Self-Assembling Behavior of Smart Nanocomposite System: Ferroelectric Liquid Crystal Confined by Stretched Porous Polyethylene Film
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03564S
Czech Science Foundation
LTC19051
Ministry of Education, Youth and Sports of the Czech Republic
LO1409
Ministry of Education, Youth and Sports of the Czech Republic
LM2015088
Infrastructure SAFMAT
CZ.02.1.01/0.0/0.0/16_019/0000760
Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports, SOLID21
19-13-00029
Russian Science Foundation
19-03-00337
Russian Foundation for Basic Research
19-53-26007
Russian Foundation for Basic Research
PubMed
32751727
PubMed Central
PMC7466609
DOI
10.3390/nano10081498
PII: nano10081498
Knihovny.cz E-zdroje
- Klíčová slova
- ferroelectric liquid crystal, nanocomposite, nanomaterials, polar order, porous polyethylene film, self-assembling behavior, smectic phase,
- Publikační typ
- časopisecké články MeSH
The control and prediction of soft systems exhibiting self-organization behavior can be realized by different means but still remains a highlighted task. Novel advanced nanocomposite system has been designed by filling of a stretched porous polyethylene (PE) film with pore dimensions of hundreds of nanometers by chiral ferroelectric liquid crystalline (LC) compound possessing polar self-assembling behavior. Lactic acid derivative exhibiting the paraelectric orthogonal smectic A* and the ferroelectric tilted smectic C* phases over a broad temperature range is used as a self-assembling compound. The morphology of nanocomposite film has been checked by Atomic Force Microscopy (AFM). The designed nanocomposite has been studied by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), small and wide-angle X-ray scattering and broadband dielectric spectroscopy. The effect of a porous PE confinement on self-assembling, structural, and dielectric behavior of the chiral LC compound has been established and discussed. While the mesomorphic and structural properties of the nanocomposite are found not to be much influenced in comparison to that of a pure LC compound, the polar properties have been toughly suppressed by the specific confinement. Nevertheless, the electro-optic switching was clearly observed under applied electric field of low frequency (210 V, 19 Hz). The dielectric spectroscopy and X-ray results reveal that the helical structure of the ferroelectric liquid crystal inside the PE matrix is completely unwound, and the molecules are aligned along stretching direction. Obtained results demonstrate possibilities of using stretched porous polyolefins as promising matrices for the design of new nanocomposites.
Zobrazit více v PubMed
Mertelj A., Lisjak D., Drofenik M., Čopič M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 2013;504:237–241. doi: 10.1038/nature12863. PubMed DOI
Mertelj A., Osterman N., Lisjak D., Čopič M. Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal. Soft Matter. 2014;10:9065–9072. doi: 10.1039/C4SM01625D. PubMed DOI
Rožič B., Fresnais J., Molinaro C., Calixte J., Umadevi S., Lau-Truong S., Felidj N., Kraus T., Charra F., Dupuis V., et al. Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects. ACS Nano. 2017;11:6728–6738. doi: 10.1021/acsnano.7b01132. PubMed DOI
Scalia G. Liquid Crystals Beyond Displays. John Wiley and Sons Inc.; Hoboken, NJ, USA: 2012. Liquid crystals of carbon nanotubes and carbon nanotubes in liquid crystals; pp. 341–378. DOI
Lagerwall J.P.F., Scalia G. Liquid Crystals with Nano and Microparticles. Vol. 2. World Scientific; Singapore: 2017. 920p.
