Self-Assembling Behavior of Smart Nanocomposite System: Ferroelectric Liquid Crystal Confined by Stretched Porous Polyethylene Film

. 2020 Jul 30 ; 10 (8) : . [epub] 20200730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32751727

Grantová podpora
19-03564S Czech Science Foundation
LTC19051 Ministry of Education, Youth and Sports of the Czech Republic
LO1409 Ministry of Education, Youth and Sports of the Czech Republic
LM2015088 Infrastructure SAFMAT
CZ.02.1.01/0.0/0.0/16_019/0000760 Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports, SOLID21
19-13-00029 Russian Science Foundation
19-03-00337 Russian Foundation for Basic Research
19-53-26007 Russian Foundation for Basic Research

The control and prediction of soft systems exhibiting self-organization behavior can be realized by different means but still remains a highlighted task. Novel advanced nanocomposite system has been designed by filling of a stretched porous polyethylene (PE) film with pore dimensions of hundreds of nanometers by chiral ferroelectric liquid crystalline (LC) compound possessing polar self-assembling behavior. Lactic acid derivative exhibiting the paraelectric orthogonal smectic A* and the ferroelectric tilted smectic C* phases over a broad temperature range is used as a self-assembling compound. The morphology of nanocomposite film has been checked by Atomic Force Microscopy (AFM). The designed nanocomposite has been studied by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), small and wide-angle X-ray scattering and broadband dielectric spectroscopy. The effect of a porous PE confinement on self-assembling, structural, and dielectric behavior of the chiral LC compound has been established and discussed. While the mesomorphic and structural properties of the nanocomposite are found not to be much influenced in comparison to that of a pure LC compound, the polar properties have been toughly suppressed by the specific confinement. Nevertheless, the electro-optic switching was clearly observed under applied electric field of low frequency (210 V, 19 Hz). The dielectric spectroscopy and X-ray results reveal that the helical structure of the ferroelectric liquid crystal inside the PE matrix is completely unwound, and the molecules are aligned along stretching direction. Obtained results demonstrate possibilities of using stretched porous polyolefins as promising matrices for the design of new nanocomposites.

Zobrazit více v PubMed

Mertelj A., Lisjak D., Drofenik M., Čopič M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 2013;504:237–241. doi: 10.1038/nature12863. PubMed DOI

Mertelj A., Osterman N., Lisjak D., Čopič M. Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal. Soft Matter. 2014;10:9065–9072. doi: 10.1039/C4SM01625D. PubMed DOI

Rožič B., Fresnais J., Molinaro C., Calixte J., Umadevi S., Lau-Truong S., Felidj N., Kraus T., Charra F., Dupuis V., et al. Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects. ACS Nano. 2017;11:6728–6738. doi: 10.1021/acsnano.7b01132. PubMed DOI

Scalia G. Liquid Crystals Beyond Displays. John Wiley and Sons Inc.; Hoboken, NJ, USA: 2012. Liquid crystals of carbon nanotubes and carbon nanotubes in liquid crystals; pp. 341–378. DOI

Lagerwall J.P.F., Scalia G. Liquid Crystals with Nano and Microparticles. Vol. 2. World Scientific; Singapore: 2017. 920p.

Nataf G.F., Guennou M., Scalia G., Moya X., Wilkinson T.D., Lagerwall J.P.F. High-contrast imaging of 180° ferroelectric domains by optical microscopy using ferroelectric liquid crystals. Appl. Phys. Lett. 2020;116:212901. doi: 10.1063/5.0008845. DOI

Khokhlov A.R., Emelyanenko A.V. Nanostructured liquid crystal systems and applications. Beilstein J. Nanotechnol. 2018;9:2644–2645. doi: 10.3762/bjnano.9.245. PubMed DOI PMC

Troha T., Kašpar M., Hamplová V., Cigl M., Havlicek J., Pociecha D., Novotná V. Silver nanoparticles with liquid crystalline ligands based on lactic acid derivatives. Nanomaterials. 2019;9:1066. doi: 10.3390/nano9081066. PubMed DOI PMC

Garbovskiy Y. On the analogy between electrolytes and ion-generating nanomaterials in liquid crystals. Nanomaterials. 2020;10:403. doi: 10.3390/nano10030403. PubMed DOI PMC

