• This record comes from PubMed

Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds

. 2023 Sep 30 ; 12 (19) : . [epub] 20230930

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
QK21010151 National Agency for Agricultural Research (NAZV), Programme: Applied 'ZEME' research programme of the Ministry of Agriculture

In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced the highest oil yield at 30.60 ± 1.69%, followed by flax (27.73 ± 0.52%), hemp (20.31 ± 0.11%), milk thistle (14.46 ± 0.51%) and pumpkin (13.37 ± 0.35%). Cumin seeds produced the lowest oil yield at 3.46 ± 0.15%. The percentage of sediments in the oil, seedcake and material losses for sesame were 5.15 ± 0.09%, 60.99 ± 0.04% and 3.27 ± 1.56%. Sediments in the oil decreased over longer storage periods, thereby increasing the percentage oil yield. Pumpkin oil had the highest peroxide value at 18.45 ± 0.53 meq O2/kg oil, an acid value of 11.21 ± 0.24 mg KOH/g oil, free fatty acid content of 5.60 ± 0.12 mg KOH/g oil and iodine value of 14.49 ± 0.16 g l/100 g. The univariate ANOVA of the quality parameters against the oilseed type was statistically significant (p-value < 0.05), except for the iodine value, which was not statistically significant (p-value > 0.05). Future studies should analyze the temperature generation, oil recovery efficiency, percentage of residual oil in the seedcake and specific energy consumption of different oilseeds processed using small-large scale presses.

See more in PubMed

Herák D., Kabutey A., Divišová M., Simanjuntak S. Mathematical model of mechanical behaviour of Jatropha curcas L. seeds under compression loading. Biosyst. Eng. 2013;114:279–288. doi: 10.1016/j.biosystemseng.2012.12.007. DOI

Divisova M., Herak D., Kabutey A., Sigalingging R., Svatonova T. Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Sci. Agric. Bohem. 2014;45:180–186.

Herak D., Kabutey A., Choteborsky R., Petru M., Sigalingging R. Mathematical models describing the relaxation behaviour of Jatropha curcas L. bulk seeds under axial compression. Biosyst. Eng. 2015;131:77–83. doi: 10.1016/j.biosystemseng.2015.01.004. DOI

Kabutey A., Herák D., Chotěborský R., Sigalingging R., Čestmír M. Effect of compression speed on energy requirement and oil yield of Jatropha curcas L. bulk seeds under linear compression. Biosyst. Eng. 2015;136:8–13. doi: 10.1016/j.biosystemseng.2015.05.003. DOI

Kabutey A., Herák D., Mizera Č. Determination of maximum oil yield, quality indicators and absorbance spectra of hulled sunflower seeds oil extraction under axial loading. Foods. 2022;11:2866. doi: 10.3390/foods11182866. PubMed DOI PMC

Gürdil G.A.K., Kabutey A., Selvi K.Ç., Hrabě P., Herák D., Fraňková A. Investigation of Heating and Freezing Pretreatments on Mechanical, Chemical and Spectral Properties of Bulk Sunflower Seeds and Oil. Processes. 2020;8:411. doi: 10.3390/pr8040411. DOI

Demirel C., Kabutey A., Herák D., Hrabě P., Mizera Č., Dajbych O. Optimizing Uniaxial Oil Extraction of Bulk Rapeseeds: Spectrophotometric and Chemical Analyses of the Extracted Oil under Pretreatment Temperatures and Heating Intervals. Processes. 2021;9:1755. doi: 10.3390/pr9101755. DOI

Kabutey A., Mizera C., Dajbych O., Hrabe P., Herak D., Demirel C. Modelling and optimization of processing factors of pumpkin seeds oil extraction under uniaxial loading. Processes. 2020;9:540. doi: 10.3390/pr9030540. DOI

