Generation and Characterization of a Novel Angelman Syndrome Mouse Model with a Full Deletion of the Ube3a Gene

. 2022 Sep 09 ; 11 (18) : . [epub] 20220909

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36139390

Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficits in maternally inherited UBE3A. The disease is characterized by intellectual disability, impaired motor skills, and behavioral deficits, including increased anxiety and autism spectrum disorder features. The mouse models used so far in AS research recapitulate most of the cardinal AS characteristics. However, they do not mimic the situation found in the majority of AS patients who have a large deletion spanning 4-6 Mb. There is also a large variability in phenotypes reported in the available models, which altogether limits development of therapeutics. Therefore, we have generated a mouse model in which the Ube3a gene is deleted entirely from the 5' UTR to the 3' UTR of mouse Ube3a isoform 2, resulting in a deletion of 76 kb. To investigate its phenotypic suitability as a model for AS, we employed a battery of behavioral tests directed to reveal AS pathology and to find out whether this model better mirrors AS development compared to other available models. We found that the maternally inherited Ube3a-deficient line exhibits robust motor dysfunction, as seen in the rotarod and DigiGait tests, and displays abnormalities in additional behavioral paradigms, including reduced nest building and hypoactivity, although no apparent cognitive phenotype was observed in the Barnes maze and novel object recognition tests. The AS mice did, however, underperform in more complex cognition tasks, such as place reversal in the IntelliCage system, and exhibited a different circadian rhythm activity pattern. We show that the novel UBE3A-deficient model, based on a whole-gene deletion, is suitable for AS research, as it recapitulates important phenotypes characteristic of AS. This new mouse model provides complementary possibilities to study the Ube3a gene and its function in health and disease as well as possible therapeutic interventions to restore function.

Zobrazit více v PubMed

layton-Smith J., Laan L. Angelman syndrome: A review of the clinical and genetic aspects. J. Med. Genet. 2003;40:87–95. doi: 10.1136/jmg.40.2.87. PubMed DOI PMC

Jolleff N., Ryan M.M. Communication development in Angelman’s syndrome. Arch. Dis. Child. 1993;69:148–150. doi: 10.1136/adc.69.1.148. PubMed DOI PMC

Viani F., Romeo A., Viri M., Mastrangelo M., Lalatta F., Selicorni A., Gobbi G., Lanzi G., Bettio D., Briscioli V., et al. Seizure and EEG Patterns in Angelman’s Syndrome. J. Child. Neurol. 1995;10:467–471. doi: 10.1177/088307389501000609. PubMed DOI

Meng L., Person R.E., Beaudet A.L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet. 2012;21:3001–3012. doi: 10.1093/hmg/dds130. PubMed DOI PMC

Sandanam T., Beange H., Robson L., Woolnough H., Buchholz T., Smith A. Manifestations in institutionalised adults with Angelman syndrome due to deletion. Am. J. Med. Genet. 1997;70:415–420. doi: 10.1002/(SICI)1096-8628(19970627)70:4<415::AID-AJMG16>3.0.CO;2-K. PubMed DOI

Malcolm S., Clayton-Smith J., Nichols M., Pembrey M., Armour J., Jeffreys A., Robb S., Webb T. Uniparental paternal disomy in Angelman’s syndrome. Lancet. 1991;337:694–697. doi: 10.1016/0140-6736(91)90278-W. PubMed DOI

Buiting K., Gross S., Lich C., Gillessen-Kaesbach G., el-Maarri O., Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: A molecular study of 136 patients with an im-printing defect. Am. J. Hum. Genet. 2003;72:571–577. doi: 10.1086/367926. PubMed DOI PMC

Matsuura T., Sutcliffe J.S., Fang P., Galjaard R.-J., Jiang Y.-H., Benton C.S., Rommens J.M., Beaudet A.L. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat. Genet. 1997;15:74–77. doi: 10.1038/ng0197-74. PubMed DOI