Castillo-Valles M., Martinez-Bueno A., Gimenez R., Sierra T., Ros M.B. Beyond liquid crystals: New research trends for mesogenic molecules in liquids. J. Mater. Chem. C. 2019;7:14454–14470. doi: 10.1039/C9TC04179F. DOI

Lagerwall J.P.F., Scalia G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012;12:1387–1412. doi: 10.1016/j.cap.2012.03.019. DOI

Tayi A.S., Kaeser A., Matsumoto M., Aida T., Stupp S.I. Supramolecular ferroelectrics. Nat. Chem. 2015;4:281–294. doi: 10.1038/nchem.2206. PubMed DOI

Miyajima D., Araoka F., Takezoe H., Kim J., Kato K., Takata M., Aida T. Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture. Science. 2012;336:209–213. doi: 10.1126/science.1217954. PubMed DOI

Novotná V., Hamplová V., Lejček L., Pociecha D., Cigl M., Fekete L., Glogarová M., Bednárová L., Majewski P., Gorecka E. Organic nanotubes created from mesogenic derivatives. Nanoscale Adv. 2019;1:2835–2839. doi: 10.1039/C9NA00175A. PubMed DOI PMC

Lagerwall J.P.F., Giesselmann F. Current topics in smectic liquid crystal research. ChemPhysChem. 2006;7:20–45. doi: 10.1002/cphc.200500472. PubMed DOI

Guo Q., Yan K., Chigrinov V., Zhao H., Tribelsky M. Ferroelectric liquid crystals: Physics and applications. Crystals. 2019;9:470. doi: 10.3390/cryst9090470. DOI

Kurp K., Czerwiński M., Tykarska M. Ferroelectric compounds with chiral (S)-1-methylheptyloxycarbonyl terminal chain—Their miscibility and a helical pitch. Liq. Cryst. 2015;42:248–254. doi: 10.1080/02678292.2014.982222. DOI

Czerwiński M., Tykarska M., Dąbrowski R., Żurowska M., Kowerdziej R., Jaroszewicz L.R. The influence of structure and concentration of cyanoterminated and terphenyl dopants on helical pitch and helical twist sense in orthoconic antiferroelectric mixtures. Liq. Cryst. 2012;39:1498–1502. doi: 10.1080/02678292.2012.723047. DOI

Bubnov A., Novotná V., Hamplová V., Kašpar M., Glogarová M. Effect of multilactate chiral part of liquid crystalline molecule on mesomorphic behaviour. J. Mol. Struct. 2008;892:151–157. doi: 10.1016/j.molstruc.2008.05.016. DOI

Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Dorovatovskii P., Ostrovskii B., Bubnov A. The effect of spacer and alkyl tail lengths on the photoorientation processes in amorphousized films of azobenzene-containing liquid crystalline polymethacrylates. Liq. Cryst. 2020;47:377–383. doi: 10.1080/02678292.2019.1655171. DOI

Cigl M., Bubnov A., Kašpar M., Hampl F., Hamplová V., Pacherová O., Svoboda J. Photosensitive chiral self-assembling materials: Significant effects of small lateral substituents. J. Mater. Chem. C. 2016;4:5326–5333. doi: 10.1039/C6TC01103A. DOI

Żurowska M., Czerwiński M. The new high tilt mixtures with antiferroelectric phase at a broad temperature range and a long helical pitch. Liq. Cryst. 2017;44:1044–1049. doi: 10.1080/02678292.2016.1256443. DOI

Milewska K., Drzewiński W., Czerwiński M., Dąbrowski R. Design, synthesis and mesomorphic properties of chiral benzoates and fluorobenzoates with direct SmCA*-Iso phase transition. Liq. Cryst. 2015;42:1601–1611. doi: 10.1080/02678292.2015.1078916. DOI

Milewska K., Drzewiński W., Czerwiński M., Dąbrowski R., Piecek W. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase. Mater. Chem. Phys. 2016;171:33–38. doi: 10.1016/j.matchemphys.2016.01.011. DOI