Kabutey A., Mizera Č., Herák D. Evaluation of percentage oil yield, energy requirement and mechanical properties of selected bulk oilseeds under compression loading. J. Food Eng. 2023;360:111719. doi: 10.1016/j.jfoodeng.2023.111719. DOI

Bogaet L., Mathieu H., Mhemdi H., Vorobiev E. Characterization of oilseeds mechanical expression in an instrumented pilot screw press. Ind. Crops Prod. 2018;121:106–113. doi: 10.1016/j.indcrop.2018.04.039. DOI

Singh J., Bargale P.C. Development of a small capacity double stage compression screw press for oil expression. J. Food Eng. 2000;43:75–82. doi: 10.1016/S0260-8774(99)00134-X. DOI

Zheng Y.-L., Wiesenborn D.P., Tostenson K., Kangas N. Energy analysis in the screw pressing of whole and dehulled flaxseed. J. Food Eng. 2005;66:193–202. doi: 10.1016/j.jfoodeng.2004.03.005. DOI

Farmet A.S. Oil and Feed Tech. Farmet; Česká Skalice, Czechia: 2015.

Karaj S., Muller J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind. Crops Prod. 2011;34:1010–1016. doi: 10.1016/j.indcrop.2011.03.009. DOI

Savoire R., Lanoiselle J.-L., Vorobiev E. Mechanical continuous oil expression from oilseeds: A review. Food Bioprocess Technol. 2013;6:1–16. doi: 10.1007/s11947-012-0947-x. DOI

Rombaut N., Savoire R., Thomasset B., Castello J., Hecke E.V., Lanoiselle J.-L. Optimization of oil yield and oil total phenolic content during grape seed cold screw pressing. Ind. Crops Prod. 2015;63:26–33. doi: 10.1016/j.indcrop.2014.10.001. DOI

Kartika I.A., Pontalier P.Y., Rigal L. Twin-screw extruder for oil processing of sunflower seeds: Thermo-mechanical pressing and solvent extraction in a single step. Ind. Crops Prod. 2010;32:297–304. doi: 10.1016/j.indcrop.2010.05.005. DOI

Uitterhaegen E., Evon P. Twin-screw extrusion technology for vegetable oil extrusion: A review. J. Food Eng. 2017;212:190–200. doi: 10.1016/j.jfoodeng.2017.06.006. DOI

Szydlowska-Czerniak A., Tymczewska A., Momot M., Wlodarczyk K. Optimization of the microwave treatment of linseed for cold-pressing linseed oil—Changes in its chemical and sensory qualities. LWT–Food Sci. Technol. 2020;126:109317. doi: 10.1016/j.lwt.2020.109317. DOI

Sakdasri W., Sila-ngam P., Chummengyen S., Sukruay A., Ngamprasertsith S., Supang W., Sawangkeaw R. Optimization of yield and thymoquinone content of screw press-extracted black cumin seed oil using response surface methodology. Ind. Crops Prod. 2023;191:115901. doi: 10.1016/j.indcrop.2022.115901. DOI

Alvarez-Orti M., Quintanilla C., Sena E., Alvarruiz A., Pardo J.E. The effects of a pressure extraction system on the quality parameters of different virgin pistachio (Pistacia vera L. var. Larnaka) oil. Grasas Aceites. 2012;63:260–266. doi: 10.3989/gya.117511. DOI

Rabadan A., Pardo J.E., Gomez R., Alvarez-Oti M. Influence of temperature in the extraction of nut oils by means of screw pressing. LWT–Food Sci. Technol. 2018;93:354–361. doi: 10.1016/j.lwt.2018.03.061. DOI

Siger A., Nogala-Kalucka M., Lampart-Szczapa E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids. 2008;15:137–149. doi: 10.1111/j.1745-4522.2007.00107.x. DOI

Maier T., Schieber A., Kammerer D.R., Carle R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2009;112:551–559. doi: 10.1016/j.foodchem.2008.06.005. DOI