Nataf G.F., Guennou M., Scalia G., Moya X., Wilkinson T.D., Lagerwall J.P.F. High-contrast imaging of 180° ferroelectric domains by optical microscopy using ferroelectric liquid crystals. Appl. Phys. Lett. 2020;116:212901. doi: 10.1063/5.0008845. DOI
Khokhlov A.R., Emelyanenko A.V. Nanostructured liquid crystal systems and applications. Beilstein J. Nanotechnol. 2018;9:2644–2645. doi: 10.3762/bjnano.9.245. PubMed DOI PMC
Troha T., Kašpar M., Hamplová V., Cigl M., Havlicek J., Pociecha D., Novotná V. Silver nanoparticles with liquid crystalline ligands based on lactic acid derivatives. Nanomaterials. 2019;9:1066. doi: 10.3390/nano9081066. PubMed DOI PMC
Garbovskiy Y. On the analogy between electrolytes and ion-generating nanomaterials in liquid crystals. Nanomaterials. 2020;10:403. doi: 10.3390/nano10030403. PubMed DOI PMC
Castillo-Valles M., Martinez-Bueno A., Gimenez R., Sierra T., Ros M.B. Beyond liquid crystals: New research trends for mesogenic molecules in liquids. J. Mater. Chem. C. 2019;7:14454–14470. doi: 10.1039/C9TC04179F. DOI
Lagerwall J.P.F., Scalia G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012;12:1387–1412. doi: 10.1016/j.cap.2012.03.019. DOI
Tayi A.S., Kaeser A., Matsumoto M., Aida T., Stupp S.I. Supramolecular ferroelectrics. Nat. Chem. 2015;4:281–294. doi: 10.1038/nchem.2206. PubMed DOI
Miyajima D., Araoka F., Takezoe H., Kim J., Kato K., Takata M., Aida T. Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture. Science. 2012;336:209–213. doi: 10.1126/science.1217954. PubMed DOI
Novotná V., Hamplová V., Lejček L., Pociecha D., Cigl M., Fekete L., Glogarová M., Bednárová L., Majewski P., Gorecka E. Organic nanotubes created from mesogenic derivatives. Nanoscale Adv. 2019;1:2835–2839. doi: 10.1039/C9NA00175A. PubMed DOI PMC
Lagerwall J.P.F., Giesselmann F. Current topics in smectic liquid crystal research. ChemPhysChem. 2006;7:20–45. doi: 10.1002/cphc.200500472. PubMed DOI
Guo Q., Yan K., Chigrinov V., Zhao H., Tribelsky M. Ferroelectric liquid crystals: Physics and applications. Crystals. 2019;9:470. doi: 10.3390/cryst9090470. DOI
Kurp K., Czerwiński M., Tykarska M. Ferroelectric compounds with chiral (S)-1-methylheptyloxycarbonyl terminal chain—Their miscibility and a helical pitch. Liq. Cryst. 2015;42:248–254. doi: 10.1080/02678292.2014.982222. DOI
Czerwiński M., Tykarska M., Dąbrowski R., Żurowska M., Kowerdziej R., Jaroszewicz L.R. The influence of structure and concentration of cyanoterminated and terphenyl dopants on helical pitch and helical twist sense in orthoconic antiferroelectric mixtures. Liq. Cryst. 2012;39:1498–1502. doi: 10.1080/02678292.2012.723047. DOI
Bubnov A., Novotná V., Hamplová V., Kašpar M., Glogarová M. Effect of multilactate chiral part of liquid crystalline molecule on mesomorphic behaviour. J. Mol. Struct. 2008;892:151–157. doi: 10.1016/j.molstruc.2008.05.016. DOI
Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Dorovatovskii P., Ostrovskii B., Bubnov A. The effect of spacer and alkyl tail lengths on the photoorientation processes in amorphousized films of azobenzene-containing liquid crystalline polymethacrylates. Liq. Cryst. 2020;47:377–383. doi: 10.1080/02678292.2019.1655171. DOI
Cigl M., Bubnov A., Kašpar M., Hampl F., Hamplová V., Pacherová O., Svoboda J. Photosensitive chiral self-assembling materials: Significant effects of small lateral substituents. J. Mater. Chem. C. 2016;4:5326–5333. doi: 10.1039/C6TC01103A. DOI
Żurowska M., Czerwiński M. The new high tilt mixtures with antiferroelectric phase at a broad temperature range and a long helical pitch. Liq. Cryst. 2017;44:1044–1049. doi: 10.1080/02678292.2016.1256443. DOI
