A, Rivera A, López-Romero JM, Valpuesta M, Díaz A. Synthesis and dopaminergic activity of a series of new 1-aryl tetrahydroisoquinolines and 2-substituted 1-aryl-3-tetrahydrobenzazepines. Bioorg Chem. 2018;80:480-491.
Gadhiya S, Cordone P, Pal RK, et al. New dopamine D3-selective receptor ligands containing a 6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol motif. ACS Med Chem Lett. 2018;9(10):990-995.
Kopinathan A, Draper-Joyce C, Szabo M, et al. Subtle modifications to the indole-2-carboxamide motif of the negative allosteric modulator N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652) yield dramatic changes in pharmacological activity at the dopamine D2 receptor. J Med Chem. 2019;62(1):371-377.
Draper-Joyce CJ, Michino M, Verma RK, et al. The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D2 receptor. Biochem Pharmacol. 2018;148:315-328.
Battiti FO, Cemaj SL, Guerrero AM, et al. The significance of chirality in drug design and synthesis of bitopic ligands as D3 receptor (D3R) selective agonists. J Med Chem. 2019;62(13):6287-6314.
Hogendorf A, Hogendorf AS, Kurczab R, et al. N-skatyltryptamines-dual 5-HT6R/D2R ligands with antipsychotic and procognitive potential. Molecules. 2021;26(15):4605.
Spetea M, Berzetei-Gurske IP, Guerrieri E, Schmidhammer H. Discovery and pharmacological evaluation of a diphenethylamine derivative (HS665), a highly potent and selective κ opioid receptor agonist. J Med Chem. 2012;55(22):10302-10306.
Weichert D, Stanek M, Hübner H, Gmeiner P. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists. Bioorg Med Chem. 2016;24(12):2641-2653.
Luo D, Sharma H, Yedlapudi D, Antonio T, Reith MEA, Dutta AK. Novel multifunctional dopamine D2/D3 receptors agonists with potential neuroprotection and anti-alpha synuclein protein aggregation properties. Bioorg Med Chem. 2016;24(21):5088-5102.
Del Bello F, Bonifazi A, Giannella M, et al. The replacement of the 2-methoxy substituent of N-((6,6-diphenyl-1,4-dioxan-2-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine improves the selectivity for 5-HT1A receptor over α1-adrenoceptor and D2-like receptor subtypes. Eur J Med Chem. 2017;125:233-244.
Micheli F, Arista L, Bertani B, et al. Exploration of the amine terminus in a novel series of 1,2,4-triazolo-3-yl-azabicyclo[3.1.0]hexanes as selective dopamine D3 receptor antagonists. J Med Chem. 2010;53(19):7129-7139.
Micheli F, Arista L, Bonanomi G, et al. 1,2,4-triazolyl azabicyclo[3.1.0]hexanes: a new series of potent and selective dopamine D3 receptor antagonists. J Med Chem. 2010;53(1):374-391.
Bonanomi G, Braggio S, Capelli AM, et al. Triazolyl azabicyclo[3.1.0]hexanes: a class of potent and selective dopamine D3 receptor antagonists. ChemMedChem. 2010;5(5):705-715.
Micheli F, Bernardelli A, Bianchi F, et al. 1,2,4-triazolyl octahydropyrrolo[2,3-b]pyrroles: a new series of potent and selective dopamine D3 receptor antagonists. Bioorg Med Chem. 2016;24(8):1619-1636.
Micheli F, Bacchi A, Braggio S, et al. 1,2,4-triazolyl 5-azaspiro[2.4]heptanes: lead identification and early lead optimization of a new series of potent and selective dopamine D3 receptor antagonists. J Med Chem. 2016;59(18):8549-8576.
Elek M, Djokovic N, Frank A, et al. Synthesis, in silico, and in vitro studies of novel dopamine D2 and D3 receptor ligands. Arch Pharm (Weinheim). 2021;354(6):e2000486.
da Silva AP, Chiari LPA, Guimarães AR, Honorio KM, da Silva ABF. New D2R partial agonist candidates: an in silico approach from statistical models, molecular docking, and ADME/Tox properties. Struct Chem. 2021;32(5):2019-2033.
Del Bello F, Ambrosini D, Bonifazi A, et al. Multitarget 1,4-dioxane compounds combining favorable D2-like and 5-HT1A receptor interactions with potential for the treatment of parkinson's disease or schizophrenia. ACS Chem Neurosci. 2019;10(5):2222-2228.
Żmudzki P, Satała G, Chłoń-Rzepa G, et al. Structure-5-HT/D2 receptor affinity relationship in a new group of 1-arylpiperazynylalkyl derivatives of 8-dialkylamino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione. Arch Pharm. 2016;349(10):774-784.
Allikalt A, Purkayastha N, Flad K, et al. Fluorescent ligands for dopamine D2/D3 receptors. Sci Rep. 2020;10(1):21842.
Yan Y, Zhou P, Rotella DP, et al. Potent dihydroquinolinone dopamine D2 partial agonist/serotonin reuptake inhibitors for the treatment of schizophrenia. Bioorg Med Chem Lett. 2010;20(9):2983-2986.
Zhang C, Li Q, Meng L, Ren Y. Design of novel dopamine D2 and serotonin 5-HT2A receptors dual antagonists toward schizophrenia: an integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations. J Biomol Struct Dyn. 2020;38(3):860-885.