Lutterodt H., Slavin M., Whent M., Turner E., Yu L. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem. 2011;128:391–399. doi: 10.1016/j.foodchem.2011.03.040. PubMed DOI

Wen C., Shen M., Liu G., Liu X., Liang L., Li Y., Zhang J., Xu X. Edible vegetable oils from oil crops: Preparation, refining, authenticity identification and application. Process Biochem. 2023;124:168–179. doi: 10.1016/j.procbio.2022.11.017. DOI

Latif S., Anwar F. Aqueous enzymatic sesame oil and protein extraction. Food Chem. 2011;125:679–684. doi: 10.1016/j.foodchem.2010.09.064. DOI

Huang Y., Liu C., Ge Z., Huang F., Tang H., Zhou Q., Liu R., Huang J., Zheng C. Influence of different thermal treatment methods on the processing qualities of sesame seeds and cold-pressed oil. Food Chem. 2023;404:134683. doi: 10.1016/j.foodchem.2022.134683. PubMed DOI

Hika W.A., Atlabachew M., Amare M. Geographical origin discrimination of Ethiopian sesame seeds by elemental analysis and chemometric tools. Food Chem. X. 2023;17:100545. doi: 10.1016/j.fochx.2022.100545. PubMed DOI PMC

Sa A.G.A., Pacheco M.T.B., Moreno Y.M.F., Carciofi B.A.M. Cold-pressed sesame seed meal as a protein source: Effect of processing on the protein digestibility, amino acid profile, and functional properties. J. Food Compos. Anal. 2022;111:104634. doi: 10.1016/j.jfca.2022.104634. DOI

Pathak N., Rai A.K., Kumari R., Thapa A., Bhat K.V. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014;8:147–155. PubMed PMC

Lalnunthari C., Devi L.M., Amami E., Badwaik L.S. Valorisation of pumpkin seeds and peels into biodegradable packaging films. Food Bioprod. Process. 2019;118:58–66. doi: 10.1016/j.fbp.2019.08.015. DOI

Das M., Devi L.M., Badwaik L.S. Ultrasound-assisted extraction of pumpkin seeds protein and its physicochemical and functional characterization. Appl. Food Res. 2022;2:100121. doi: 10.1016/j.afres.2022.100121. DOI

Monica S.J., John S., Madhanagopal R., Sivaraj C., Khusro A., Arumugam P., Gajdacs M., Lydia D.E., Sahibzada M.U.K., Alghamdi S., et al. Chemical composition of pumpkin (Curcurbita maxima) seeds and its supplemental effect on Indian women with metabolic syndrome. Arab. J. Chem. 2022;15:103985. doi: 10.1016/j.arabjc.2022.103985. DOI

El-Adaway T.A., Taha K.M. Characteristics and composition of watermelon, pumpkin and paprika seed oils and flours. J. Agric. Food Chem. 2001;49:1253–1259. doi: 10.1021/jf001117+. PubMed DOI

Salgin U., Korkmaz H. A green separation process for recovery of healthy oil from pumpkin seed. J. Supercrit. Fluids. 2011;58:239–248. doi: 10.1016/j.supflu.2011.06.002. DOI

Amin M.Z., Islam T., Mostofa F., Uddin M.J., Rahman M.M., Satter M.A. Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.) Heliyon. 2019;5:e02994. doi: 10.1016/j.heliyon.2019.e02994. PubMed DOI PMC

Mi Y.K., Eun J.K., Young-Nam K., Changsun C., Bo-Hieu L. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012;6:21–27. PubMed PMC

Ortiz-Jerez M.J., Sanchez A.F., Montoya J.E.Z. Drying kinetics and sensory characteristics of dehydrated pumpkin seeds (Cucurbita moschata) obtained by refractance window drying. Heliyon. 2022;8:e10947. doi: 10.1016/j.heliyon.2022.e10947. PubMed DOI PMC

Roy S., Datta S. A comprehensive review on the versatile pumpkin seeds (Curcurbita maxima) as a valuable natural medicine. Int. J. Curr. Res. 2015;7:19355–19361.