Barman B., Das B., Das M.K., Hamplová V., Bubnov A. Effect of molecular structure on dielectric and electro-optic of chiral liquid crystals based on lactic acid derivatives. J. Mol. Liq. 2019;283:472–781. doi: 10.1016/j.molliq.2019.03.071. DOI

Pramanik A., Das B., Das M.K., Hamplová V., Kašpar M., Bubnov A. Self-assembling properties of a lactic acid derivative with several ester linkages in the molecular core. Phase Transit. 2015;88:745–757. doi: 10.1080/01411594.2015.1025782. DOI

Bubnov A., Podoliak N., Hamplová V., Tomašková P., Havlíček J., Kašpar M. Eutectic behaviour of binary mixtures composed by two isomeric lactic acid derivatives. Ferroelectrics. 2016;495:105–115. doi: 10.1080/00150193.2016.1136776. DOI

Obadović D.Ž., Vajda A., Garić M., Bubnov A., Hamplová V., Kašpar M., Fodor-Csorba K. Thermal analysis and X-ray study of the chiral ferroelectric liquid crystalline materials and their binary mixtures. J. Therm. Anal. Calorim. 2005;82:519–523. doi: 10.1007/s10973-005-0926-9. DOI

Bubnov A., Hamplová V., Kašpar M., Vajda A., Stojanović M., Obadović D.Ž., Éber N., Fodor-Csorba K. Thermal analysis of binary liquid crystalline mixtures: System of bent core and calamitic molecules. J. Therm. Anal. Calorim. 2007;90:431–441. doi: 10.1007/s10973-006-7913-7. DOI

Piecek W., Bubnov A., Perkowski P., Morawiak P., Ogrodnik K., Rejmer W., Zurowska M., Hamplová V., Kašpar M. An effect of structurally non compatible additive on the properties of a long pitch antiferroelectric orthoconic mixture. Phase Transit. 2010;83:551–563. doi: 10.1080/01411594.2010.499496. DOI

Kurp K., Tykarska M., Salamon P., Czerwinski M., Bubnov A. Design of functional multicomponent liquid crystalline mixtures with nano-scale pitch fulfilling deformed helix ferroelectric mode demands. J. Mol. Liq. 2019;290:111329. doi: 10.1016/j.molliq.2019.111329. DOI

Bubnov A., Kašpar M., Hamplová V., Glogarová M., Samaritani S., Galli G., Andersson G., Komitov L. Polar liquid crystalline monomers with two or three lactate groups for the preparation of side chain polysiloxanes. Liq. Cryst. 2006;33:559–566. doi: 10.1080/02678290600604809. DOI

Petrova I., Gaj A., Pochiecha D., Shcherbina M., Makarova N.N., Bubnov A. Design and self-assembling behaviour of comb-like stereoregular cyclolinear methylsiloxane copolymers with chiral lactate groups. Liq. Cryst. 2019;46:25–36. doi: 10.1080/02678292.2018.1461265. DOI

Tõth-Katona T., Cigl M., Fodor-Csorba K., Hamplová V., Jánossy I., Kašpar M., Vojtylová T., Hampl F., Bubnov A. Functional photochromic methylhydrosiloxane-based side-chain liquid-crystalline polymers. Macromol. Chem. Phys. 2014;215:742–752. doi: 10.1002/macp.201300729. DOI

Bubnov A., Domenici V., Hamplová V., Kašpar M., Zalar B. First liquid single crystal elastomer containing lactic acid derivative as chiral co-monomer: Synthesis and properties. Polymer. 2011;52:4490–4497. doi: 10.1016/j.polymer.2011.07.046. DOI

Domenici V., Milavec J., Bubnov A., Pociecha D., Zupančič B., Rešetič A., Hamplová V., Gorecka E., Zalar B. Effect of co-monomers’ relative concentration on self-assembling behaviour of side-chain liquid crystalline elastomers. RSC Adv. 2014;4:44056–44064. doi: 10.1039/C4RA07454H. DOI

Bubnov A., Iwan A., Cigl M., Boharewicz B., Tazbir I., Wójcik K., Sikora A., Hamplová V. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells. RSC Adv. 2016;6:11577–11590. doi: 10.1039/C5RA23137J. DOI