Jaśkowska J, Zaręba P, Śliwa P, Pindelska E, Satała G, Majka Z. Microwave-assisted synthesis of trazodone and its derivatives as new 5-HT1A ligands: binding and docking studies. Molecules. 2019;24(8):1609.
Holmes IP, Blunt RJ, Lorthioir OE, et al. The identification of a selective dopamine D2 partial agonist, D3 antagonist displaying high levels of brain exposure. Bioorg Med Chem Lett. 2010;20(6):2013-2016.
Stank L, Frank A, Hagenow S, Stark H. Talipexole variations as novel bitopic dopamine D2 and D3 receptor ligands. Med Chem Commun. 2019;10(11):1926-1929.
vanWieringen J-P, Shalgunov V, Janssen HM, et al. Synthesis and characterization of a novel series of agonist compounds as potential radiopharmaceuticals for imaging dopamine D2/3 receptors in their high-affinity state. J Med Chem. 2014;57(2):391-410.
Gogoi S, Biswas S, Modi G, Antonio T, Reith MEA, Dutta AK. Novel bivalent ligands for D2/D3 dopamine receptors: significant cooperative gain in D2 affinity and potency. ACS Med Chem Lett. 2012;3(12):991-996.
Qian M, Wouters E, Dalton JAR, et al. Synthesis toward bivalent ligands for the dopamine D2 and metabotropic glutamate 5 receptors. J Med Chem. 2018;61(18):8212-8225.
Qian M, Vasudevan L, Huysentruyt J, et al. Design, synthesis, and biological evaluation of bivalent ligands targeting dopamine D2-like receptors and the μ-opioid receptor. ChemMedChem. 2018;13(9):944-956.
Pulido D, Casadó-Anguera V, Pérez-Benito L, et al. Design of a true bivalent ligand with picomolar binding affinity for a G protein-coupled receptor homodimer. J Med Chem. 2018;61(20):9335-9346.
Shonberg J, Lane JR, Scammells PJ, Capuano B. Synthesis, functional and binding profile of (r)-apomorphine based homobivalent ligands targeting the dopamine D2 receptor. Med Chem Commun. 2013;4(9):1290-1296.
Jörg M, Kaczor AA, Mak FS, et al. Investigation of novel ropinirole analogues: synthesis, pharmacological evaluation and computational analysis of dopamine D2 receptor functionalized congeners and homobivalent ligands. Med Chem Commun. 2014;5(7):891-898.
Jörg M, May LT, Mak FS, et al. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of parkinson's disease. J Med Chem. 2015;58(2):718-738.
Qian M, Ricarte A, Wouters E, et al. Discovery of a true bivalent dopamine D2 receptor agonist. Eur J Med Chem. 2021;212:113151.
Remes O, Brayne C, van derLinde R, Lafortune L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 2016;6(7):e00497.
Sokoloff P, Foll BL. The dopamine D3 receptor, a quarter century later. Eur J Neurosci. 2017;45(1):2-19.
Ohno Y, Shimizu S, Tokudome K, Kunisawa N, Sasa M. New insight into the therapeutic role of the serotonergic system in parkinson's disease. Prog Neurobiol. 2015;134:104-121.
West PJ, Marcy VR, Marino MJ, Schaffhauser H. Activation of the 5-HT6 receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus. Neuroscience. 2009;164(2):692-701.
Meffre J, Chaumont-Dubel S, Mannoury la Cour C, et al. 5-HT6 receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol Med. 2012;4(10):1043-1056.
Yun H-M, Kim S, Kim H-J, et al. The novel cellular mechanism of human 5-HT6 receptor through an interaction with fyn. J Biol Chem. 2007;282(8):5496-5505.
Meyer-Lindenberg A, Straub RE, Lipska BK, et al. Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Invest. 2007;117(3):672-682.
Foley AG, Hirst WD, Gallagher HC, et al. The selective 5-HT6 receptor antagonists SB-271046 and SB-399885 potentiate NCAM PSA immunolabeling of dentate granule cells, but not neurogenesis, in the hippocampal formation of mature wistar rats. Neuropharmacology. 2008;54(8):1166-1174.
Wesołowska A. Potential role of the 5-HT6 receptor in depression and anxiety: an overview of preclinical data. Pharmacol Rep. 2010;62(4):564-577.
Wesołowska A, Kowalska M. Influence of serotonin 5-HT(7) receptor blockade on the behavioral and neurochemical effects of imipramine in rats. Pharmacol Rep. 2008;60:464-474.
Blattner KM, Canney DJ, Pippin DA, Blass BE. Pharmacology and therapeutic potential of the 5-HT7 receptor. ACS Chem Neurosci. 2019;10(1):89-119.
Leggio GM, Salomone S, Bucolo C, et al. Dopamine D3 receptor as a new pharmacological target for the treatment of depression. Eur J Pharmacol. 2013;719(1):25-33.
Ohno Y. Therapeutic role of 5-HT1A receptors in the treatment of schizophrenia and parkinson's disease. CNS Neurosci Ther. 2011;17(1):58-65.
Shimizu S, Ohno Y. Improving the treatment of parkinson's disease: a novel approach by modulating 5-HT1A receptors. Aging Dis. 2012;4(1):1-13.
Aznar S, Hervig ME-S. The 5-HT2A serotonin receptor in executive function: implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev. 2016;64:63-82.
Karila D, Freret T, Bouet V, Boulouard M, Dallemagne P, Rochais C. Therapeutic potential of 5-HT6 receptor agonists. J Med Chem. 2015;58(20):7901-7912.