Kishino T., Lalande M., Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 1997;15:70–73. doi: 10.1038/ng0197-70. PubMed DOI

Syding L.A., Nickl P., Kasparek P., Sedlacek R. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells. 2020;9:993. doi: 10.3390/cells9040993. PubMed DOI PMC

Williams C.A., Beaudet A.L., Clayton-Smith J., Knoll J.H., Kyllerman M., Laan L.A., Magenis R.E., Moncla A., Schinzel A.A., Summers J.A., et al. Angelman syndrome 2005: Updated consensus for diagnostic criteria. Am. J. Med. Genet. Part A. 2006;140A:413–418. doi: 10.1002/ajmg.a.31074. PubMed DOI

Koyavski L., Panov J., Simchi L., Rayi P.R., Sharvit L., Feuermann Y., Kaphzan H. Sex-Dependent Sensory Phenotypes and Related Transcriptomic Expression Profiles Are Differentially Affected by Angelman Syndrome. Mol. Neurobiol. 2019;56:5998–6016. doi: 10.1007/s12035-019-1503-8. PubMed DOI

van Woerden G.M., Harris K.D., Hojjati M.R., Gustin R.M., Qiu S., de Avila Freire R., Jiang Y.H., Elgersma Y., Weeber E.J. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat. Neurosci. 2007;10:280–282. doi: 10.1038/nn1845. PubMed DOI

Sidorov M.S., Judson M.C., Kim H., Rougie M., Ferrer A.I., Nikolova V.D., Riddick N.V., Moy S.S., Philpot B.D. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome. J. Neurosci. 2018;38:2671–2682. doi: 10.1523/JNEUROSCI.2828-17.2018. PubMed DOI PMC

Sonzogni M., Wallaard I., Santos S.S., Kingma J., Du Mee D., Van Woerden G.M., Elgersma Y. A behavioral test battery for mouse models of Angelman syndrome: A powerful tool for testing drugs and novel Ube3a mutants. Mol. Autism. 2018;9:1–19. doi: 10.1186/s13229-018-0231-7. PubMed DOI PMC

Albrecht U., Sutcliffe J.S., Cattanach B.M., Beechey C.V., Armstrong D., Eichele G., Beaudet A.L. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat. Genet. 1997;17:75–78. doi: 10.1038/ng0997-75. PubMed DOI

Jiang Y.-H., Pan Y., Zhu L., Landa L., Yoo J., Spencer C., Lorenzo I., Brilliant M., Noebels J., Beaudet A.L. Altered Ultrasonic Vocalization and Impaired Learning and Memory in Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3. PLoS ONE. 2010;5:e12278. doi: 10.1371/journal.pone.0012278. PubMed DOI PMC

Avagliano Trezza R., Sonzogni M., Bossuyt S.N.V., Zampeta F.I., Punt A.M., van den Berg M., Rotaru D.C., Koene L.M.C., Munshi S.T., Stedehouder J. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is asso-ciated with Angelman syndrome. Nat. Neurosci. 2019;22:1235–1247. doi: 10.1038/s41593-019-0425-0. PubMed DOI

Gabriel J.M., Gabriel J.M., Merchant M., Ohta T., Ji Y., Caldwell R.G., Ramsey M.J., Tucker J.D., Longnecker R., Nicholls R.D. A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and angelman syn-dromes. Proc. Natl. Acad. Sci. USA. 1999;96:9258–9263. doi: 10.1073/pnas.96.16.9258. PubMed DOI PMC

Jiang Y.H., Armstrong D., Albrecht U., Atkins C.M., Noebels J.L., Eichele G., Sweatt J.D., Beaudet A.L. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of con-textual learning and long-term potentiation. Neuron. 1998;21:799–811. doi: 10.1016/S0896-6273(00)80596-6. PubMed DOI