Iwan A., Boharewicz B., Tazbir I., Hamplová V., Bubnov A. Effect of chiral photosensitive liquid crystalline dopants on the performance of organic solar cells. Solid State Electron. 2015;104:53–60. doi: 10.1016/j.sse.2014.11.010. DOI

Iwan A., Sikora A., Hamplová V., Bubnov A. AFM study of advanced composite materials for organic solar cells with active layer based on P3HT: PCBM and chiral photosensitive liquid crystalline dopants. Liq. Cryst. 2015;42:964–972. doi: 10.1080/02678292.2015.1011243. DOI

Draude A.P., Kalavalapalli T.Y., Iliut M., McConnella B., Dierking I. Stabilization of liquid crystal blue phases by carbon nanoparticles of varying dimensionality. Nanoscale Adv. 2020;2:2404–2409. doi: 10.1039/D0NA00276C. PubMed DOI PMC

Nourry J., Sixou P., Mitov M., Glogarová M., Bubnov A.M. Evolution of the switching current during the preparation of polymer network-ferroelectric liquid crystal microcomposites. Liq. Cryst. 2000;27:35–42. doi: 10.1080/026782900203182. DOI

Shukla R.K., Chaudhary A., Bubnov A., Hamplova V., Raina K.K. Electrically switchable birefringent self-assembled nanocomposites: Ferroelectric liquid crystal doped with the multiwall carbon nanotubes. Liq. Cryst. 2020 doi: 10.1080/02678292.2020.1720328. DOI

Kašpar M., Bubnov A., Hamplová V., Pirkl S., Glogarová M. New ferroelectric liquid crystalline materials with an azo group in the molecular core. Liq. Cryst. 2004;31:821–830. doi: 10.1080/02678290410001697567. DOI

Novotná V., Hamplová V., Kašpar M., Podoliak N., Bubnov A., Glogarová M., Nonnenmacher D., Giesselmann F. The effect of lactate units number in compounds with azo group in the molecular core. Liq. Cryst. 2011;38:649–655. doi: 10.1080/02678292.2011.565426. DOI

Novotná V., Hamplová V., Bubnov A., Kašpar M., Glogarová M., Kapernaum N., Bezner S., Giesselmann F. First photoresponsive liquid crystalline materials with small layer shrinkage at the transition to the ferroelectric phase. J. Mater. Chem. 2009;19:3992–3997. doi: 10.1039/b821738f. DOI

Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Pociecha D., Bubnov A. Azobenzene-containing LC polymethacrylates highly photosensitive in broad spectral range. J. Polym. Sci. A. 2016;54:2962–2970. doi: 10.1002/pola.28181. DOI

Sulyanov S.N., Dorovatovskii P.V., Bobrovsky A.Y., Shibaev V.P., Cigl M., Hamplová V., Bubnov A., Ostrovskii B.I. Mesomorphic and structural properties of liquid crystalline sidechain polymethacrylates: From smectic C* to columnar phases. Liq. Cryst. 2019;46:825–834. doi: 10.1080/02678292.2018.1530386. DOI

Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Hampl F., Elyashevitch G. Photochromic LC-polymer composites containing azobenzene chromophores with thermally stable Z-isomers. J. Mater. Chem. C. 2014;2:4482–4489. doi: 10.1039/C4TC00015C. DOI

Dierking I. Polymer network-stabilized liquid crystals. Adv. Mater. 2000;12:167–181. doi: 10.1002/(SICI)1521-4095(200002)12:3<167::AID-ADMA167>3.0.CO;2-I. DOI

Dierking I. Recent developments in polymer stabilised liquid crystals. Polym. Chem. 2010;1:1153–1159. doi: 10.1039/c0py00087f. DOI

Czerwiński M., Urbańska M., Bennis N., Rudquist P. Influence of the type of phase sequence and polymer-stabilization on the physicochemical and electro-optical properties of novel high-tilt antiferroelectric liquid crystalline materials. J. Mol. Liq. 2019;288:111057. doi: 10.1016/j.molliq.2019.111057. DOI

Paelke L., Kitzerow H.-S., Strohriegl P. Photorefractive polymer-dispersed liquid crystal based on a photoconducting polysiloxanes. Appl. Phys. Lett. 2005;86:031104. doi: 10.1063/1.1852082. DOI