Milewska K., Drzewiński W., Czerwiński M., Dąbrowski R. Design, synthesis and mesomorphic properties of chiral benzoates and fluorobenzoates with direct SmCA*-Iso phase transition. Liq. Cryst. 2015;42:1601–1611. doi: 10.1080/02678292.2015.1078916. DOI
Milewska K., Drzewiński W., Czerwiński M., Dąbrowski R., Piecek W. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase. Mater. Chem. Phys. 2016;171:33–38. doi: 10.1016/j.matchemphys.2016.01.011. DOI
Barman B., Das B., Das M.K., Hamplová V., Bubnov A. Effect of molecular structure on dielectric and electro-optic of chiral liquid crystals based on lactic acid derivatives. J. Mol. Liq. 2019;283:472–781. doi: 10.1016/j.molliq.2019.03.071. DOI
Pramanik A., Das B., Das M.K., Hamplová V., Kašpar M., Bubnov A. Self-assembling properties of a lactic acid derivative with several ester linkages in the molecular core. Phase Transit. 2015;88:745–757. doi: 10.1080/01411594.2015.1025782. DOI
Bubnov A., Podoliak N., Hamplová V., Tomašková P., Havlíček J., Kašpar M. Eutectic behaviour of binary mixtures composed by two isomeric lactic acid derivatives. Ferroelectrics. 2016;495:105–115. doi: 10.1080/00150193.2016.1136776. DOI
Obadović D.Ž., Vajda A., Garić M., Bubnov A., Hamplová V., Kašpar M., Fodor-Csorba K. Thermal analysis and X-ray study of the chiral ferroelectric liquid crystalline materials and their binary mixtures. J. Therm. Anal. Calorim. 2005;82:519–523. doi: 10.1007/s10973-005-0926-9. DOI
Bubnov A., Hamplová V., Kašpar M., Vajda A., Stojanović M., Obadović D.Ž., Éber N., Fodor-Csorba K. Thermal analysis of binary liquid crystalline mixtures: System of bent core and calamitic molecules. J. Therm. Anal. Calorim. 2007;90:431–441. doi: 10.1007/s10973-006-7913-7. DOI
Piecek W., Bubnov A., Perkowski P., Morawiak P., Ogrodnik K., Rejmer W., Zurowska M., Hamplová V., Kašpar M. An effect of structurally non compatible additive on the properties of a long pitch antiferroelectric orthoconic mixture. Phase Transit. 2010;83:551–563. doi: 10.1080/01411594.2010.499496. DOI
Kurp K., Tykarska M., Salamon P., Czerwinski M., Bubnov A. Design of functional multicomponent liquid crystalline mixtures with nano-scale pitch fulfilling deformed helix ferroelectric mode demands. J. Mol. Liq. 2019;290:111329. doi: 10.1016/j.molliq.2019.111329. DOI
Bubnov A., Kašpar M., Hamplová V., Glogarová M., Samaritani S., Galli G., Andersson G., Komitov L. Polar liquid crystalline monomers with two or three lactate groups for the preparation of side chain polysiloxanes. Liq. Cryst. 2006;33:559–566. doi: 10.1080/02678290600604809. DOI
Petrova I., Gaj A., Pochiecha D., Shcherbina M., Makarova N.N., Bubnov A. Design and self-assembling behaviour of comb-like stereoregular cyclolinear methylsiloxane copolymers with chiral lactate groups. Liq. Cryst. 2019;46:25–36. doi: 10.1080/02678292.2018.1461265. DOI
Tõth-Katona T., Cigl M., Fodor-Csorba K., Hamplová V., Jánossy I., Kašpar M., Vojtylová T., Hampl F., Bubnov A. Functional photochromic methylhydrosiloxane-based side-chain liquid-crystalline polymers. Macromol. Chem. Phys. 2014;215:742–752. doi: 10.1002/macp.201300729. DOI
Bubnov A., Domenici V., Hamplová V., Kašpar M., Zalar B. First liquid single crystal elastomer containing lactic acid derivative as chiral co-monomer: Synthesis and properties. Polymer. 2011;52:4490–4497. doi: 10.1016/j.polymer.2011.07.046. DOI
Domenici V., Milavec J., Bubnov A., Pociecha D., Zupančič B., Rešetič A., Hamplová V., Gorecka E., Zalar B. Effect of co-monomers’ relative concentration on self-assembling behaviour of side-chain liquid crystalline elastomers. RSC Adv. 2014;4:44056–44064. doi: 10.1039/C4RA07454H. DOI