Wang T., Van Woerden G.M., Elgersma Y., Borst J.G.G. Enhanced Transmission at the Calyx of Held Synapse in a Mouse Model for Angelman Syndrome. Front. Cell. Neurosci. 2018;11:418. doi: 10.3389/fncel.2017.00418. PubMed DOI PMC

Ube3a Mouse Gene Details | Ubiquitin Protein Ligase E3A | International Mouse Phenotyping Consortium. [(accessed on 25 March 2022)]. Available online: https://www.mousephenotype.org/

Berrios J., Stamatakis A.M., Kantak P.A., McElligott Z.A., Judson M.C., Aita M., Rougie M., Stuber G.D., Philpot B.D. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat. Commun. 2016;7:10702. doi: 10.1038/ncomms10702. PubMed DOI PMC

Silva-Santos S., Van Woerden G.M., Bruinsma C.F., Mientjes E., Jolfaei M.A., Distel B., Kushner S., Elgersma Y. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J. Clin. Investig. 2015;125:2069–2076. doi: 10.1172/JCI80554. PubMed DOI PMC

Skarnes W.C., Rosen B., West A.P., Koutsourakis M., Bushell W., Iyer V., Mujica A.O., Thomas M., Harrow J., Cox T., et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–342. doi: 10.1038/nature10163. PubMed DOI PMC

Smith S.E.P., Zhou Y.-D., Zhang G., Jin Z., Stoppel D.C., Anderson M.P. Increased Gene Dosage of Ube3a Results in Autism Traits and Decreased Glutamate Synaptic Transmission in Mice. Sci. Transl. Med. 2011;3:103ra97. doi: 10.1126/scitranslmed.3002627. PubMed DOI PMC

Krishnan V., Stoppel D.C., Nong Y., Johnson M.A., Nadler M.J.S., Ozkaynak E., Teng B.L., Nagakura I., Mohammad F., Silva M.A., et al. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. Nature. 2017;543:507–512. doi: 10.1038/nature21678. PubMed DOI PMC

Matsumoto A., Kumagai T., Miura K., Miyazaki S., Hayakawa C., Yamanaka T. Epilepsy in Angelman Syndrome Associated with Chromosome 15q Deletion. Epilepsia. 1992;33:1083–1090. doi: 10.1111/j.1528-1157.1992.tb01763.x. PubMed DOI

Dindot S.V., Antalffy B.A., Bhattacharjee M.B., Beaudet A.L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 2007;17:111–118. doi: 10.1093/hmg/ddm288. PubMed DOI

Copping N.A., Christian S.G.B., Ritter D.G., Islam M.S., Buscher N., Zolkowska D., Pride M.C., Berg E.L., LaSalle J.M., Ellegood J., et al. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum. Mol. Genet. 2017;26:3995–4010. doi: 10.1093/hmg/ddx289. PubMed DOI PMC

The Jackson Laboratory, I.o.f.T.J.L., Bar Harbor, ME Unpublished. 2005–2017. [(accessed on 25 March 2022)]. Available online: https://www.jax.org/

Miura K., Kishino T., Li E., Webber H., Dikkes P., Holmes G.L., Wagstaff J. Neurobehavioral and Electroencephalographic Abnormalities in Ube3aMaternal-Deficient Mice. Neurobiol. Dis. 2002;9:149–159. doi: 10.1006/nbdi.2001.0463. PubMed DOI

Tsai T.F., Jiang Y.H., Bressler J., Armstrong D., Beaudet A.L. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial le-thality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet. 1999;8:1357–1364. doi: 10.1093/hmg/8.8.1357. PubMed DOI

Russell L.B., Montgomery C.S., Cacheiro N.L., Johnson D.K. Complementation analyses for 45 mutations encompassing the pink-eyed dilution (p) locus of the mouse. Genetics. 1995;141:1547–1562. doi: 10.1093/genetics/141.4.1547. PubMed DOI PMC

