Determination of Maximum Oil Yield, Quality Indicators and Absorbance Spectra of Hulled Sunflower Seeds Oil Extraction under Axial Loading
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA 2020: 31130/1312/2114
Internal Grant Agency of Czech University of Life Sciences Prague
PubMed
36140994
PubMed Central
PMC9498589
DOI
10.3390/foods11182866
PII: foods11182866
Knihovny.cz E-resources
- Keywords
- edible oilseeds, heating temperatures, laboratory production, oil recovery, quality usage,
- Publication type
- Journal Article MeSH
The present study aims to estimate the maximum oil yield of hulled sunflower seed samples in a uniaxial process under a load of 40 kN and speed of 4 mm/min. The oil samples were assessed for their quality parameters and spectra curves within the wavelength range of 325-600 nm. The results show that heating temperatures in the range of 40 °C to 80 °C increased the oil output; however, a maximum oil yield of 48.869 ± 6.023% with a minimum energy of 533.709 ± 65.644 J at the fifth repeated pressing was obtained from the unheated sample compared to the heated samples. The peroxide values ranged from 6.898 ± 0.144 to 7.290 ± 0.507 meq O2/kg, acid values from 1.043 ± 0.166 to 1.998 ± 0.276 mg KOH/g oil and free fatty acid values from 0.521 ± 0.083 to 0.999 ± 0.138 mg KOH/g oil, which were within the recommended quality threshold. There were significant spectral differences among the oil samples. A single absorbance peak was observed at 350 nm for all oil samples, indicating low levels of pigment molecules in the oil. The study revealed the need for repeated pressings to recover the considerable residual oil remaining in the seedcake after the first pressing.
See more in PubMed
Stevenson D.G., Eller F.J., Wang L., Jane J.L., Inglett G.E. Oil and Tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007;55:4005–4013. doi: 10.1021/jf0706979. PubMed DOI
Chatepa L.E.C., Uluko H., Masamba K. Comparison of oil quality extracted from selected conventional and non conventional sources of vegetable oil from Malawi. Afr. J. Biotechnol. 2019;18:171–180.
Gotor A.A., Rhazi L. Effects of refining process on sunflower oil minor components: A review. OCL. 2016;23:D207. doi: 10.1051/ocl/2016007. DOI
Teixeira M.R., Nogueira R., Nunes L.M. Quantitative assessment of the valorization of used cooking oils in 23 countries. Waste Manag. 2018;78:611–620. doi: 10.1016/j.wasman.2018.06.039. PubMed DOI
Mitrea L., Teleky B.-E., Leopold L.-F., Nemes S.-A., Plamada D., Dulf F.V., Pop I.-D., Vodnar D.C. The physicochemical properties of five vegetable oils exposed at high temperature for a short-time-interval. J. Food Compost. Anal. 2022;106:104305. doi: 10.1016/j.jfca.2021.104305. DOI
Ng T.-T., So P.K., Zheng B.O., Yao Z.-P. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chim. Acta. 2015;884:70–76. doi: 10.1016/j.aca.2015.05.013. PubMed DOI
Rifna E.J., Pandiselvam R., Kothakota A., Rao K.V.S., Dwivedi M., Kumar M., Thirumdas R., Ramesh S.V. Advanced process analytical tools for identification of adulterants in edible oils—A review. Food Chem. 2022;369:130898. doi: 10.1016/j.foodchem.2021.130898. PubMed DOI
Dimitrijevic A., Horn R. Sunflower hybrid breeding: From markers to genomic selection. Front. Plant Sci. 2018;8:2238. doi: 10.3389/fpls.2017.02238. PubMed DOI PMC
Martinez A.L., Quiroz F.J., Carrera A.D. Detection of Plasmopara halstedii in sunflower seeds: A case study using molecular testing. J. Saudi Soc. Agric. Sci. 2021;20:395–400.
Dean C. Coconut oil for Alzheimer’s. J. Am. Acad. Physician Assist. 2012;25:1–5.
Sandupama P., Munasinghe D., Jayasinghe M. Coconut oil as a therapeutic treatment for alzheimer’s disease: A review. J. Future Foods. 2022;2:41–52. doi: 10.1016/j.jfutfo.2022.03.016. DOI
Kumar K.A., Viswanathan K. Study of UV transmission through a few edible oils and chicken oil. J. Spectrosc. 2013;2013:540417.
