Organic nanotubes created from mesogenic derivatives

. 2019 Aug 06 ; 1 (8) : 2835-2839. [epub] 20190618

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36133609

A facile route to prepare nanotubes from rod-like mesogens dissolved in typical organic solvents is reported. For selected types of chiral rod-like molecules, nanotubes were formed from both enantiomers and racemic mixtures by slow evaporation from solution, regardless of the solvent, concentration or deposition type. The obtained supramolecular assemblies were studied using AFM, TEM and SEM techniques, and other experimental techniques (IR, UV-Vis spectroscopy and X-ray diffraction) were also applied. The difference in the surface tension at opposite crystallite surfaces is suggested as a possible mechanism for nanotube nucleation. We propose a quite new rolling-up mechanism related to the surface tension difference at opposite crystallite surfaces.

Zobrazit více v PubMed

Amelinckx S. Bernaerts D. Zhang X. B. Van Tendeloo G. Van Landuyt J. Science. 1995;267:1334–1338. doi: 10.1126/science.267.5202.1334. PubMed DOI

Iijima S. Nature. 1991:35456–35458.

Seifert G. Kohler T. Tenne R. J. Phys. Chem. B. 2002;106:2497–2501. doi: 10.1021/jp0131323. DOI

Helfrich W. J. Chem. Phys. 1986;85:1085–1087. doi: 10.1063/1.451303. DOI

Yao B. D. Chan Y. F. Zhang X. Y. Zhang W. F. Yang Z. Y. Wang N. Appl. Phys. Lett. 2003;82:281–283. doi: 10.1063/1.1537518. DOI

Kameta N. Minamikawa H. Masuda M. Soft Matter. 2011;7:4539–4561. doi: 10.1039/C0SM01559H. PubMed DOI

Bong D. D Clark T. Granja J. R. Gradiri M. R. Angew. Chem., Int. Ed. 2001;40:988–1011. doi: 10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N. PubMed DOI

Kameta N. Minamikawa H. Masuda M. Mizunoc G. Shimizu T. Soft Matter. 2008;4:1681–1687. doi: 10.1039/B803742F. PubMed DOI

Shimizu T. Kameta N. Ding W. Masuda M. Langmuir. 2016;32(47):12242–12264. doi: 10.1021/acs.langmuir.6b01632. PubMed DOI

Arias S. Freire F. Quinoa E. Riguera R. Angew. Chem., Int. Ed. 2014;53:13720–13724. doi: 10.1002/anie.201406884. PubMed DOI

Liu H. Xu J. Li Y. Li Y. Acc. Chem. Res. 2010;43:1496–1508. doi: 10.1021/ar100084y. PubMed DOI

Kameta N. Masuda M. Minamikawa H. Mishima Y. Yamashita I. Shimizu T. Chem. Mater. 2007;19:3553–3560. doi: 10.1021/cm070626p. DOI

Boles M. A. Engel M. Talapin D. V. Chem. Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196. PubMed DOI

John G. Mason M. Ajayan P. M. Dordick J. S. J. Am. Chem. Soc. 2004;126:15012–15013. doi: 10.1021/ja0446449. PubMed DOI

Cui S. Liu H. Gan L. Li Y. Zhu D. Adv. Mater. 2008;20:2918–2925. doi: 10.1002/adma.200800619. DOI

Shimizu T. Masuda M. Minamikawa H. Chem. Rev. 2005;105:1401–1443. doi: 10.1021/cr030072j. PubMed DOI

Lee C. C. Grenier C. G. Meijer E. W. Schenning A. P. H. J. Chem. Soc. Rev. 2009;38:671–683. doi: 10.1039/B800407M. PubMed DOI

Barclay T. G. Constantopoulos K. Matisons J. Chem. Rev. 2014;114:10217–10291. doi: 10.1021/cr400085m. PubMed DOI

Zhang L. Li H. Sik Ha C. Suh H. Kim I. Langmuir. 2010;26:17890–17895. doi: 10.1021/la103480p. PubMed DOI

Komura S. Zhong-can O.-Y. Phys. Rev. Lett. 1998;81:473–476. doi: 10.1103/PhysRevLett.81.473. DOI

Zhou Y. Shimizu T. Chem. Mater. 2008;20:625–633. doi: 10.1021/cm701999m. DOI

Huang Y. Quan B. Wei Z. Liu G. Sun L. J. Phys. Chem. C. 2009;113:3929–3933. doi: 10.1021/jp8078452. DOI

Chen Y. Zhu B. Zhang F. Han Y. Bo Z. Angew. Chem., Int. Ed. 2008;47:6015–6018. doi: 10.1002/anie.200801404. PubMed DOI

Chen Y. Zhang F. Zhu B. Han Y. Bo Z. Chem.–Asian J. 2011;6:226–233. doi: 10.1002/asia.201000567. PubMed DOI

Lee C. C. Grenier C. G. Meijer E. W. Schenning A. P. H. J. Chem. Soc. Rev. 2009;38:671–683. doi: 10.1039/B800407M. PubMed DOI

Ghadiri M. R. Granja J. R. Milligan R. A. McRee D. E. Hazanovich N. Nature. 1993;366(6453):324–327. doi: 10.1038/366324a0. PubMed DOI

Schnur J. M. Nature. 1993;262:1669–1675. PubMed

Gorecka E. Vaupotič N. Zep A. Pociecha D. Angew. Chem., Int. Ed. 2016;55:12238–12242. doi: 10.1002/anie.201604915. PubMed DOI

Le V. K. Takezoe H. Araoka F. Adv. Mater. 2017;29:1602737. doi: 10.1002/adma.201602737. PubMed DOI

Novotná V. Hamplová V. Podoliak N. Kašpar M. Glogarová M. Pociecha D. Gorecka E. J. Mater. Chem. 2011;21:14807–14811. doi: 10.1039/C1JM12131F. PubMed DOI

Novotná V. Glogarová M. Kašpar M. Hamplová V. Gorecka E. Pociecha D. Cepic M. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2011;83:020701. doi: 10.1103/PhysRevE.83.020701. PubMed DOI

Patterson A. L. Phys. Rev. 1939;56:978–982. doi: 10.1103/PhysRev.56.978. DOI

Mendelsohn R. Moore D. J. Chem. Phys. Lipids. 1998;96:141–157. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI

Wolfangel P. Muller K. J. Phys. Chem. B. 2003;107:9918–9928. doi: 10.1021/jp0346920. DOI

Colthup N., Daly L. and Wiberley S., in Introduction to infrared and Raman spectroscopy, Elsevier, Academic Press, Boston, 3th edn, 1990, ch. 9, pp. 287–327

Oswald P. and Pieranski P., Smectic and columnar liquid crystals, Taylor and Francis, Boca Raton, 2006

deGennes P.-G., Brochard-Wyart F. and Quéré D., Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer Science + Business Media, New York, 2004

Doll K. M. Moser B. R. Erhan S. Z. Energy Fuels. 2007;21:3044–3048. doi: 10.1021/ef700213z. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...