Rotaru D.C., Mientjes E.J., Elgersma Y. Angelman Syndrome: From Mouse Models to Therapy. Neuroscience. 2020;445:172–189. doi: 10.1016/j.neuroscience.2020.02.017. PubMed DOI

Born H.A., Dao A.T., Levine A.T., Lee W.L., Mehta N.M., Mehra S., Weeber E.J., Anderson A.E. Strain-dependence of the Angelman Syndrome phenotypes in Ube3a maternal deficiency mice. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-017-08825-x. PubMed DOI PMC

Shiotsuki H., Yoshimi K., Shimo Y., Funayama M., Takamatsu Y., Ikeda K., Takahashi R., Kitazawa S., Hattori N. A rotarod test for evaluation of motor skill learning. J. Neurosci. Methods. 2010;189:180–185. doi: 10.1016/j.jneumeth.2010.03.026. PubMed DOI

Hampton T.G., Kale A., Amende I., Tang W., McCue S., Bhagavan H.N., VanDongen C.G. Gait Disturbances in Dystrophic Hamsters. J. Biomed. Biotechnol. 2011;2011:1–8. doi: 10.1155/2011/235354. PubMed DOI PMC

Porsolt R.D., Bertin A., Jalfre M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977;229:327–336. PubMed

Kulesskaya N., Voikar V. Assessment of mouse anxiety-like behavior in the light–dark box and open-field arena: Role of equipment and procedure. Physiol. Behav. 2014;133:30–38. doi: 10.1016/j.physbeh.2014.05.006. PubMed DOI

Lister R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology. 1987;92:180–185. doi: 10.1007/BF00177912. PubMed DOI

Chiba A.A., Kesner R.P., Reynolds A.M. Memory for spatial location as a function of temporal lag in rats: Role of hip-pocampus and medial prefrontal cortex. Behav. Neural Biol. 1994;61:123–131. doi: 10.1016/S0163-1047(05)80065-2. PubMed DOI

Youn J., Ellenbroek B.A., van Eck I., Roubos S., Verhage M., Stiedl O. Finding the right motivation: Genotype-dependent differences in effective reinforcements for spatial learning. Behav. Brain Res. 2012;226:397–403. doi: 10.1016/j.bbr.2011.09.034. PubMed DOI

O’Leary T.P., Brown R.E. The effects of apparatus design and test procedure on learning and memory performance of C57BL/6J mice on the Barnes maze. J. Neurosci. Methods. 2012;203:315–324. doi: 10.1016/j.jneumeth.2011.09.027. PubMed DOI

Benner S., Endo T., Endo N., Kakeyama M., Tohyama C. Early deprivation induces competitive subordinance in C57BL/6 male mice. Physiol. Behav. 2014;137:42–52. doi: 10.1016/j.physbeh.2014.06.018. PubMed DOI

Margolis S.S., Sell G.L., Zbinden M.A., Bird L.M. Angelman Syndrome. Neurotherapeutics. 2015;12:641–650. doi: 10.1007/s13311-015-0361-y. PubMed DOI PMC

Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods. 2014;234:139–146. doi: 10.1016/j.jneumeth.2014.02.001. PubMed DOI

Yamasaki K., Joh K., Ohta T., Masuzaki H., Ishimaru T., Mukai T., Niikawa N., Ogawa M., Wagstaff J., Kishino T. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum. Mol. Genet. 2003;12:837–847. doi: 10.1093/hmg/ddg106. PubMed DOI

Duca D.G., Craiu D., Boer M., Chirieac S.M., Arghir A., Tutulan-Cunita A., Barca D., Iliescu C., Lungeanu A., Magureanu S., et al. Diagnostic approach of angelman syndrome. Maedica (Bucur) 2013;8:321–327. PubMed PMC

Heck D., Zhao Y., Roy S., LeDoux M.S., Reiter L.T. Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum. Mol. Genet. 2008;17:2181–2189. doi: 10.1093/hmg/ddn117. PubMed DOI PMC