Amimori I., Priezjev N.V., Pelcovits R.A., Crawford G.P. Optomechanical properties of stretched polymer dispersed liquid crystal films for scattering polarizer applications. J. Appl. Phys. 2003;93:3248–3252. doi: 10.1063/1.1554757. DOI

Bobrovsky A., Shibaev V., Elyashevich G. Photopatternable fluorescent polymer composites based on stretched porous polyethylene and photopolymerizable liquid crystal mixture. J. Mater. Chem. 2008;18:691–695. doi: 10.1039/b711929a. DOI

Bobrovsky A., Shibaev V., Elyashevich G., Rosova E., Shimkin A., Shirinyan V., Bubnov A., Kašpar M., Hamplová V., Glogarová M. New photosensitive polymer composites based on oriented porous polyethylene filled with azobenzene-containing LC mixture: Reversible photomodulation of dichroism and birefringence. Liq. Cryst. 2008;35:533–539. doi: 10.1080/02678290802015697. DOI

Bobrovsky A., Shibaev V., Elyashevitch G., Shimkin A., Shirinyan V. Photo-optical properties of polymer composites based on stretched porous polyethylene filled with photoactive cholesteric liquid crystal. Liq. Cryst. 2007;34:791–797. doi: 10.1080/02678290701417101. DOI

El’yashevich G.K., Kozlov A.G., Rozova E.Y. Sizes of through-channels in microporous polyethylene films. Polym. Sci. Ser. A. 1998;40:567–573.

Wu D., Xu F., Sun B., Fu R., He H., Matyjaszewski K. Design and preparation of porous polymers. Chem. Rev. 2012;112:3959–4015. doi: 10.1021/cr200440z. PubMed DOI

Hao P., Peng B., Shan B.-Q., Yang T.-Q., Zhang K. Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. Nanoscale Adv. 2020;2:1792–1810. doi: 10.1039/D0NA00219D. PubMed DOI PMC

Mireles M., Soule C.W., Dehghania M., Gaborski T.R. Use of nanosphere self-assembly to pattern nanoporous membranes for the study of extracellular vesicles. Nanoscale Adv. 2020 doi: 10.1039/D0NA00142B. PubMed DOI PMC

Elyashevich G.K., Rosova E.Y., Sidorovich I.S., Kuryndin I.S., Trchová M., Stejskal J. The effect of a polypyrrole coating on the thermal stability of microporous polyethylene membranes. Eur. Polym. J. 2003;39:647–654. doi: 10.1016/S0014-3057(02)00282-3. DOI

Chou C.-C., Wang Y.-Z., You J.-H., Wu C.-L. Confined polymerization: Catalyzed synthesis of high Tm, nanofibrous polyethylene within porous polymer microspheres. RSC Adv. 2015;5:70703–70706. doi: 10.1039/C5RA13945G. DOI

Zhang F., Xu B., Cao G., Chu M., Qiao N., Wei G., Yang Y. Nano/micro structured porous Li4Ti5O12 synthesized by a polyethylene glycol assisted hydrothermal method for high rate lithium-ion batteries. RSC Adv. 2014;4:53981–53986. doi: 10.1039/C4RA07786E. DOI

Kuryndin I.S., Lavrentyev V.K., Bukošek V., Elyashevich G.K. Percolation transitions in porous polyethylene and polypropylene films with lamellar structures. Polym. Sci. Ser. A. 2015;57:717–722. doi: 10.1134/S0965545X15060139. DOI

Elyashevich G.K., Olifirenko A.S., Pimenov A.V. Micro- and nanofiltration membranes on the base of porous polyethylene films. Desalination. 2005;184:273–279. doi: 10.1016/j.desal.2005.03.055. DOI

Araki T., Buscaglia M., Bellini T., Tanaka H. Memory and topological frustration in nematic liquid crystals confined in porous materials. Nat. Mater. 2011;10:303–309. doi: 10.1038/nmat2982. PubMed DOI

Kárný M., Guy T.V. On support of imperfect bayesian participants. In: Guy T.V., Kárný M., Wolpert D.H., editors. Decision Making with Imperfect Decision Makers: Intelligent Systems Reference Library. Vol. 28 Springer; Berlin/Heidelberg, Germany: 2012.

