Organic nanotubes created from mesogenic derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36133609
PubMed Central
PMC9418705
DOI
10.1039/c9na00175a
PII: c9na00175a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A facile route to prepare nanotubes from rod-like mesogens dissolved in typical organic solvents is reported. For selected types of chiral rod-like molecules, nanotubes were formed from both enantiomers and racemic mixtures by slow evaporation from solution, regardless of the solvent, concentration or deposition type. The obtained supramolecular assemblies were studied using AFM, TEM and SEM techniques, and other experimental techniques (IR, UV-Vis spectroscopy and X-ray diffraction) were also applied. The difference in the surface tension at opposite crystallite surfaces is suggested as a possible mechanism for nanotube nucleation. We propose a quite new rolling-up mechanism related to the surface tension difference at opposite crystallite surfaces.
Zobrazit více v PubMed
Amelinckx S. Bernaerts D. Zhang X. B. Van Tendeloo G. Van Landuyt J. Science. 1995;267:1334–1338. doi: 10.1126/science.267.5202.1334. PubMed DOI
Iijima S. Nature. 1991:35456–35458.
Seifert G. Kohler T. Tenne R. J. Phys. Chem. B. 2002;106:2497–2501. doi: 10.1021/jp0131323. DOI
Helfrich W. J. Chem. Phys. 1986;85:1085–1087. doi: 10.1063/1.451303. DOI
Yao B. D. Chan Y. F. Zhang X. Y. Zhang W. F. Yang Z. Y. Wang N. Appl. Phys. Lett. 2003;82:281–283. doi: 10.1063/1.1537518. DOI
Kameta N. Minamikawa H. Masuda M. Soft Matter. 2011;7:4539–4561. doi: 10.1039/C0SM01559H. PubMed DOI
Bong D. D Clark T. Granja J. R. Gradiri M. R. Angew. Chem., Int. Ed. 2001;40:988–1011. doi: 10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N. PubMed DOI
Kameta N. Minamikawa H. Masuda M. Mizunoc G. Shimizu T. Soft Matter. 2008;4:1681–1687. doi: 10.1039/B803742F. PubMed DOI
Shimizu T. Kameta N. Ding W. Masuda M. Langmuir. 2016;32(47):12242–12264. doi: 10.1021/acs.langmuir.6b01632. PubMed DOI
Arias S. Freire F. Quinoa E. Riguera R. Angew. Chem., Int. Ed. 2014;53:13720–13724. doi: 10.1002/anie.201406884. PubMed DOI
Liu H. Xu J. Li Y. Li Y. Acc. Chem. Res. 2010;43:1496–1508. doi: 10.1021/ar100084y. PubMed DOI
Kameta N. Masuda M. Minamikawa H. Mishima Y. Yamashita I. Shimizu T. Chem. Mater. 2007;19:3553–3560. doi: 10.1021/cm070626p. DOI
Boles M. A. Engel M. Talapin D. V. Chem. Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196. PubMed DOI
John G. Mason M. Ajayan P. M. Dordick J. S. J. Am. Chem. Soc. 2004;126:15012–15013. doi: 10.1021/ja0446449. PubMed DOI
Cui S. Liu H. Gan L. Li Y. Zhu D. Adv. Mater. 2008;20:2918–2925. doi: 10.1002/adma.200800619. DOI
Shimizu T. Masuda M. Minamikawa H. Chem. Rev. 2005;105:1401–1443. doi: 10.1021/cr030072j. PubMed DOI
Lee C. C. Grenier C. G. Meijer E. W. Schenning A. P. H. J. Chem. Soc. Rev. 2009;38:671–683. doi: 10.1039/B800407M. PubMed DOI
Barclay T. G. Constantopoulos K. Matisons J. Chem. Rev. 2014;114:10217–10291. doi: 10.1021/cr400085m. PubMed DOI
Zhang L. Li H. Sik Ha C. Suh H. Kim I. Langmuir. 2010;26:17890–17895. doi: 10.1021/la103480p. PubMed DOI
Komura S. Zhong-can O.-Y. Phys. Rev. Lett. 1998;81:473–476. doi: 10.1103/PhysRevLett.81.473. DOI
Zhou Y. Shimizu T. Chem. Mater. 2008;20:625–633. doi: 10.1021/cm701999m. DOI
Huang Y. Quan B. Wei Z. Liu G. Sun L. J. Phys. Chem. C. 2009;113:3929–3933. doi: 10.1021/jp8078452. DOI
Chen Y. Zhu B. Zhang F. Han Y. Bo Z. Angew. Chem., Int. Ed. 2008;47:6015–6018. doi: 10.1002/anie.200801404. PubMed DOI
Chen Y. Zhang F. Zhu B. Han Y. Bo Z. Chem.–Asian J. 2011;6:226–233. doi: 10.1002/asia.201000567. PubMed DOI
Lee C. C. Grenier C. G. Meijer E. W. Schenning A. P. H. J. Chem. Soc. Rev. 2009;38:671–683. doi: 10.1039/B800407M. PubMed DOI
Ghadiri M. R. Granja J. R. Milligan R. A. McRee D. E. Hazanovich N. Nature. 1993;366(6453):324–327. doi: 10.1038/366324a0. PubMed DOI
Schnur J. M. Nature. 1993;262:1669–1675. PubMed
Gorecka E. Vaupotič N. Zep A. Pociecha D. Angew. Chem., Int. Ed. 2016;55:12238–12242. doi: 10.1002/anie.201604915. PubMed DOI
Le V. K. Takezoe H. Araoka F. Adv. Mater. 2017;29:1602737. doi: 10.1002/adma.201602737. PubMed DOI
Novotná V. Hamplová V. Podoliak N. Kašpar M. Glogarová M. Pociecha D. Gorecka E. J. Mater. Chem. 2011;21:14807–14811. doi: 10.1039/C1JM12131F. PubMed DOI
Novotná V. Glogarová M. Kašpar M. Hamplová V. Gorecka E. Pociecha D. Cepic M. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2011;83:020701. doi: 10.1103/PhysRevE.83.020701. PubMed DOI
Patterson A. L. Phys. Rev. 1939;56:978–982. doi: 10.1103/PhysRev.56.978. DOI
Mendelsohn R. Moore D. J. Chem. Phys. Lipids. 1998;96:141–157. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI
Wolfangel P. Muller K. J. Phys. Chem. B. 2003;107:9918–9928. doi: 10.1021/jp0346920. DOI
Colthup N., Daly L. and Wiberley S., in Introduction to infrared and Raman spectroscopy, Elsevier, Academic Press, Boston, 3th edn, 1990, ch. 9, pp. 287–327
Oswald P. and Pieranski P., Smectic and columnar liquid crystals, Taylor and Francis, Boca Raton, 2006
deGennes P.-G., Brochard-Wyart F. and Quéré D., Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer Science + Business Media, New York, 2004
Doll K. M. Moser B. R. Erhan S. Z. Energy Fuels. 2007;21:3044–3048. doi: 10.1021/ef700213z. DOI