Silver Nanoparticles with Liquid Crystalline Ligands Based on Lactic Acid Derivatives

. 2019 Jul 25 ; 9 (8) : . [epub] 20190725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31349601

Grantová podpora
18-14497S Grantová Agentura České Republiky

We have prepared and studied silver nanoparticles functionalized with ligands based on lactic acid derivatives. Several types of hybrid systems that differed in the size of silver nanoparticles as well as the length of surface ligands were analyzed. Transmission electron microscopy (TEM) observation provided information about the size and shape of nanoparticles and proved good homogeneity of studied systems. By dynamic light scattering (DLS) measurements, we have measured the size distribution of nanoparticle systems. Plasmonic resonance was detected at around 450 nm. For two hybrid systems, the mesomorphic behaviour has been demonstrated by x-ray measurements. The observed thermotropic liquid crystalline phases reveal lamellar character. We have proposed a model based on self-assembly of intercalated liquid crystalline ligands.

Zobrazit více v PubMed

Lewandowski W., Lojewska T., Szustakiewicz P., Mieczkowski J., Pociecha D. Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies. Nanoscale. 2016;8:2656–2663. doi: 10.1039/C5NR08406G. PubMed DOI

Kelly K.L., Coronado E., Lin Zhao L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI

Evanoff D.D., Jr., Chumanov G. Synthesis and Optical Properties of Silver Nanoparticles and Arrays. ChemPhysChem Minirev. 2005;6:1221–1231. doi: 10.1002/cphc.200500113. PubMed DOI

Doyle W.T. Optical properties of a suspension of metal spheres. Phys. Rev. B. 1989;39:9852. doi: 10.1103/PhysRevB.39.9852. PubMed DOI

Shang Z., Huang H., Wan Y., Deng L. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals. Opt. Commun. 2016;372:80–84. doi: 10.1016/j.optcom.2016.03.080. DOI

Peng S., McMahon J.M., Schatz G.C., Gray S.K., Sun Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. USA. 2010;107:14530–14534. doi: 10.1073/pnas.1007524107. PubMed DOI PMC

Talapin D.V., Lee J.S., Kovalenko M.V., Shevchenko E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010;110:389–458. doi: 10.1021/cr900137k. PubMed DOI

Goesmann H., Feldmann C. Nanoparticle functional materials. Angew. Chem. Int. Ed. 2010;49:1362–1395. doi: 10.1002/anie.200903053. PubMed DOI

Zhang Q., Large N., Nordlander P., Wang H. Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J. Phys. Chem. Lett. 2014;5:370–374. doi: 10.1021/jz402795x. PubMed DOI

Chakraborty I., Bag S., Landman U., Pradeep T. Atomically Precise Silver Clusters as New SERS Substrates. J. Phys. Chem. Lett. 2013;4:2769–2773. doi: 10.1021/jz4014097. DOI

Willets K.A., Van Duyne R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI

Boles M.A., Engel D.M. Talapin: Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196. PubMed DOI

Lewadowski W., Fruhnert M., Mieczkowski J., Rockstuhl C., Gorecka E. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat. Commun. 2015;6:6590. doi: 10.1038/ncomms7590. PubMed DOI

Wojcik M., Olesinska M., Sawczyk M., Mieczkowski J., Gorecka E. Controlling the spatial organization of liquid crystalline nanoparticles by composition of the organic grafting layer. Chem. A Eur. J. 2015;21:10082–10088. doi: 10.1002/chem.201406262. PubMed DOI

Wojcik M., Kolpaczynska M., Pociecha D., Mieczkowski J., Gorecka E. Multidimensional structures made by gold nanoparticles with shape-adaptive grafting layers. Soft Matter. 2010;6:5397–5400. doi: 10.1039/c0sm00539h. DOI

Wojcik M., Gora M., Mieczkowski J., Romiszewski J., Gorecka E., Pociecha D. Temperature-controlled liquid crystalline polymorphism of gold nanoparticles. Soft Matter. 2011;7:10561–10564. doi: 10.1039/c1sm06436c. DOI

Lewandowski W., Wojcik M., Gorecka E. Metal nanoparticles with liquid-crystalline ligands: Controlling nanoparticle superlattice structure and properties. ChemPhysChem. 2014;15:1283–1295. doi: 10.1002/cphc.201301194. PubMed DOI

Lewandowski W., Constantin D., Walicka K., Pociecha D., Mieczkowski J., Gorecka E. Smectic mesophases of functionalized silver and gold nanoparticles with anisotropic plasmonic properties. Chem. Commun. 2013;49:7845–7847. doi: 10.1039/c3cc43166e. PubMed DOI

Li B., Smilgies D.-M., Price A.D., Huber D.L., Clem P.G., Fan H. Poly(N-isopropylacrylamide) surfactant-functionalized responsive silver nanoparticles and superlattices. ASC Nano. 2014;8:4799–4804. doi: 10.1021/nn500690h. PubMed DOI PMC

Wolska J., Pociecha D., Mieczkowski J., Gorecka E. Gold nanoparticles with flexible mesogenic grafting layers. Soft Matter. 2013;9:3005–3008. doi: 10.1039/c3sm27882d. DOI

Lewandowski W., Jatczak K., Pociecha D., Mieczkowski J. Control of gold Nanoparticle superlattice properties via mesogenic ligand architecture. Langmuir. 2013;29:3404–3410. doi: 10.1021/la3043236. PubMed DOI

Cathcart N., Kitaev V. Monodisperse Hexagonal Silver Nanoprisms: Synthesis via Thiolate-Protected Cluster Precursors and Chiral, Ligand-Imprinted Self-Assembly. ACS Nano. 2011;5:7411–7425. doi: 10.1021/nn2023478. PubMed DOI

Stefaniuk T., Wrobel P., Gorecka E., Szoplik T. Optimum deposition conditions of ultrasmooth silver nanolayers. Nanoscale Res. Lett. 2014;9:1–9. doi: 10.1186/1556-276X-9-153. PubMed DOI PMC

Wolska J., Pociecha D., Mieczkowski J., Gorecka E. Control of sample alignment mode for hybrid lamellar systems based on gold nanoparticles. Chem. Commun. 2014;50:7975–7978. doi: 10.1039/c4cc02242d. PubMed DOI

Creighton J.A., Blatchford C.G., Albrecht M.G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Farad. Trans. 1979;75:790–798. doi: 10.1039/f29797500790. DOI

Dadosh T. Synthesis of uniform silver nanoparticles with a controllable size. Mater. Lett. 2009;63:2236–2238. doi: 10.1016/j.matlet.2009.07.042. DOI

Filippo E., Serra A., Buccolieri A., Manno D. Green synthesis of silver nanoparticles with sucrose and maltose: Morphological and structural characterization. J. Non-Cryst. Solids. 2010;356:344–350. doi: 10.1016/j.jnoncrysol.2009.11.021. DOI

Berne B.J., Pecora R. Dynamic Light Scattering. Courier Dover Publications; Mineola, NY, USA: 2000.

Provencher S. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 1982;27:229–242. doi: 10.1016/0010-4655(82)90174-6. DOI

Jain P.K., Huang W., El-Sayed M.A. On the Univarsal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 2007;7:2080–2088. doi: 10.1021/nl071008a. DOI

Lagerwall J.P.F., Scalia G. Liquid Crystals with Nano and Microparticles. World Scientific Publishing Co. Pte. Ltd.; Singapore: 2017. pp. 497–523.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...