Silver Nanoparticles with Liquid Crystalline Ligands Based on Lactic Acid Derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-14497S
Grantová Agentura České Republiky
PubMed
31349601
PubMed Central
PMC6723366
DOI
10.3390/nano9081066
PII: nano9081066
Knihovny.cz E-zdroje
- Klíčová slova
- liquid crystals, plasmonic, self-assembly, silver nanoparticles,
- Publikační typ
- časopisecké články MeSH
We have prepared and studied silver nanoparticles functionalized with ligands based on lactic acid derivatives. Several types of hybrid systems that differed in the size of silver nanoparticles as well as the length of surface ligands were analyzed. Transmission electron microscopy (TEM) observation provided information about the size and shape of nanoparticles and proved good homogeneity of studied systems. By dynamic light scattering (DLS) measurements, we have measured the size distribution of nanoparticle systems. Plasmonic resonance was detected at around 450 nm. For two hybrid systems, the mesomorphic behaviour has been demonstrated by x-ray measurements. The observed thermotropic liquid crystalline phases reveal lamellar character. We have proposed a model based on self-assembly of intercalated liquid crystalline ligands.
Faculty of Chemistry University of Warsaw ul Zwirki i Wigury 101 02 089 Warsaw Poland
Institute of Physics of the Czech Academy of Sciences 18221 Prague Czech Republic
Zobrazit více v PubMed
Lewandowski W., Lojewska T., Szustakiewicz P., Mieczkowski J., Pociecha D. Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies. Nanoscale. 2016;8:2656–2663. doi: 10.1039/C5NR08406G. PubMed DOI
Kelly K.L., Coronado E., Lin Zhao L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Evanoff D.D., Jr., Chumanov G. Synthesis and Optical Properties of Silver Nanoparticles and Arrays. ChemPhysChem Minirev. 2005;6:1221–1231. doi: 10.1002/cphc.200500113. PubMed DOI
Doyle W.T. Optical properties of a suspension of metal spheres. Phys. Rev. B. 1989;39:9852. doi: 10.1103/PhysRevB.39.9852. PubMed DOI
Shang Z., Huang H., Wan Y., Deng L. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals. Opt. Commun. 2016;372:80–84. doi: 10.1016/j.optcom.2016.03.080. DOI
Peng S., McMahon J.M., Schatz G.C., Gray S.K., Sun Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. USA. 2010;107:14530–14534. doi: 10.1073/pnas.1007524107. PubMed DOI PMC
Talapin D.V., Lee J.S., Kovalenko M.V., Shevchenko E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010;110:389–458. doi: 10.1021/cr900137k. PubMed DOI
Goesmann H., Feldmann C. Nanoparticle functional materials. Angew. Chem. Int. Ed. 2010;49:1362–1395. doi: 10.1002/anie.200903053. PubMed DOI
Zhang Q., Large N., Nordlander P., Wang H. Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J. Phys. Chem. Lett. 2014;5:370–374. doi: 10.1021/jz402795x. PubMed DOI
Chakraborty I., Bag S., Landman U., Pradeep T. Atomically Precise Silver Clusters as New SERS Substrates. J. Phys. Chem. Lett. 2013;4:2769–2773. doi: 10.1021/jz4014097. DOI
Willets K.A., Van Duyne R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI
Boles M.A., Engel D.M. Talapin: Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196. PubMed DOI
Lewadowski W., Fruhnert M., Mieczkowski J., Rockstuhl C., Gorecka E. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat. Commun. 2015;6:6590. doi: 10.1038/ncomms7590. PubMed DOI