Berg E.L., Petkova S.P., Born H.A., Adhikari A., Anderson A.E., Silverman J.L. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol. Autism. 2021;12:1–16. doi: 10.1186/s13229-021-00467-1. PubMed DOI PMC

Dodge A., Peters M.M., Greene H.E., Dietrick C., Botelho R., Chung D., Willman J., Nenninger A.W., Ciarlone S., Kamath S.G., et al. Generation of a Novel Rat Model of Angelman Syndrome with a Complete Ube3a Gene Deletion. Autism Res. 2020;13:397–409. doi: 10.1002/aur.2267. PubMed DOI PMC

Rostosky C.M., Milošević I. Gait Analysis of Age-dependent Motor Impairments in Mice with Neurodegeneration. J. Vis. Exp. 2018;136:e57752. doi: 10.3791/57752. PubMed DOI PMC

Rinalduzzi S., Trompetto C., Marinelli L., Alibardi A., Missori P., Fattapposta F., Pierelli F., Currà A. Balance dysfunction in Parkinson’s disease. Biomed. Res. Int. 2015;2015:434683. doi: 10.1155/2015/434683. PubMed DOI PMC

Dan B., Pelc K., Cheron G. Behavior and neuropsychiatric manifestations in Angelman syndrome. Neuropsychiatr. Dis. Treat. 2008;4:577–584. doi: 10.2147/NDT.S2749. PubMed DOI PMC

Huang H.-S., Burns A.J., Nonneman R.J., Baker L.K., Riddick N.V., Nikolova V.D., Riday T.T., Yashiro K., Philpot B.D., Moy S.S. Behavioral deficits in an Angelman syndrome model: Effects of genetic background and age. Behav. Brain Res. 2013;243:79–90. doi: 10.1016/j.bbr.2012.12.052. PubMed DOI PMC

Maranga C., Fernandes T.G., Bekman E., Da Rocha S.T. Angelman syndrome: A journey through the brain. FEBS J. 2020;287:2154–2175. doi: 10.1111/febs.15258. PubMed DOI

Moy S.S., Nadler J.J., Young N.B., Nonneman R.J., Segall S.K., Andrade G.M., Crawley J.N., Magnuson T.R. Social approach and repetitive behavior in eleven inbred mouse strains. Behav. Brain Res. 2008;191:118–129. doi: 10.1016/j.bbr.2008.03.015. PubMed DOI PMC

Silverman J.L., Yang M., Lord C., Crawley J.N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 2010;11:490–502. doi: 10.1038/nrn2851. PubMed DOI PMC

Guariglia S.R., Chadman K.K. Water T-maze: A useful assay for determination of repetitive behaviors in mice. J. Neurosci. Methods. 2013;220:24–29. doi: 10.1016/j.jneumeth.2013.08.019. PubMed DOI

Heinz D.E., Schöttle V.A., Nemcova P., Binder F.P., Ebert T., Domschke K., Wotjak C.T. Exploratory drive, fear, and anxiety are dissociable and independent components in foraging mice. Transl. Psychiatry. 2021;11:1–12. doi: 10.1038/s41398-021-01458-9. PubMed DOI PMC

Sarkar P.A., Shigli A., Patidar C. Happy Puppet syndrome. BMJ Case Rep. 2011;2011:bcr0920114747. doi: 10.1136/bcr.09.2011.4747. PubMed DOI PMC

Ter Horst J.P., De Kloet E.R., Schächinger H., Oitzl M.S. Relevance of Stress and Female Sex Hormones for Emotion and Cognition. Cell. Mol. Neurobiol. 2011;32:725–735. doi: 10.1007/s10571-011-9774-2. PubMed DOI PMC

Marques A.A., Bevilaqua M.C.D.N., da Fonseca A.M.P., Nardi A.E., Thuret S., Dias G.P. Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis. Neural Plast. 2016;2016:1–14. doi: 10.1155/2016/5026713. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace