Generation and Characterization of a Novel Angelman Syndrome Mouse Model with a Full Deletion of the Ube3a Gene
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36139390
PubMed Central
PMC9496699
DOI
10.3390/cells11182815
PII: cells11182815
Knihovny.cz E-zdroje
- Klíčová slova
- Angelman syndrome, UBE3A, autism spectrum disorder, mouse model, neurodevelopmental disease,
- MeSH
- 3' nepřekládaná oblast MeSH
- 5' nepřekládaná oblast MeSH
- Angelmanův syndrom * genetika MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- poruchy autistického spektra * genetika MeSH
- ubikvitinligasy genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- 5' nepřekládaná oblast MeSH
- Ube3a protein, mouse MeSH Prohlížeč
- ubikvitinligasy MeSH
Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficits in maternally inherited UBE3A. The disease is characterized by intellectual disability, impaired motor skills, and behavioral deficits, including increased anxiety and autism spectrum disorder features. The mouse models used so far in AS research recapitulate most of the cardinal AS characteristics. However, they do not mimic the situation found in the majority of AS patients who have a large deletion spanning 4-6 Mb. There is also a large variability in phenotypes reported in the available models, which altogether limits development of therapeutics. Therefore, we have generated a mouse model in which the Ube3a gene is deleted entirely from the 5' UTR to the 3' UTR of mouse Ube3a isoform 2, resulting in a deletion of 76 kb. To investigate its phenotypic suitability as a model for AS, we employed a battery of behavioral tests directed to reveal AS pathology and to find out whether this model better mirrors AS development compared to other available models. We found that the maternally inherited Ube3a-deficient line exhibits robust motor dysfunction, as seen in the rotarod and DigiGait tests, and displays abnormalities in additional behavioral paradigms, including reduced nest building and hypoactivity, although no apparent cognitive phenotype was observed in the Barnes maze and novel object recognition tests. The AS mice did, however, underperform in more complex cognition tasks, such as place reversal in the IntelliCage system, and exhibited a different circadian rhythm activity pattern. We show that the novel UBE3A-deficient model, based on a whole-gene deletion, is suitable for AS research, as it recapitulates important phenotypes characteristic of AS. This new mouse model provides complementary possibilities to study the Ube3a gene and its function in health and disease as well as possible therapeutic interventions to restore function.
Zobrazit více v PubMed
layton-Smith J., Laan L. Angelman syndrome: A review of the clinical and genetic aspects. J. Med. Genet. 2003;40:87–95. doi: 10.1136/jmg.40.2.87. PubMed DOI PMC
Jolleff N., Ryan M.M. Communication development in Angelman’s syndrome. Arch. Dis. Child. 1993;69:148–150. doi: 10.1136/adc.69.1.148. PubMed DOI PMC
Viani F., Romeo A., Viri M., Mastrangelo M., Lalatta F., Selicorni A., Gobbi G., Lanzi G., Bettio D., Briscioli V., et al. Seizure and EEG Patterns in Angelman’s Syndrome. J. Child. Neurol. 1995;10:467–471. doi: 10.1177/088307389501000609. PubMed DOI
Meng L., Person R.E., Beaudet A.L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet. 2012;21:3001–3012. doi: 10.1093/hmg/dds130. PubMed DOI PMC