Wojcik M., Olesinska M., Sawczyk M., Mieczkowski J., Gorecka E. Controlling the spatial organization of liquid crystalline nanoparticles by composition of the organic grafting layer. Chem. A Eur. J. 2015;21:10082–10088. doi: 10.1002/chem.201406262. PubMed DOI
Wojcik M., Kolpaczynska M., Pociecha D., Mieczkowski J., Gorecka E. Multidimensional structures made by gold nanoparticles with shape-adaptive grafting layers. Soft Matter. 2010;6:5397–5400. doi: 10.1039/c0sm00539h. DOI
Wojcik M., Gora M., Mieczkowski J., Romiszewski J., Gorecka E., Pociecha D. Temperature-controlled liquid crystalline polymorphism of gold nanoparticles. Soft Matter. 2011;7:10561–10564. doi: 10.1039/c1sm06436c. DOI
Lewandowski W., Wojcik M., Gorecka E. Metal nanoparticles with liquid-crystalline ligands: Controlling nanoparticle superlattice structure and properties. ChemPhysChem. 2014;15:1283–1295. doi: 10.1002/cphc.201301194. PubMed DOI
Lewandowski W., Constantin D., Walicka K., Pociecha D., Mieczkowski J., Gorecka E. Smectic mesophases of functionalized silver and gold nanoparticles with anisotropic plasmonic properties. Chem. Commun. 2013;49:7845–7847. doi: 10.1039/c3cc43166e. PubMed DOI
Li B., Smilgies D.-M., Price A.D., Huber D.L., Clem P.G., Fan H. Poly(N-isopropylacrylamide) surfactant-functionalized responsive silver nanoparticles and superlattices. ASC Nano. 2014;8:4799–4804. doi: 10.1021/nn500690h. PubMed DOI PMC
Wolska J., Pociecha D., Mieczkowski J., Gorecka E. Gold nanoparticles with flexible mesogenic grafting layers. Soft Matter. 2013;9:3005–3008. doi: 10.1039/c3sm27882d. DOI
Lewandowski W., Jatczak K., Pociecha D., Mieczkowski J. Control of gold Nanoparticle superlattice properties via mesogenic ligand architecture. Langmuir. 2013;29:3404–3410. doi: 10.1021/la3043236. PubMed DOI
Cathcart N., Kitaev V. Monodisperse Hexagonal Silver Nanoprisms: Synthesis via Thiolate-Protected Cluster Precursors and Chiral, Ligand-Imprinted Self-Assembly. ACS Nano. 2011;5:7411–7425. doi: 10.1021/nn2023478. PubMed DOI
Stefaniuk T., Wrobel P., Gorecka E., Szoplik T. Optimum deposition conditions of ultrasmooth silver nanolayers. Nanoscale Res. Lett. 2014;9:1–9. doi: 10.1186/1556-276X-9-153. PubMed DOI PMC
Wolska J., Pociecha D., Mieczkowski J., Gorecka E. Control of sample alignment mode for hybrid lamellar systems based on gold nanoparticles. Chem. Commun. 2014;50:7975–7978. doi: 10.1039/c4cc02242d. PubMed DOI
Creighton J.A., Blatchford C.G., Albrecht M.G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Farad. Trans. 1979;75:790–798. doi: 10.1039/f29797500790. DOI
Dadosh T. Synthesis of uniform silver nanoparticles with a controllable size. Mater. Lett. 2009;63:2236–2238. doi: 10.1016/j.matlet.2009.07.042. DOI
Filippo E., Serra A., Buccolieri A., Manno D. Green synthesis of silver nanoparticles with sucrose and maltose: Morphological and structural characterization. J. Non-Cryst. Solids. 2010;356:344–350. doi: 10.1016/j.jnoncrysol.2009.11.021. DOI
Berne B.J., Pecora R. Dynamic Light Scattering. Courier Dover Publications; Mineola, NY, USA: 2000.
Provencher S. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 1982;27:229–242. doi: 10.1016/0010-4655(82)90174-6. DOI
Jain P.K., Huang W., El-Sayed M.A. On the Univarsal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 2007;7:2080–2088. doi: 10.1021/nl071008a. DOI
Lagerwall J.P.F., Scalia G. Liquid Crystals with Nano and Microparticles. World Scientific Publishing Co. Pte. Ltd.; Singapore: 2017. pp. 497–523.