Liu R., Lu M., Zhang Z., Chang M., Wang X. Evaluation of the antioxidant properties of micronutrients in different vegetable oils. Eur. J. Lipid Sci. Technol. 2020;122:1900079. doi: 10.1002/ejlt.201900079. DOI
Cai Z., Li K., Lee W.J., Reaney M.T.J., Zhang N., Wang Y. Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review. Fundam. Res. 2021;6:767–784. doi: 10.1016/j.fmre.2021.06.022. DOI
Savoire R. Screw pressing applications to oilseeds. Ref. Modul. Food Sci. 2017 doi: 10.1016/B978-0-08-100596-5.21191-8. DOI
Savoire R., Lanoiselle J.L., Vorobiev E. Mechanical continuous oil expression from oilseeds. A review. Food Bioprocess Technol. 2013;6:1–16. doi: 10.1007/s11947-012-0947-x. DOI
Singh K.K., Wiesenborn D., Kangas N., Tostenson K. Screw pressing characteristics of dehulled crambe seed. Trans. ASABE. 2004;47:199–204. doi: 10.13031/2013.15848. DOI
Bogaert L., Mathieu H., Mhemdi H., Vorobiev E. Characterization of oilseeds mechanical expression in an instrumented pilot screw press. Ind. Crops. Prod. 2018;121:106–113. doi: 10.1016/j.indcrop.2018.04.039. DOI
Mpagalile J.J., Clarke B. Effect of processing parameters on coconut oil expression efficiencies. Int. J. Food Sci. Nutr. 2005;56:125–132. doi: 10.1080/09637480500082058. PubMed DOI
Karaj S., Muller J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind. Crops. Prod. 2011;34:1010–1016. doi: 10.1016/j.indcrop.2011.03.009. DOI
Romuli S., Karaj S., Latif S., Muller J. Performance of mechanical co-extraction of Jatropha curcas L. kernels with rapeseed, maize or soybean with regard to oil recovery, press capacity and product quality. Ind. Crops. Prod. 2017;104:81–90. doi: 10.1016/j.indcrop.2017.03.035. DOI
Divisova M., Herak D., Kabutey A., Sigalingging R., Svatonova T. Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Sci. Agric. Bohem. 2014;45:180–186.
Munson-Mcgee S.H. D-optimal experimental designs for uniaxial expression. J. Food Process Eng. 2014;37:248–256. doi: 10.1111/jfpe.12080. DOI
Demirel C., Kabutey A., Herák D., Sedlaček A., Mizera Č., Dajbych O. Using Box–Behnken Design Coupled with Response Surface Methodology for Optimizing Rapeseed Oil Expression Parameters under Heating and Freezing Conditions. Processes. 2022;10:490. doi: 10.3390/pr10030490. DOI
Gupta R.K., Das S.K. Fracture resistance of sunflower seed and kernel to compressive loading. J. Food Eng. 2000;46:1–8. doi: 10.1016/S0260-8774(00)00061-3. DOI
Kabutey A., Mizera Č., Dajbych O., Hrabě P., Herák D., Demirel C. Modelling and Optimization of Processing Factors of Pumpkin Seeds Oil Extraction under Uniaxial Loading. Processes. 2021;9:540. doi: 10.3390/pr9030540. DOI
Kabutey A., Herak D., Mizera C., Hrabe P. Compressive loading experiment of non-roasted bulk oil palm kernels at varying pressing factors. Int. Agrophysics. 2018;32:357–363. doi: 10.1515/intag-2017-0020. DOI
Erum Z., Rehana S., Mehwish A.H., Anjum Y. Study of Physicochemical Properties of Edible Oil and Evaluation of Frying Oil Quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arab. J. Chem. 2014;10:3870–3876.
Herchi W., Ammar K.B., Bouali I., Abdallah I.B., Guetet A., Boukhchina S. Heating effects on physicochemical characteristics and antioxidant activity of flaxseed hull oil (Linum usitatissimum L.) Food Sci. Technol. 2016;36:97–102. doi: 10.1590/1678-457X.0109. DOI
Tang T.S. 8 Analysis of oleochemicals. Oleochem. Manu. Appl. 2001;4:227.
de Souza T.R.P., Olenka L., Peternella W.S. A study of degradation in vegetable oils by exposure to sunlight using Fourier Transform Infrared Spectroscopy. Mater. Sci. Appl. 2020;11:678–691. doi: 10.4236/msa.2020.1110046. DOI
Amadi B.A., Lele K.C., Duru M.K.C. Extraction and characterization of vegetable oils from legume and palmae; using African Oil Bean (Pentaclethra macrophylla) and ‘Akwu Ojukwu’ (Elais guineensis) respectively. Am. J. Biol. Life Sci. 2013;1:7–10.