Kárný M., Guy T.V., Kracík J., Nedoma P., Bodini A., Ruggeri F. Fully probabilistic knowledge expression and incorporation. Stat. Interface. 2014;7:503–515. doi: 10.4310/SII.2014.v7.n4.a7. DOI

Kárný M., Andrýsek J., Bodini A., Guy T.V., Kracík J., Ruggeri F. How to exploit external model of data for parameter estimation? Int. J. Adapt. Control Signal Process. 2006;20:41–50. doi: 10.1002/acs.886. DOI

Pasechnik S.V., Chopik A.P., Shmeliova D.V., Drovnikov E.M., Semerenko D.A., Dubtsov A.V., Zhang W., Chigrinov V.G. Electro-kinetic phenomena in porous PET films filled with liquid crystals. Liq. Cryst. 2015;42:1537–1542. doi: 10.1080/02678292.2015.1050853. DOI

Bobrovsky A., Shibaev V., Elyashevitch G., Mochalov K., Oleynikov V. Polyethylene-based composites containing high concentration of quantum dots. Colloid Polym. Sci. 2015;293:1545–1551. doi: 10.1007/s00396-015-3551-6. DOI

Bobrovsky A., Shibaev V., Elyashevich G., Rosova E., Shimkin A., Shirinyan V., Cheng K.-L. Photochromic composites based on porous stretched polyethylene filled by nematic liquid crystal mixtures. Polym. Adv. Technol. 2010;21:100–112. doi: 10.1002/pat.1404. DOI

Pozhidaev E., Bobrovsky A., Shibaev V., Elyashevich G., Minchenko M. Ferroelectric liquid crystal composites based on the porous stretched polyethylene films. Liq. Cryst. 2010;37:517–525. doi: 10.1080/02678291003681386. DOI

Ryabchun A., Bobrovsky A., Stumpe J., Shibaev V. Novel generation of liquid crystalline photo-actuators based on stretched porous polyethylene films. Macromol. Rapid Commun. 2012;33:991–997. doi: 10.1002/marc.201100837. PubMed DOI

Greco F., Domenici V., Desii A., Sinibaldi E., Zupančič B., Zalar B., Mazzolai B., Mattoli V. Liquid single crystal elastomer/conducting polymer bilayer composite actuator: Modelling and experiments. Soft Matter. 2013;9:11405–11416. doi: 10.1039/c3sm51153g. DOI

Semerenko D., Shmeliova D., Pasechnik S., Murauskii A., Tsvetkov V., Chigrinov V. Optically controlled transmission of porous polyethylene terephthalate films filled with nematic liquid crystal. Opt. Lett. 2010;35:2155–2157. doi: 10.1364/OL.35.002155. PubMed DOI

Lisinetskii V., Ryabchun A., Bobrovsky A., Schrader S. Photochromic composite for random lasing based on porous polypropylene infiltrated with azobenzene-containing liquid crystalline mixture. CS Appl. Mater. Interfaces. 2015;7:26595–26602. doi: 10.1021/acsami.5b08032. PubMed DOI

Novotná V., Kašpar M., Hamplová V., Glogarová M., Rychetský I., Pociecha D. Direct transition from the SmA phase to the tilted hexatic phase in liquid crystals with several lactate units. Liq. Cryst. 2004;31:1131–1141. doi: 10.1080/02678290410001720902. DOI

Bubnov A., Kašpar M., Novotná V., Hamplová V., Glogarová M., Kapernaum N., Giesselmann F. Effect of lateral methoxy substitution on mesomorphic and structural properties of ferroelectric liquid crystals. Liq. Cryst. 2008;35:1329–1337. doi: 10.1080/02678290802585525. DOI

Glogarová M., Novotná V., Bubnov A. Dielectric response of ferroelectric liquid crystals in samples of finite thickness. Ferroelectrics. 2018;532:20–27. doi: 10.1080/00150193.2018.1499409. DOI

Rychetský I., Novotná V., Glogarová M. Dielectric response of ferroelectric liquid crystal thin layer. J. Phys. 2000;10:107–119. doi: 10.1051/jp4:2000724. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...