Syed Q.A., Akram M., Shukat R. Nutritional and therapeutic effects of the pumpkin seeds. Biomed. J. Sci. Technol. Res. 2019;21:15798–15803.

Sumara A., Stachniuk A., Montowska M., Kotecka-Majchrzak K., Grywalska E., Mitura P., Martinovic L.S., Pavelic S.K., Fornal E. Comprehensive review of seven plant seed oils: Chemical composition, nutritional properties and biomedical functions. Food Rev. Int. 2022;39:5402–5422. doi: 10.1080/87559129.2022.2067560. DOI

Saleem M.H., Ali S., Hussain S., Kamran M., Chattha M.S., Ahmad S., Aqeel M., Rizwan M., Aljarba N.H., Alkahtani S., et al. Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants. 2020;9:496. doi: 10.3390/plants9040496. PubMed DOI PMC

Cui Z., Yan B., Gao Y., Wu B., Wang Y., Wang H., Xu P., Zhao B., Cao Z., Zhang Y., et al. Agronomic cultivation measures on productivity of oilseed flax: A review. Oil Crop Sci. 2022;7:53–62. doi: 10.1016/j.ocsci.2022.02.006. DOI

Hocking P.J., Pinkerton A. Phosphorus nutrition of linseed (Linum usitatissimum L.) as affected by nitrogen supply: Effects on vegetative development and yield components. Field Crops Res. 1993;32:101–114. doi: 10.1016/0378-4290(93)90023-G. DOI

Oomah B.D. Flaxseed as a functional food source. J. Sci. Food Agric. 2001;81:889–894. doi: 10.1002/jsfa.898. DOI

Almario R.U., Karakas S.E. Lignan content of the flaxseed influences its biological effects in healthy men and women. J. Am. Coll. Nutr. 2013;32:194–199. doi: 10.1080/07315724.2013.791147. PubMed DOI

Kulkarni N.G., Kar J.R., Singhal R.S. Extraction of flaxseed oil: A comparative study of three-phase partitioning and supercritical carbon dioxide using response surface methodology. Food Bioprocess Technol. 2017;10:940–948. doi: 10.1007/s11947-017-1877-4. DOI

Shim Y.Y., Kim J.H., Cho J.Y., Reaney M.J.T. Health benefits of flaxseed and its peptides (linusorbs) Crit. Rev. Food Sci. Nutr. 2022 doi: 10.1080/10408398.2022.2119363. PubMed DOI

Nasrollahi I., Talebi E., Nemati Z. Study on Silybum Marianum seed through fatty acids comparison, peroxide tests, refractive index and oil percentage. Pharmacogn. J. 2016;8:595–597. doi: 10.5530/pj.2016.6.13. DOI

Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010;24:1423–3142. doi: 10.1002/ptr.3207. PubMed DOI

Zhu S.Y., Jiang N., Yang J., Tu J., Zhou Y., Xiao X., Dong Y. Silybum Marianum oil attenuates hepatic steatosis and oxidative stress in high fat diet-fed mice. Biomed. Pharmacother. 2018;100:191–197. doi: 10.1016/j.biopha.2018.01.144. PubMed DOI

Fathi-Achachlouei B., Azadmard-Damirchi S. Milk thistle seed oil constituents from different varieties grown in Iran. JAOCS. 2009;86:643–649. doi: 10.1007/s11746-009-1399-y. DOI

Jedlinszki N., Kalomista I., Galbacs G., Csupor D. Silybum marianum (Milk thistle) products in wilson’s disease: A treatment or a threat. J. Herb. Med. 2016;6:157–159. doi: 10.1016/j.hermed.2016.06.002. DOI

Qavami N., Naghdi Badi H., Labbafi M.R., Mehrafarin A. A review on pharmacological, cultivation and biotechnology aspects of Milk Thistle (Silybum Marianum (L.) Gaertn.) J. Med. Plant Res. 2013;12:19–37.