Bubnov A., Iwan A., Cigl M., Boharewicz B., Tazbir I., Wójcik K., Sikora A., Hamplová V. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells. RSC Adv. 2016;6:11577–11590. doi: 10.1039/C5RA23137J. DOI
Iwan A., Boharewicz B., Tazbir I., Hamplová V., Bubnov A. Effect of chiral photosensitive liquid crystalline dopants on the performance of organic solar cells. Solid State Electron. 2015;104:53–60. doi: 10.1016/j.sse.2014.11.010. DOI
Iwan A., Sikora A., Hamplová V., Bubnov A. AFM study of advanced composite materials for organic solar cells with active layer based on P3HT: PCBM and chiral photosensitive liquid crystalline dopants. Liq. Cryst. 2015;42:964–972. doi: 10.1080/02678292.2015.1011243. DOI
Draude A.P., Kalavalapalli T.Y., Iliut M., McConnella B., Dierking I. Stabilization of liquid crystal blue phases by carbon nanoparticles of varying dimensionality. Nanoscale Adv. 2020;2:2404–2409. doi: 10.1039/D0NA00276C. PubMed DOI PMC
Nourry J., Sixou P., Mitov M., Glogarová M., Bubnov A.M. Evolution of the switching current during the preparation of polymer network-ferroelectric liquid crystal microcomposites. Liq. Cryst. 2000;27:35–42. doi: 10.1080/026782900203182. DOI
Shukla R.K., Chaudhary A., Bubnov A., Hamplova V., Raina K.K. Electrically switchable birefringent self-assembled nanocomposites: Ferroelectric liquid crystal doped with the multiwall carbon nanotubes. Liq. Cryst. 2020 doi: 10.1080/02678292.2020.1720328. DOI
Kašpar M., Bubnov A., Hamplová V., Pirkl S., Glogarová M. New ferroelectric liquid crystalline materials with an azo group in the molecular core. Liq. Cryst. 2004;31:821–830. doi: 10.1080/02678290410001697567. DOI
Novotná V., Hamplová V., Kašpar M., Podoliak N., Bubnov A., Glogarová M., Nonnenmacher D., Giesselmann F. The effect of lactate units number in compounds with azo group in the molecular core. Liq. Cryst. 2011;38:649–655. doi: 10.1080/02678292.2011.565426. DOI
Novotná V., Hamplová V., Bubnov A., Kašpar M., Glogarová M., Kapernaum N., Bezner S., Giesselmann F. First photoresponsive liquid crystalline materials with small layer shrinkage at the transition to the ferroelectric phase. J. Mater. Chem. 2009;19:3992–3997. doi: 10.1039/b821738f. DOI
Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Pociecha D., Bubnov A. Azobenzene-containing LC polymethacrylates highly photosensitive in broad spectral range. J. Polym. Sci. A. 2016;54:2962–2970. doi: 10.1002/pola.28181. DOI
Sulyanov S.N., Dorovatovskii P.V., Bobrovsky A.Y., Shibaev V.P., Cigl M., Hamplová V., Bubnov A., Ostrovskii B.I. Mesomorphic and structural properties of liquid crystalline sidechain polymethacrylates: From smectic C* to columnar phases. Liq. Cryst. 2019;46:825–834. doi: 10.1080/02678292.2018.1530386. DOI
Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Hampl F., Elyashevitch G. Photochromic LC-polymer composites containing azobenzene chromophores with thermally stable Z-isomers. J. Mater. Chem. C. 2014;2:4482–4489. doi: 10.1039/C4TC00015C. DOI
Dierking I. Polymer network-stabilized liquid crystals. Adv. Mater. 2000;12:167–181. doi: 10.1002/(SICI)1521-4095(200002)12:3<167::AID-ADMA167>3.0.CO;2-I. DOI
Dierking I. Recent developments in polymer stabilised liquid crystals. Polym. Chem. 2010;1:1153–1159. doi: 10.1039/c0py00087f. DOI
Czerwiński M., Urbańska M., Bennis N., Rudquist P. Influence of the type of phase sequence and polymer-stabilization on the physicochemical and electro-optical properties of novel high-tilt antiferroelectric liquid crystalline materials. J. Mol. Liq. 2019;288:111057. doi: 10.1016/j.molliq.2019.111057. DOI