Sandanam T., Beange H., Robson L., Woolnough H., Buchholz T., Smith A. Manifestations in institutionalised adults with Angelman syndrome due to deletion. Am. J. Med. Genet. 1997;70:415–420. doi: 10.1002/(SICI)1096-8628(19970627)70:4<415::AID-AJMG16>3.0.CO;2-K. PubMed DOI
Malcolm S., Clayton-Smith J., Nichols M., Pembrey M., Armour J., Jeffreys A., Robb S., Webb T. Uniparental paternal disomy in Angelman’s syndrome. Lancet. 1991;337:694–697. doi: 10.1016/0140-6736(91)90278-W. PubMed DOI
Buiting K., Gross S., Lich C., Gillessen-Kaesbach G., el-Maarri O., Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: A molecular study of 136 patients with an im-printing defect. Am. J. Hum. Genet. 2003;72:571–577. doi: 10.1086/367926. PubMed DOI PMC
Matsuura T., Sutcliffe J.S., Fang P., Galjaard R.-J., Jiang Y.-H., Benton C.S., Rommens J.M., Beaudet A.L. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat. Genet. 1997;15:74–77. doi: 10.1038/ng0197-74. PubMed DOI
Kishino T., Lalande M., Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 1997;15:70–73. doi: 10.1038/ng0197-70. PubMed DOI
Syding L.A., Nickl P., Kasparek P., Sedlacek R. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells. 2020;9:993. doi: 10.3390/cells9040993. PubMed DOI PMC
Williams C.A., Beaudet A.L., Clayton-Smith J., Knoll J.H., Kyllerman M., Laan L.A., Magenis R.E., Moncla A., Schinzel A.A., Summers J.A., et al. Angelman syndrome 2005: Updated consensus for diagnostic criteria. Am. J. Med. Genet. Part A. 2006;140A:413–418. doi: 10.1002/ajmg.a.31074. PubMed DOI
Koyavski L., Panov J., Simchi L., Rayi P.R., Sharvit L., Feuermann Y., Kaphzan H. Sex-Dependent Sensory Phenotypes and Related Transcriptomic Expression Profiles Are Differentially Affected by Angelman Syndrome. Mol. Neurobiol. 2019;56:5998–6016. doi: 10.1007/s12035-019-1503-8. PubMed DOI
van Woerden G.M., Harris K.D., Hojjati M.R., Gustin R.M., Qiu S., de Avila Freire R., Jiang Y.H., Elgersma Y., Weeber E.J. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat. Neurosci. 2007;10:280–282. doi: 10.1038/nn1845. PubMed DOI
Sidorov M.S., Judson M.C., Kim H., Rougie M., Ferrer A.I., Nikolova V.D., Riddick N.V., Moy S.S., Philpot B.D. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome. J. Neurosci. 2018;38:2671–2682. doi: 10.1523/JNEUROSCI.2828-17.2018. PubMed DOI PMC
Sonzogni M., Wallaard I., Santos S.S., Kingma J., Du Mee D., Van Woerden G.M., Elgersma Y. A behavioral test battery for mouse models of Angelman syndrome: A powerful tool for testing drugs and novel Ube3a mutants. Mol. Autism. 2018;9:1–19. doi: 10.1186/s13229-018-0231-7. PubMed DOI PMC
Albrecht U., Sutcliffe J.S., Cattanach B.M., Beechey C.V., Armstrong D., Eichele G., Beaudet A.L. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat. Genet. 1997;17:75–78. doi: 10.1038/ng0997-75. PubMed DOI
Jiang Y.-H., Pan Y., Zhu L., Landa L., Yoo J., Spencer C., Lorenzo I., Brilliant M., Noebels J., Beaudet A.L. Altered Ultrasonic Vocalization and Impaired Learning and Memory in Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3. PLoS ONE. 2010;5:e12278. doi: 10.1371/journal.pone.0012278. PubMed DOI PMC
Avagliano Trezza R., Sonzogni M., Bossuyt S.N.V., Zampeta F.I., Punt A.M., van den Berg M., Rotaru D.C., Koene L.M.C., Munshi S.T., Stedehouder J. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is asso-ciated with Angelman syndrome. Nat. Neurosci. 2019;22:1235–1247. doi: 10.1038/s41593-019-0425-0. PubMed DOI
Gabriel J.M., Gabriel J.M., Merchant M., Ohta T., Ji Y., Caldwell R.G., Ramsey M.J., Tucker J.D., Longnecker R., Nicholls R.D. A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and angelman syn-dromes. Proc. Natl. Acad. Sci. USA. 1999;96:9258–9263. doi: 10.1073/pnas.96.16.9258. PubMed DOI PMC
Jiang Y.H., Armstrong D., Albrecht U., Atkins C.M., Noebels J.L., Eichele G., Sweatt J.D., Beaudet A.L. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of con-textual learning and long-term potentiation. Neuron. 1998;21:799–811. doi: 10.1016/S0896-6273(00)80596-6. PubMed DOI
Wang T., Van Woerden G.M., Elgersma Y., Borst J.G.G. Enhanced Transmission at the Calyx of Held Synapse in a Mouse Model for Angelman Syndrome. Front. Cell. Neurosci. 2018;11:418. doi: 10.3389/fncel.2017.00418. PubMed DOI PMC
Ube3a Mouse Gene Details | Ubiquitin Protein Ligase E3A | International Mouse Phenotyping Consortium. [(accessed on 25 March 2022)]. Available online: https://www.mousephenotype.org/
Berrios J., Stamatakis A.M., Kantak P.A., McElligott Z.A., Judson M.C., Aita M., Rougie M., Stuber G.D., Philpot B.D. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat. Commun. 2016;7:10702. doi: 10.1038/ncomms10702. PubMed DOI PMC
Silva-Santos S., Van Woerden G.M., Bruinsma C.F., Mientjes E., Jolfaei M.A., Distel B., Kushner S., Elgersma Y. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J. Clin. Investig. 2015;125:2069–2076. doi: 10.1172/JCI80554. PubMed DOI PMC
Skarnes W.C., Rosen B., West A.P., Koutsourakis M., Bushell W., Iyer V., Mujica A.O., Thomas M., Harrow J., Cox T., et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–342. doi: 10.1038/nature10163. PubMed DOI PMC
Smith S.E.P., Zhou Y.-D., Zhang G., Jin Z., Stoppel D.C., Anderson M.P. Increased Gene Dosage of Ube3a Results in Autism Traits and Decreased Glutamate Synaptic Transmission in Mice. Sci. Transl. Med. 2011;3:103ra97. doi: 10.1126/scitranslmed.3002627. PubMed DOI PMC
Krishnan V., Stoppel D.C., Nong Y., Johnson M.A., Nadler M.J.S., Ozkaynak E., Teng B.L., Nagakura I., Mohammad F., Silva M.A., et al. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. Nature. 2017;543:507–512. doi: 10.1038/nature21678. PubMed DOI PMC
Matsumoto A., Kumagai T., Miura K., Miyazaki S., Hayakawa C., Yamanaka T. Epilepsy in Angelman Syndrome Associated with Chromosome 15q Deletion. Epilepsia. 1992;33:1083–1090. doi: 10.1111/j.1528-1157.1992.tb01763.x. PubMed DOI
Dindot S.V., Antalffy B.A., Bhattacharjee M.B., Beaudet A.L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 2007;17:111–118. doi: 10.1093/hmg/ddm288. PubMed DOI
Copping N.A., Christian S.G.B., Ritter D.G., Islam M.S., Buscher N., Zolkowska D., Pride M.C., Berg E.L., LaSalle J.M., Ellegood J., et al. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum. Mol. Genet. 2017;26:3995–4010. doi: 10.1093/hmg/ddx289. PubMed DOI PMC
The Jackson Laboratory, I.o.f.T.J.L., Bar Harbor, ME Unpublished. 2005–2017. [(accessed on 25 March 2022)]. Available online: https://www.jax.org/
Miura K., Kishino T., Li E., Webber H., Dikkes P., Holmes G.L., Wagstaff J. Neurobehavioral and Electroencephalographic Abnormalities in Ube3aMaternal-Deficient Mice. Neurobiol. Dis. 2002;9:149–159. doi: 10.1006/nbdi.2001.0463. PubMed DOI
Tsai T.F., Jiang Y.H., Bressler J., Armstrong D., Beaudet A.L. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial le-thality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet. 1999;8:1357–1364. doi: 10.1093/hmg/8.8.1357. PubMed DOI
Russell L.B., Montgomery C.S., Cacheiro N.L., Johnson D.K. Complementation analyses for 45 mutations encompassing the pink-eyed dilution (p) locus of the mouse. Genetics. 1995;141:1547–1562. doi: 10.1093/genetics/141.4.1547. PubMed DOI PMC
Rotaru D.C., Mientjes E.J., Elgersma Y. Angelman Syndrome: From Mouse Models to Therapy. Neuroscience. 2020;445:172–189. doi: 10.1016/j.neuroscience.2020.02.017. PubMed DOI
Born H.A., Dao A.T., Levine A.T., Lee W.L., Mehta N.M., Mehra S., Weeber E.J., Anderson A.E. Strain-dependence of the Angelman Syndrome phenotypes in Ube3a maternal deficiency mice. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-017-08825-x. PubMed DOI PMC
Shiotsuki H., Yoshimi K., Shimo Y., Funayama M., Takamatsu Y., Ikeda K., Takahashi R., Kitazawa S., Hattori N. A rotarod test for evaluation of motor skill learning. J. Neurosci. Methods. 2010;189:180–185. doi: 10.1016/j.jneumeth.2010.03.026. PubMed DOI
Hampton T.G., Kale A., Amende I., Tang W., McCue S., Bhagavan H.N., VanDongen C.G. Gait Disturbances in Dystrophic Hamsters. J. Biomed. Biotechnol. 2011;2011:1–8. doi: 10.1155/2011/235354. PubMed DOI PMC
Porsolt R.D., Bertin A., Jalfre M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977;229:327–336. PubMed
Kulesskaya N., Voikar V. Assessment of mouse anxiety-like behavior in the light–dark box and open-field arena: Role of equipment and procedure. Physiol. Behav. 2014;133:30–38. doi: 10.1016/j.physbeh.2014.05.006. PubMed DOI
Lister R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology. 1987;92:180–185. doi: 10.1007/BF00177912. PubMed DOI
Chiba A.A., Kesner R.P., Reynolds A.M. Memory for spatial location as a function of temporal lag in rats: Role of hip-pocampus and medial prefrontal cortex. Behav. Neural Biol. 1994;61:123–131. doi: 10.1016/S0163-1047(05)80065-2. PubMed DOI
Youn J., Ellenbroek B.A., van Eck I., Roubos S., Verhage M., Stiedl O. Finding the right motivation: Genotype-dependent differences in effective reinforcements for spatial learning. Behav. Brain Res. 2012;226:397–403. doi: 10.1016/j.bbr.2011.09.034. PubMed DOI
O’Leary T.P., Brown R.E. The effects of apparatus design and test procedure on learning and memory performance of C57BL/6J mice on the Barnes maze. J. Neurosci. Methods. 2012;203:315–324. doi: 10.1016/j.jneumeth.2011.09.027. PubMed DOI
Benner S., Endo T., Endo N., Kakeyama M., Tohyama C. Early deprivation induces competitive subordinance in C57BL/6 male mice. Physiol. Behav. 2014;137:42–52. doi: 10.1016/j.physbeh.2014.06.018. PubMed DOI
Margolis S.S., Sell G.L., Zbinden M.A., Bird L.M. Angelman Syndrome. Neurotherapeutics. 2015;12:641–650. doi: 10.1007/s13311-015-0361-y. PubMed DOI PMC
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods. 2014;234:139–146. doi: 10.1016/j.jneumeth.2014.02.001. PubMed DOI
Yamasaki K., Joh K., Ohta T., Masuzaki H., Ishimaru T., Mukai T., Niikawa N., Ogawa M., Wagstaff J., Kishino T. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum. Mol. Genet. 2003;12:837–847. doi: 10.1093/hmg/ddg106. PubMed DOI
Duca D.G., Craiu D., Boer M., Chirieac S.M., Arghir A., Tutulan-Cunita A., Barca D., Iliescu C., Lungeanu A., Magureanu S., et al. Diagnostic approach of angelman syndrome. Maedica (Bucur) 2013;8:321–327. PubMed PMC
Heck D., Zhao Y., Roy S., LeDoux M.S., Reiter L.T. Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum. Mol. Genet. 2008;17:2181–2189. doi: 10.1093/hmg/ddn117. PubMed DOI PMC
Berg E.L., Petkova S.P., Born H.A., Adhikari A., Anderson A.E., Silverman J.L. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol. Autism. 2021;12:1–16. doi: 10.1186/s13229-021-00467-1. PubMed DOI PMC
Dodge A., Peters M.M., Greene H.E., Dietrick C., Botelho R., Chung D., Willman J., Nenninger A.W., Ciarlone S., Kamath S.G., et al. Generation of a Novel Rat Model of Angelman Syndrome with a Complete Ube3a Gene Deletion. Autism Res. 2020;13:397–409. doi: 10.1002/aur.2267. PubMed DOI PMC
Rostosky C.M., Milošević I. Gait Analysis of Age-dependent Motor Impairments in Mice with Neurodegeneration. J. Vis. Exp. 2018;136:e57752. doi: 10.3791/57752. PubMed DOI PMC
Rinalduzzi S., Trompetto C., Marinelli L., Alibardi A., Missori P., Fattapposta F., Pierelli F., Currà A. Balance dysfunction in Parkinson’s disease. Biomed. Res. Int. 2015;2015:434683. doi: 10.1155/2015/434683. PubMed DOI PMC
Dan B., Pelc K., Cheron G. Behavior and neuropsychiatric manifestations in Angelman syndrome. Neuropsychiatr. Dis. Treat. 2008;4:577–584. doi: 10.2147/NDT.S2749. PubMed DOI PMC
Huang H.-S., Burns A.J., Nonneman R.J., Baker L.K., Riddick N.V., Nikolova V.D., Riday T.T., Yashiro K., Philpot B.D., Moy S.S. Behavioral deficits in an Angelman syndrome model: Effects of genetic background and age. Behav. Brain Res. 2013;243:79–90. doi: 10.1016/j.bbr.2012.12.052. PubMed DOI PMC
Maranga C., Fernandes T.G., Bekman E., Da Rocha S.T. Angelman syndrome: A journey through the brain. FEBS J. 2020;287:2154–2175. doi: 10.1111/febs.15258. PubMed DOI
Moy S.S., Nadler J.J., Young N.B., Nonneman R.J., Segall S.K., Andrade G.M., Crawley J.N., Magnuson T.R. Social approach and repetitive behavior in eleven inbred mouse strains. Behav. Brain Res. 2008;191:118–129. doi: 10.1016/j.bbr.2008.03.015. PubMed DOI PMC
Silverman J.L., Yang M., Lord C., Crawley J.N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 2010;11:490–502. doi: 10.1038/nrn2851. PubMed DOI PMC
Guariglia S.R., Chadman K.K. Water T-maze: A useful assay for determination of repetitive behaviors in mice. J. Neurosci. Methods. 2013;220:24–29. doi: 10.1016/j.jneumeth.2013.08.019. PubMed DOI
Heinz D.E., Schöttle V.A., Nemcova P., Binder F.P., Ebert T., Domschke K., Wotjak C.T. Exploratory drive, fear, and anxiety are dissociable and independent components in foraging mice. Transl. Psychiatry. 2021;11:1–12. doi: 10.1038/s41398-021-01458-9. PubMed DOI PMC
Sarkar P.A., Shigli A., Patidar C. Happy Puppet syndrome. BMJ Case Rep. 2011;2011:bcr0920114747. doi: 10.1136/bcr.09.2011.4747. PubMed DOI PMC
Ter Horst J.P., De Kloet E.R., Schächinger H., Oitzl M.S. Relevance of Stress and Female Sex Hormones for Emotion and Cognition. Cell. Mol. Neurobiol. 2011;32:725–735. doi: 10.1007/s10571-011-9774-2. PubMed DOI PMC
Marques A.A., Bevilaqua M.C.D.N., da Fonseca A.M.P., Nardi A.E., Thuret S., Dias G.P. Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis. Neural Plast. 2016;2016:1–14. doi: 10.1155/2016/5026713. PubMed DOI PMC