Mohaghegh F., Solhi H., Kazemifar A.M. Silymarin (Milk thistle) can revoke liver enzyme changes during chemotherapy of breast cancer with Taxanes. Eur. J. Integr. Med. 2015;7:650–652. doi: 10.1016/j.eujim.2015.10.012. DOI

Qin N., Jia C., Xu J., Li D., Xu F., Bai J., Li Z. New amides from seeds of Silybum Marianum with potential antioxidant and antidiabetic activities. Fitoterapia. 2017;119:83–89. doi: 10.1016/j.fitote.2017.04.008. PubMed DOI

Taleb A., Ahmad K.A., Ihsan A.U., Qu J., Lin N., Hezam K., Koju N., Hui L., Qilong D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018;102:689–698. doi: 10.1016/j.biopha.2018.03.140. PubMed DOI

Raikos V., Duthie G., Ranawana V. Denaturation and oxidative stability of hemp seed (Cannabis sativa L.) protein isolate as affected by heat treatment. Plant Foods Hum. Nutr. 2015;70:304–309. doi: 10.1007/s11130-015-0494-5. PubMed DOI

Xu Y., Li J., Zhao J., Wang W., Griffin J., Li Y., Bean S., Tilley M., Wang D. Hempseed as a nutritious and healthy human food or animal feed source: A review. Int. J. Food Sci. Technol. 2020;56:530–543. doi: 10.1111/ijfs.14755. DOI

Wang T., Wang N., Dai Y., Yu D., Cheng J. Interfacial adsorption properties, rheological properties and oxidation kinetics of oleogel-in-water emulsion stabilized by hemp seed protein. Food Hydrocoll. 2023;137:108402. doi: 10.1016/j.foodhyd.2022.108402. DOI

Izzo L., Pacifico S., Piccolella S., Castaldo L., Narvaez A., Grosso M., Ritieni A. Chemical analysis of minor bioactive components and cannabidiolic acid in commercial hemp seed oil. Molecules. 2020;25:3710. doi: 10.3390/molecules25163710. PubMed DOI PMC

Montserrat-De La Paz S., Marin-Aguilar F., Garcia-Gimenez M.D., Fernandez-Arche M.A. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction. J. Agric. Food Chem. 2014;62:1105–1110. doi: 10.1021/jf404278q. PubMed DOI

Liang J., Aachary A.A., Hollader U.T. Hemp seed oil: Minor components and oil quality. Lipid Technol. 2015;27:231–233. doi: 10.1002/lite.201500050. DOI

Fike J. Industrial hemp: Renewed opportunities for an ancient crop. Crit. Rev. Plant Sci. 2016;35:406–424. doi: 10.1080/07352689.2016.1257842. DOI

Tura M., Mandrioli M., Valli E., Toschi T.G. Quality indexes and composition of 13 commercial hemp seed oils. J. Food Compos. Anal. 2023;117:105112. doi: 10.1016/j.jfca.2022.105112. DOI

Spano M., Di Matteo G., Rapa M., Ciano S., Ingallina C., Cesa S., Menghini L., Carradori S., Giusti A.M., Di Sotto A., et al. Commercial hemp seed oils: A multimethodological characterization. Appl. Sci. 2020;10:6933. doi: 10.3390/app10196933. DOI

Burdock G.A. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul. Toxicol. Pharmacol. 2022;128:105088. doi: 10.1016/j.yrtph.2021.105088. PubMed DOI

Cruz-Tirado J.P., de Franca R.L., Tumbajulca M., Barraza-Jauregui G., Barbin D.F., Siche R. Detection of cumin powder adulteration with allergenic nutshells using FT-IR and portable NIRS coupled with chemometrics. J. Food Compos. Anal. 2023;116:105044. doi: 10.1016/j.jfca.2022.105044. DOI

Wadud M.A., Das S., Khokon M.A.R. Prevalence of the alternaria blight of cumin (Cuminum cyminum L.) in Bangladesh: Morphology, phylogeny and pathogenic variation of Alternaria spp. Saudi J. Biol. Sci. 2021;28:5865–5874. doi: 10.1016/j.sjbs.2021.06.038. PubMed DOI PMC

Kumar D., Saraf M., Joshi C.G., Joshi M. Rhizosphere microbiome analysis of healthy and infected cumin (Cuminum cyminum L.) varieties from Gujarat, India. Curr. Res. Microb. 2022;3:100163. doi: 10.1016/j.crmicr.2022.100163. PubMed DOI PMC

Karik U., Demirbolat I., Toluk O., Kartal M. Comparative study on yields, chemical compositions, antioxidant and antimicrobial activities of cumin (Cuminum cyminum L.) seed essential oils from different geographic origins. J. Essent. Oil Bear. Plants. 2021;24:724–735. doi: 10.1080/0972060X.2021.1983472. DOI

Zhao Y., Wang P., Zheng W., Yu G., Li Z., She Y., Lee M. Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents. Ind. Crops Prod. 2019;140:111660. doi: 10.1016/j.indcrop.2019.111660. DOI

Rathore S.S., Saxena S.N., Singh B. Potential health benefits of major seed spices. Int. J. Seed Spices. 2013;3:1–12.

Singh R.P., Gangadharappa H.V., Mruthunjaya K. Cuminum Cyminum—A popular spice: An updated review. Pharmacogn. J. 2017;9:292–301. doi: 10.5530/pj.2017.3.51. DOI

ISI . Indian Standard Methods for Analysis of Oilseeds. ISI; New Delhi, India: 1966. IS:3579.

Huang S., Hu Y., Li F., Jin W., Godara V., Wu B. Optimization of mechanical oil extraction process from Camellia oleifera seeds regarding oil yield and energy. J. Food Process Eng. 2019;42:e13157. doi: 10.1111/jfpe.13157. DOI

Blahovec J. Agromatereials Study Guide. Czech University of Life Sciences Prague; Prague, Czech Republic: 2008.

Aung K., Chit S.P., Hninsi K., Chan Z.M. Design and stress analysis of screw shaft for peanut oil screw press expeller. IJPSAT. 2019;16:207–212.

Deli S., Farah M.M., Tajul A.Y., Wan N.W.A. The effects of physical parameters of the screw press oil expeller on oil yield from Nigeria sativa L seeds. Int. Food Res. J. 2011;18:1367–1373.

Chanioti S., Tzia C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT–Food Sci. Technol. 2017;79:178–189. doi: 10.1016/j.lwt.2017.01.029. DOI

Chatepa L.E.C., Uluko H., Masamba K. Comparison of oil quality extracted from selected conventional and non conventional sources of vegetable oil from Malawi. Afr. J. Biotechnol. 2019;18:171–180.

Kharbach M., Marmouzi I., Kamal R., Yu H., Barra I., Cherrah Y., Alaoui K., Heyden Y.V., Bouklouze A. Extra virgin argan oils’ shelf-life monitoring and prediction based on chemical properties or FTIR fingerprints and chemometrics. Food Control. 2021;121:107607. doi: 10.1016/j.foodcont.2020.107607. DOI

Mitrea L., Teleky B.-E., Leopold L.-F., Nemes S.-A., Plamada D., Dulf F.V., Pop I.-D., Vodnar D.C. The physicochemical properties of five vegetable oils exposed at high temperature for a short-time-interval. J. Food Compost. Anal. 2022;106:104305. doi: 10.1016/j.jfca.2021.104305. DOI

Nduka J.K.C., Omozuwa P.O., Imanah O.E. Effect of heating on the physiological properties of selected vegetable oils. Arab. J. Chem. 2021;14:103063. doi: 10.1016/j.arabjc.2021.103063. DOI

StatSoft Inc . Statistica for Windows. StatSoft Inc.; Tulsa, OK, USA: 2013.