Paelke L., Kitzerow H.-S., Strohriegl P. Photorefractive polymer-dispersed liquid crystal based on a photoconducting polysiloxanes. Appl. Phys. Lett. 2005;86:031104. doi: 10.1063/1.1852082. DOI
Amimori I., Priezjev N.V., Pelcovits R.A., Crawford G.P. Optomechanical properties of stretched polymer dispersed liquid crystal films for scattering polarizer applications. J. Appl. Phys. 2003;93:3248–3252. doi: 10.1063/1.1554757. DOI
Bobrovsky A., Shibaev V., Elyashevich G. Photopatternable fluorescent polymer composites based on stretched porous polyethylene and photopolymerizable liquid crystal mixture. J. Mater. Chem. 2008;18:691–695. doi: 10.1039/b711929a. DOI
Bobrovsky A., Shibaev V., Elyashevich G., Rosova E., Shimkin A., Shirinyan V., Bubnov A., Kašpar M., Hamplová V., Glogarová M. New photosensitive polymer composites based on oriented porous polyethylene filled with azobenzene-containing LC mixture: Reversible photomodulation of dichroism and birefringence. Liq. Cryst. 2008;35:533–539. doi: 10.1080/02678290802015697. DOI
Bobrovsky A., Shibaev V., Elyashevitch G., Shimkin A., Shirinyan V. Photo-optical properties of polymer composites based on stretched porous polyethylene filled with photoactive cholesteric liquid crystal. Liq. Cryst. 2007;34:791–797. doi: 10.1080/02678290701417101. DOI
El’yashevich G.K., Kozlov A.G., Rozova E.Y. Sizes of through-channels in microporous polyethylene films. Polym. Sci. Ser. A. 1998;40:567–573.
Wu D., Xu F., Sun B., Fu R., He H., Matyjaszewski K. Design and preparation of porous polymers. Chem. Rev. 2012;112:3959–4015. doi: 10.1021/cr200440z. PubMed DOI
Hao P., Peng B., Shan B.-Q., Yang T.-Q., Zhang K. Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. Nanoscale Adv. 2020;2:1792–1810. doi: 10.1039/D0NA00219D. PubMed DOI PMC
Mireles M., Soule C.W., Dehghania M., Gaborski T.R. Use of nanosphere self-assembly to pattern nanoporous membranes for the study of extracellular vesicles. Nanoscale Adv. 2020 doi: 10.1039/D0NA00142B. PubMed DOI PMC
Elyashevich G.K., Rosova E.Y., Sidorovich I.S., Kuryndin I.S., Trchová M., Stejskal J. The effect of a polypyrrole coating on the thermal stability of microporous polyethylene membranes. Eur. Polym. J. 2003;39:647–654. doi: 10.1016/S0014-3057(02)00282-3. DOI
Chou C.-C., Wang Y.-Z., You J.-H., Wu C.-L. Confined polymerization: Catalyzed synthesis of high Tm, nanofibrous polyethylene within porous polymer microspheres. RSC Adv. 2015;5:70703–70706. doi: 10.1039/C5RA13945G. DOI
Zhang F., Xu B., Cao G., Chu M., Qiao N., Wei G., Yang Y. Nano/micro structured porous Li4Ti5O12 synthesized by a polyethylene glycol assisted hydrothermal method for high rate lithium-ion batteries. RSC Adv. 2014;4:53981–53986. doi: 10.1039/C4RA07786E. DOI
Kuryndin I.S., Lavrentyev V.K., Bukošek V., Elyashevich G.K. Percolation transitions in porous polyethylene and polypropylene films with lamellar structures. Polym. Sci. Ser. A. 2015;57:717–722. doi: 10.1134/S0965545X15060139. DOI
Elyashevich G.K., Olifirenko A.S., Pimenov A.V. Micro- and nanofiltration membranes on the base of porous polyethylene films. Desalination. 2005;184:273–279. doi: 10.1016/j.desal.2005.03.055. DOI
Araki T., Buscaglia M., Bellini T., Tanaka H. Memory and topological frustration in nematic liquid crystals confined in porous materials. Nat. Mater. 2011;10:303–309. doi: 10.1038/nmat2982. PubMed DOI
Kárný M., Guy T.V. On support of imperfect bayesian participants. In: Guy T.V., Kárný M., Wolpert D.H., editors. Decision Making with Imperfect Decision Makers: Intelligent Systems Reference Library. Vol. 28 Springer; Berlin/Heidelberg, Germany: 2012.