Katkade M.B., Syed H.M., Andhale R.R., Farooqui A.S. Comparative study of physicochemical properties of different edible vegetable oils. J. Sci. Agric. Eng. 2018;8:235–238.
Adeyanju J.A., Ogunlakin G.O., Adekunle A.A., Alawode G.E., Majekolagbe O.S. Optimization of oil extraction from coconut using response surface methodology. J. Chem. Pharm. Res. 2016;8:374–381.
Ifa L., Syarif T., Sartia S., Juliani J., Nurdjannah N., Kusuma H.S. Techno-economics of coconut coir bioadsorbent utilization on free fatty acid level reduction in crude palm oil. Heliyon. 2022;8:e09146. doi: 10.1016/j.heliyon.2022.e09146. PubMed DOI PMC
Di Pietro M.E., Mannu A., Mele A. NMR determination of free fatty acids in vegetable oils. Processes. 2020;8:410. doi: 10.3390/pr8040410. DOI
Cammerer B., Kroh L.W. Shelf life of linseeds and peanuts in relation to roasting. Food Sci. Technol. 2009;42:545–549. doi: 10.1016/j.lwt.2008.08.003. DOI
Adejumo B.A., Inaede S.G., Adamu T.S. Effect of moisture content on the yield and characteristics of oil from valiculatum and V. calycinium. Pac. Sci. 2013;48:458–463.
Okene E.O., Evbuomwan B.O. Solvent extraction and characteristics of oil from coconut seeds using alternative solvents. Int. J. Eng. Technol. Res. 2014;2:135–138.
Atinafu D.G., Bedemo B. Estimation of total free fatty acid and cholesterol content in some commercial edible oils in Ethiopia, Bahir DAR. J. Cereals Oilseeds. 2011;2:71–76. doi: 10.5897/JCO11.025. DOI
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Konuskan D.B., Arslan M., Oksuz A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J. Biol. Sci. 2019;26:340–344. doi: 10.1016/j.sjbs.2018.04.005. PubMed DOI PMC
Codex Alimentarius Commission . Fats, Oils and Related Products. 2nd ed. Volume 8 Food and Agriculture Organizaation of the United Nations; Rome, Italy: 2001.
ISI . Indian Standard Institute. ISI; New Delhi, India: 1966. Indian Standard Methods for Analysis of Oilseeds. IS: 3579.
Blahovec J. Agromatereials Study Guide. Czech University of Life Sciences Prague; Prague, Czech Republic: 2008.
Keneni Y.G., Hvoslef-Eide A.K.T., Marchetti J.M. Mathematical modelling of the drying kinetics of Jatropha curcas L. seed. Ind. Crops. Prod. 2019;132:12–20. doi: 10.1016/j.indcrop.2019.02.012. DOI
Niu L., Li J., Chen M.S., Xu Z.F. Determination of oil contents in Sacha inchi (Plukenetia volubilis) seeds at different developmental stages by two methods: Soxhlet extraction and time-domain nuclear magnetic resonance. Ind. Crops. Prod. 2014;56:187–190. doi: 10.1016/j.indcrop.2014.03.007. DOI
Mohammadpour H., Sadrameli S.M., Eslami F., Asoodeh A. Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Ind. Crops. Prod. 2019;131:106–116. doi: 10.1016/j.indcrop.2019.01.030. DOI
Gürdil A.K.G., Kabutey A., Selvi K.C., Hrabe P., Herak D., Frankova A. Investigation of heating and freezing pretreatments of mechanical, chemical and spectral properties of bulk sunflower seeds and oil. Processes. 2020;8:411. doi: 10.3390/pr8040411. DOI
Deli S., Farah Masturah M., Tajul Aris Y., Wan Nadiah W.A. The effects of physical parameters of the screw press oil expeller on oil yield from Nigella sativa L. seeds. Int. Food Res. J. 2011;18:1367–1373.
Chanioti S., Constantina T. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT Food Sci. Technol. 2017;79:178–189. doi: 10.1016/j.lwt.2017.01.029. DOI
Lysiak G. Fracture toughness of pea: Weibull analysis. J. Food Eng. 2007;83:436–443. doi: 10.1016/j.jfoodeng.2007.03.034. DOI
Demirel C., Kabutey A., Herák D., Hrabě P., Mizera Č., Dajbych O. Optimizing Uniaxial Oil Extraction of Bulk Rapeseeds: Spectrophotometric and Chemical Analyses of the Extracted Oil under Pretreatment Temperatures and Heating Intervals. Processes. 2021;9:1755. doi: 10.3390/pr9101755. DOI
Orozco F.D.A., Sousa A.C., Araujo M.C.U., Domini C.E. A new flow UV-Vis kinetics spectrophotometric method based on photodegradative reaction for determining the oxidative stability of biodiesel. Fuel. 2020;26:116–197.
Statsoft Inc. STATISTICA for Windows. Statsoft Inc.; Tulsa, OK, USA: 2013.
Khan L.M., Hanna M.A. Expression of oil from oilseeds—A Review. J. Agric. Eng. Res. 1983;28:495–503. doi: 10.1016/0021-8634(83)90113-0. DOI
Li W.G., Sun X.L., Zu Y.G., Zhao X.H. Optimization peony seed oil extraction process at suitable temperature and physicochemical property analysis. Bull. Botan. Res. 2020;40:73–78.
Deng R., Gao J., Yi J., Liu P. Could peony seeds oil become a high-quality edible vegetable oils? The nutritional and phytochemistry profiles, extraction, health benefits, safety and value-added-products. Food Res. Int. 2022;156:111200. doi: 10.1016/j.foodres.2022.111200. PubMed DOI
Dodoo D., Adjei F., Tulashie S.K., Adukpoh K.E., Agbolegbe R.E., Gawou G., Manu G.P. Quality evaluation of different repeatedly heated vegetable oils for deep-frying of yam fries. Meas. Food. 2022;7:100035. doi: 10.1016/j.meafoo.2022.100035. DOI
Hoffmann G. The Chemistry and Technology of Edible Oils and Fats and Their High-Fat Products. Academic Press; New York, NY, USA: 1989. pp. 63–68.
Reuber M. M.S. Thesis. Iowa State University; Ames, IA, USA: 1992. New Technologies for processing Crambe abyssinica.
Singh K.K., Wiesenborn D.P., Tostenson K., Kangas N. Influence of moisture content and cooking on screw pressing of crambe seed. JAOCS. 2002;79:165–170. doi: 10.1007/s11746-002-0452-3. DOI
Choo W.S., Birch E.J., Dufour J.P. Physicochemical and stability characteristics of flaxseed oils during pan-heating. JAOCS. 2007;84:735–740. doi: 10.1007/s11746-007-1096-7. DOI
Ajai A.I., Adedokun T.A., Inobeme A., Jacob J.O. Determination of physicochemical properties of selected vegetable oils in Minna. FUW Trends Sci. Technol. J. 2016;1:475–478.
Vicentini-Polette C.M., Ramos P.R., Goncalves C.B., De Oliveira A.L. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem. X. 2021;12:100166. doi: 10.1016/j.fochx.2021.100166. PubMed DOI PMC
Eke-Ejiofor J., Beleya E.A., Allen J.E. Effect of variety on the quality parameters of crude soybean oil. Am. J. Food Sci. Technol. 2021;9:69–75.
Nduka J.K.C., Omozuwa P.O., Imanah O.E. Effect of heating on the physiological properties of selected vegetable oils. Arab. J. Chem. 2021;14:103063. doi: 10.1016/j.arabjc.2021.103063. DOI
Tiffour I., Dehbi A., Mourad A.-H.I., Belfedal A. Synthesis and characterization of a new organic semiconductor material. Mater. Chem. Phys. 2016;178:49–56. doi: 10.1016/j.matchemphys.2016.04.054. DOI
Gonzalez M.F., Barbero G.F., Alvarez J.A., Ruiz A., Palma M., Ayuso J. Authentication of virgin olive oil by a novel curve resolution approach combined with visible spectroscopy. Food Chem. 2007;220:331–336. doi: 10.1016/j.foodchem.2016.10.015. PubMed DOI
Wang H., Xin Y., Wan X. Spectral detection technology of vegetable oil: Spectral analysis of porphyrins and terpenoids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;261:119965. doi: 10.1016/j.saa.2021.119965. PubMed DOI
Altman D.G., Bland J.M. Standard deviations and standard errors. BJM. 2005;331:903. doi: 10.1136/bmj.331.7521.903. PubMed DOI PMC