Singh J., Bargale P.C. Mechanical expression of oil from linseed (Linum usitatissimum L) J. Oilseeds Res. 1990;7:106–110.

Singh K.K., Wiesenborn D.P., Tostenson K., Kangas N. Influence of moisture content and cooking on screw pressing of Crambe seed. JAOCS. 2002;79:165–170. doi: 10.1007/s11746-002-0452-3. DOI

Gaber M.A.F.M., Mansour M.P., Trujillo F.J., Juliano P. Microwave pre-treatment of canola seeds and flaked seeds for increased hot expeller oil yield. J. Food Sci. Technol. 2021;58:323–332. doi: 10.1007/s13197-020-04545-9. PubMed DOI PMC

Willems P., Kuipers N.J.M., Haan A.B.D. Hydraulic pressing of oilseeds: Experimental determination and modeling of yield and pressing rates. J. Food Eng. 2008;89:8–16. doi: 10.1016/j.jfoodeng.2008.03.023. DOI

Evangelista R.L., Cermak S. Full-press oil extraction of Cuphea (PSR23) seeds. JAOCS. 2007;84:1169–1175. doi: 10.1007/s11746-007-1142-5. DOI

Orhevba B.A., Chukwu O., Oguagwu V., Osunde Z.D. Effect of moisture content on some quality parameters of mechanically expressed neem seed kernel oil. IJES. 2013;2:1–7.

Torres M.M., Maestri D.M. Chemical composition of arbequina virgin olive oil in relation to extraction storage conditions. J. Sci. Food Agric. 2006;86:2311–2317. doi: 10.1002/jsfa.2614. DOI

Hernandez-Santos B., Rodriguez-Miranda J., Herman-Lara E., Torruco-Uco J.G., Carmona-Garcia R., Juarez-Barrientos J.M., Chavez-Zamudio R., Martinez-Sanchez C.E. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo) Ultrason. Sonochem. 2016;31:429–436. doi: 10.1016/j.ultsonch.2016.01.029. PubMed DOI

Kaewwinud N., Khokhajaikiat P., Boonma A. Effect of biomass characteristics of durability of cassava stalk residues pellets. Res. Agr. Eng. 2018;64:15–19. doi: 10.17221/113/2016-RAE. DOI

Ekwu F.C., Nwagu A. Effect of processing on the quality of cashew nut oils. J. Sci. Agric. Food Technol. Environ. 2004;4:105–110.

Zahir E., Saeed R., Hameed M.A., Yousuf A. Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier Transform-Infrared (FT-IR) spectroscopy. Arab. J. Chem. 2017;10:S3870–S3876. doi: 10.1016/j.arabjc.2014.05.025. DOI

Flores M., Avendano V., Bravo J., Valdes C., Forero-Doria O., Quitral V., Vilcanqui Y., Ortiz-Viedma J. Edible oil parameters during deterioration processes. Int. J. Food Sci. 2021;2021:7105170. doi: 10.1155/2021/7105170. PubMed DOI PMC

Perkin E.G. Effect of lipid oxidation on oil and food quality in deep frying. In: Angels A.J.S., editor. Lipid Oxidation in Food, Chapter 18. American Chemical Society; Washington, DC, USA: 1992. pp. 310–321. (ACS Symposium Series No. 500; ACS).

Okparanta S., Daminabo V., Solomon L. Assessment of rancidity and other physicochemical properties of edible oils (mustard and corn oils) stored at room temperature. J. Nutr. Food Sci. 2018;6:70–75. doi: 10.11648/j.jfns.20180603.11. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...