Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QK21010151
National Agency for Agricultural Research (NAZV), Programme: Applied 'ZEME' research programme of the Ministry of Agriculture
PubMed
37835289
PubMed Central
PMC10573014
DOI
10.3390/foods12193636
PII: foods12193636
Knihovny.cz E-resources
- Keywords
- edible oilseeds, oil yield, physicochemical properties, screw-pressing, seedcake sediments,
- Publication type
- Journal Article MeSH
In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced the highest oil yield at 30.60 ± 1.69%, followed by flax (27.73 ± 0.52%), hemp (20.31 ± 0.11%), milk thistle (14.46 ± 0.51%) and pumpkin (13.37 ± 0.35%). Cumin seeds produced the lowest oil yield at 3.46 ± 0.15%. The percentage of sediments in the oil, seedcake and material losses for sesame were 5.15 ± 0.09%, 60.99 ± 0.04% and 3.27 ± 1.56%. Sediments in the oil decreased over longer storage periods, thereby increasing the percentage oil yield. Pumpkin oil had the highest peroxide value at 18.45 ± 0.53 meq O2/kg oil, an acid value of 11.21 ± 0.24 mg KOH/g oil, free fatty acid content of 5.60 ± 0.12 mg KOH/g oil and iodine value of 14.49 ± 0.16 g l/100 g. The univariate ANOVA of the quality parameters against the oilseed type was statistically significant (p-value < 0.05), except for the iodine value, which was not statistically significant (p-value > 0.05). Future studies should analyze the temperature generation, oil recovery efficiency, percentage of residual oil in the seedcake and specific energy consumption of different oilseeds processed using small-large scale presses.
See more in PubMed
Herák D., Kabutey A., Divišová M., Simanjuntak S. Mathematical model of mechanical behaviour of Jatropha curcas L. seeds under compression loading. Biosyst. Eng. 2013;114:279–288. doi: 10.1016/j.biosystemseng.2012.12.007. DOI
Divisova M., Herak D., Kabutey A., Sigalingging R., Svatonova T. Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Sci. Agric. Bohem. 2014;45:180–186.
Herak D., Kabutey A., Choteborsky R., Petru M., Sigalingging R. Mathematical models describing the relaxation behaviour of Jatropha curcas L. bulk seeds under axial compression. Biosyst. Eng. 2015;131:77–83. doi: 10.1016/j.biosystemseng.2015.01.004. DOI
Kabutey A., Herák D., Chotěborský R., Sigalingging R., Čestmír M. Effect of compression speed on energy requirement and oil yield of Jatropha curcas L. bulk seeds under linear compression. Biosyst. Eng. 2015;136:8–13. doi: 10.1016/j.biosystemseng.2015.05.003. DOI
Kabutey A., Herák D., Mizera Č. Determination of maximum oil yield, quality indicators and absorbance spectra of hulled sunflower seeds oil extraction under axial loading. Foods. 2022;11:2866. doi: 10.3390/foods11182866. PubMed DOI PMC
Gürdil G.A.K., Kabutey A., Selvi K.Ç., Hrabě P., Herák D., Fraňková A. Investigation of Heating and Freezing Pretreatments on Mechanical, Chemical and Spectral Properties of Bulk Sunflower Seeds and Oil. Processes. 2020;8:411. doi: 10.3390/pr8040411. DOI
Demirel C., Kabutey A., Herák D., Hrabě P., Mizera Č., Dajbych O. Optimizing Uniaxial Oil Extraction of Bulk Rapeseeds: Spectrophotometric and Chemical Analyses of the Extracted Oil under Pretreatment Temperatures and Heating Intervals. Processes. 2021;9:1755. doi: 10.3390/pr9101755. DOI
Kabutey A., Mizera C., Dajbych O., Hrabe P., Herak D., Demirel C. Modelling and optimization of processing factors of pumpkin seeds oil extraction under uniaxial loading. Processes. 2020;9:540. doi: 10.3390/pr9030540. DOI
Kabutey A., Mizera Č., Herák D. Evaluation of percentage oil yield, energy requirement and mechanical properties of selected bulk oilseeds under compression loading. J. Food Eng. 2023;360:111719. doi: 10.1016/j.jfoodeng.2023.111719. DOI
Bogaet L., Mathieu H., Mhemdi H., Vorobiev E. Characterization of oilseeds mechanical expression in an instrumented pilot screw press. Ind. Crops Prod. 2018;121:106–113. doi: 10.1016/j.indcrop.2018.04.039. DOI
Singh J., Bargale P.C. Development of a small capacity double stage compression screw press for oil expression. J. Food Eng. 2000;43:75–82. doi: 10.1016/S0260-8774(99)00134-X. DOI
Zheng Y.-L., Wiesenborn D.P., Tostenson K., Kangas N. Energy analysis in the screw pressing of whole and dehulled flaxseed. J. Food Eng. 2005;66:193–202. doi: 10.1016/j.jfoodeng.2004.03.005. DOI
Farmet A.S. Oil and Feed Tech. Farmet; Česká Skalice, Czechia: 2015.
Karaj S., Muller J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind. Crops Prod. 2011;34:1010–1016. doi: 10.1016/j.indcrop.2011.03.009. DOI
Savoire R., Lanoiselle J.-L., Vorobiev E. Mechanical continuous oil expression from oilseeds: A review. Food Bioprocess Technol. 2013;6:1–16. doi: 10.1007/s11947-012-0947-x. DOI
Rombaut N., Savoire R., Thomasset B., Castello J., Hecke E.V., Lanoiselle J.-L. Optimization of oil yield and oil total phenolic content during grape seed cold screw pressing. Ind. Crops Prod. 2015;63:26–33. doi: 10.1016/j.indcrop.2014.10.001. DOI
Kartika I.A., Pontalier P.Y., Rigal L. Twin-screw extruder for oil processing of sunflower seeds: Thermo-mechanical pressing and solvent extraction in a single step. Ind. Crops Prod. 2010;32:297–304. doi: 10.1016/j.indcrop.2010.05.005. DOI
Uitterhaegen E., Evon P. Twin-screw extrusion technology for vegetable oil extrusion: A review. J. Food Eng. 2017;212:190–200. doi: 10.1016/j.jfoodeng.2017.06.006. DOI
Szydlowska-Czerniak A., Tymczewska A., Momot M., Wlodarczyk K. Optimization of the microwave treatment of linseed for cold-pressing linseed oil—Changes in its chemical and sensory qualities. LWT–Food Sci. Technol. 2020;126:109317. doi: 10.1016/j.lwt.2020.109317. DOI
Sakdasri W., Sila-ngam P., Chummengyen S., Sukruay A., Ngamprasertsith S., Supang W., Sawangkeaw R. Optimization of yield and thymoquinone content of screw press-extracted black cumin seed oil using response surface methodology. Ind. Crops Prod. 2023;191:115901. doi: 10.1016/j.indcrop.2022.115901. DOI
Alvarez-Orti M., Quintanilla C., Sena E., Alvarruiz A., Pardo J.E. The effects of a pressure extraction system on the quality parameters of different virgin pistachio (Pistacia vera L. var. Larnaka) oil. Grasas Aceites. 2012;63:260–266. doi: 10.3989/gya.117511. DOI
Rabadan A., Pardo J.E., Gomez R., Alvarez-Oti M. Influence of temperature in the extraction of nut oils by means of screw pressing. LWT–Food Sci. Technol. 2018;93:354–361. doi: 10.1016/j.lwt.2018.03.061. DOI
Siger A., Nogala-Kalucka M., Lampart-Szczapa E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids. 2008;15:137–149. doi: 10.1111/j.1745-4522.2007.00107.x. DOI
Maier T., Schieber A., Kammerer D.R., Carle R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2009;112:551–559. doi: 10.1016/j.foodchem.2008.06.005. DOI
Lutterodt H., Slavin M., Whent M., Turner E., Yu L. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem. 2011;128:391–399. doi: 10.1016/j.foodchem.2011.03.040. PubMed DOI
Wen C., Shen M., Liu G., Liu X., Liang L., Li Y., Zhang J., Xu X. Edible vegetable oils from oil crops: Preparation, refining, authenticity identification and application. Process Biochem. 2023;124:168–179. doi: 10.1016/j.procbio.2022.11.017. DOI
Latif S., Anwar F. Aqueous enzymatic sesame oil and protein extraction. Food Chem. 2011;125:679–684. doi: 10.1016/j.foodchem.2010.09.064. DOI
Huang Y., Liu C., Ge Z., Huang F., Tang H., Zhou Q., Liu R., Huang J., Zheng C. Influence of different thermal treatment methods on the processing qualities of sesame seeds and cold-pressed oil. Food Chem. 2023;404:134683. doi: 10.1016/j.foodchem.2022.134683. PubMed DOI
Hika W.A., Atlabachew M., Amare M. Geographical origin discrimination of Ethiopian sesame seeds by elemental analysis and chemometric tools. Food Chem. X. 2023;17:100545. doi: 10.1016/j.fochx.2022.100545. PubMed DOI PMC
Sa A.G.A., Pacheco M.T.B., Moreno Y.M.F., Carciofi B.A.M. Cold-pressed sesame seed meal as a protein source: Effect of processing on the protein digestibility, amino acid profile, and functional properties. J. Food Compos. Anal. 2022;111:104634. doi: 10.1016/j.jfca.2022.104634. DOI
Pathak N., Rai A.K., Kumari R., Thapa A., Bhat K.V. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014;8:147–155. PubMed PMC
Lalnunthari C., Devi L.M., Amami E., Badwaik L.S. Valorisation of pumpkin seeds and peels into biodegradable packaging films. Food Bioprod. Process. 2019;118:58–66. doi: 10.1016/j.fbp.2019.08.015. DOI
Das M., Devi L.M., Badwaik L.S. Ultrasound-assisted extraction of pumpkin seeds protein and its physicochemical and functional characterization. Appl. Food Res. 2022;2:100121. doi: 10.1016/j.afres.2022.100121. DOI
Monica S.J., John S., Madhanagopal R., Sivaraj C., Khusro A., Arumugam P., Gajdacs M., Lydia D.E., Sahibzada M.U.K., Alghamdi S., et al. Chemical composition of pumpkin (Curcurbita maxima) seeds and its supplemental effect on Indian women with metabolic syndrome. Arab. J. Chem. 2022;15:103985. doi: 10.1016/j.arabjc.2022.103985. DOI
El-Adaway T.A., Taha K.M. Characteristics and composition of watermelon, pumpkin and paprika seed oils and flours. J. Agric. Food Chem. 2001;49:1253–1259. doi: 10.1021/jf001117+. PubMed DOI
Salgin U., Korkmaz H. A green separation process for recovery of healthy oil from pumpkin seed. J. Supercrit. Fluids. 2011;58:239–248. doi: 10.1016/j.supflu.2011.06.002. DOI
Amin M.Z., Islam T., Mostofa F., Uddin M.J., Rahman M.M., Satter M.A. Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.) Heliyon. 2019;5:e02994. doi: 10.1016/j.heliyon.2019.e02994. PubMed DOI PMC
Mi Y.K., Eun J.K., Young-Nam K., Changsun C., Bo-Hieu L. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012;6:21–27. PubMed PMC
Ortiz-Jerez M.J., Sanchez A.F., Montoya J.E.Z. Drying kinetics and sensory characteristics of dehydrated pumpkin seeds (Cucurbita moschata) obtained by refractance window drying. Heliyon. 2022;8:e10947. doi: 10.1016/j.heliyon.2022.e10947. PubMed DOI PMC
Roy S., Datta S. A comprehensive review on the versatile pumpkin seeds (Curcurbita maxima) as a valuable natural medicine. Int. J. Curr. Res. 2015;7:19355–19361.
Syed Q.A., Akram M., Shukat R. Nutritional and therapeutic effects of the pumpkin seeds. Biomed. J. Sci. Technol. Res. 2019;21:15798–15803.