Kárný M., Guy T.V., Kracík J., Nedoma P., Bodini A., Ruggeri F. Fully probabilistic knowledge expression and incorporation. Stat. Interface. 2014;7:503–515. doi: 10.4310/SII.2014.v7.n4.a7. DOI
Kárný M., Andrýsek J., Bodini A., Guy T.V., Kracík J., Ruggeri F. How to exploit external model of data for parameter estimation? Int. J. Adapt. Control Signal Process. 2006;20:41–50. doi: 10.1002/acs.886. DOI
Pasechnik S.V., Chopik A.P., Shmeliova D.V., Drovnikov E.M., Semerenko D.A., Dubtsov A.V., Zhang W., Chigrinov V.G. Electro-kinetic phenomena in porous PET films filled with liquid crystals. Liq. Cryst. 2015;42:1537–1542. doi: 10.1080/02678292.2015.1050853. DOI
Bobrovsky A., Shibaev V., Elyashevitch G., Mochalov K., Oleynikov V. Polyethylene-based composites containing high concentration of quantum dots. Colloid Polym. Sci. 2015;293:1545–1551. doi: 10.1007/s00396-015-3551-6. DOI
Bobrovsky A., Shibaev V., Elyashevich G., Rosova E., Shimkin A., Shirinyan V., Cheng K.-L. Photochromic composites based on porous stretched polyethylene filled by nematic liquid crystal mixtures. Polym. Adv. Technol. 2010;21:100–112. doi: 10.1002/pat.1404. DOI
Pozhidaev E., Bobrovsky A., Shibaev V., Elyashevich G., Minchenko M. Ferroelectric liquid crystal composites based on the porous stretched polyethylene films. Liq. Cryst. 2010;37:517–525. doi: 10.1080/02678291003681386. DOI
Ryabchun A., Bobrovsky A., Stumpe J., Shibaev V. Novel generation of liquid crystalline photo-actuators based on stretched porous polyethylene films. Macromol. Rapid Commun. 2012;33:991–997. doi: 10.1002/marc.201100837. PubMed DOI
Greco F., Domenici V., Desii A., Sinibaldi E., Zupančič B., Zalar B., Mazzolai B., Mattoli V. Liquid single crystal elastomer/conducting polymer bilayer composite actuator: Modelling and experiments. Soft Matter. 2013;9:11405–11416. doi: 10.1039/c3sm51153g. DOI
Semerenko D., Shmeliova D., Pasechnik S., Murauskii A., Tsvetkov V., Chigrinov V. Optically controlled transmission of porous polyethylene terephthalate films filled with nematic liquid crystal. Opt. Lett. 2010;35:2155–2157. doi: 10.1364/OL.35.002155. PubMed DOI
Lisinetskii V., Ryabchun A., Bobrovsky A., Schrader S. Photochromic composite for random lasing based on porous polypropylene infiltrated with azobenzene-containing liquid crystalline mixture. CS Appl. Mater. Interfaces. 2015;7:26595–26602. doi: 10.1021/acsami.5b08032. PubMed DOI
Novotná V., Kašpar M., Hamplová V., Glogarová M., Rychetský I., Pociecha D. Direct transition from the SmA phase to the tilted hexatic phase in liquid crystals with several lactate units. Liq. Cryst. 2004;31:1131–1141. doi: 10.1080/02678290410001720902. DOI
Bubnov A., Kašpar M., Novotná V., Hamplová V., Glogarová M., Kapernaum N., Giesselmann F. Effect of lateral methoxy substitution on mesomorphic and structural properties of ferroelectric liquid crystals. Liq. Cryst. 2008;35:1329–1337. doi: 10.1080/02678290802585525. DOI
Glogarová M., Novotná V., Bubnov A. Dielectric response of ferroelectric liquid crystals in samples of finite thickness. Ferroelectrics. 2018;532:20–27. doi: 10.1080/00150193.2018.1499409. DOI
Rychetský I., Novotná V., Glogarová M. Dielectric response of ferroelectric liquid crystal thin layer. J. Phys. 2000;10:107–119. doi: 10.1051/jp4:2000724. DOI