Sumara A., Stachniuk A., Montowska M., Kotecka-Majchrzak K., Grywalska E., Mitura P., Martinovic L.S., Pavelic S.K., Fornal E. Comprehensive review of seven plant seed oils: Chemical composition, nutritional properties and biomedical functions. Food Rev. Int. 2022;39:5402–5422. doi: 10.1080/87559129.2022.2067560. DOI
Saleem M.H., Ali S., Hussain S., Kamran M., Chattha M.S., Ahmad S., Aqeel M., Rizwan M., Aljarba N.H., Alkahtani S., et al. Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants. 2020;9:496. doi: 10.3390/plants9040496. PubMed DOI PMC
Cui Z., Yan B., Gao Y., Wu B., Wang Y., Wang H., Xu P., Zhao B., Cao Z., Zhang Y., et al. Agronomic cultivation measures on productivity of oilseed flax: A review. Oil Crop Sci. 2022;7:53–62. doi: 10.1016/j.ocsci.2022.02.006. DOI
Hocking P.J., Pinkerton A. Phosphorus nutrition of linseed (Linum usitatissimum L.) as affected by nitrogen supply: Effects on vegetative development and yield components. Field Crops Res. 1993;32:101–114. doi: 10.1016/0378-4290(93)90023-G. DOI
Oomah B.D. Flaxseed as a functional food source. J. Sci. Food Agric. 2001;81:889–894. doi: 10.1002/jsfa.898. DOI
Almario R.U., Karakas S.E. Lignan content of the flaxseed influences its biological effects in healthy men and women. J. Am. Coll. Nutr. 2013;32:194–199. doi: 10.1080/07315724.2013.791147. PubMed DOI
Kulkarni N.G., Kar J.R., Singhal R.S. Extraction of flaxseed oil: A comparative study of three-phase partitioning and supercritical carbon dioxide using response surface methodology. Food Bioprocess Technol. 2017;10:940–948. doi: 10.1007/s11947-017-1877-4. DOI
Shim Y.Y., Kim J.H., Cho J.Y., Reaney M.J.T. Health benefits of flaxseed and its peptides (linusorbs) Crit. Rev. Food Sci. Nutr. 2022 doi: 10.1080/10408398.2022.2119363. PubMed DOI
Nasrollahi I., Talebi E., Nemati Z. Study on Silybum Marianum seed through fatty acids comparison, peroxide tests, refractive index and oil percentage. Pharmacogn. J. 2016;8:595–597. doi: 10.5530/pj.2016.6.13. DOI
Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010;24:1423–3142. doi: 10.1002/ptr.3207. PubMed DOI
Zhu S.Y., Jiang N., Yang J., Tu J., Zhou Y., Xiao X., Dong Y. Silybum Marianum oil attenuates hepatic steatosis and oxidative stress in high fat diet-fed mice. Biomed. Pharmacother. 2018;100:191–197. doi: 10.1016/j.biopha.2018.01.144. PubMed DOI
Fathi-Achachlouei B., Azadmard-Damirchi S. Milk thistle seed oil constituents from different varieties grown in Iran. JAOCS. 2009;86:643–649. doi: 10.1007/s11746-009-1399-y. DOI
Jedlinszki N., Kalomista I., Galbacs G., Csupor D. Silybum marianum (Milk thistle) products in wilson’s disease: A treatment or a threat. J. Herb. Med. 2016;6:157–159. doi: 10.1016/j.hermed.2016.06.002. DOI
Qavami N., Naghdi Badi H., Labbafi M.R., Mehrafarin A. A review on pharmacological, cultivation and biotechnology aspects of Milk Thistle (Silybum Marianum (L.) Gaertn.) J. Med. Plant Res. 2013;12:19–37.
Mohaghegh F., Solhi H., Kazemifar A.M. Silymarin (Milk thistle) can revoke liver enzyme changes during chemotherapy of breast cancer with Taxanes. Eur. J. Integr. Med. 2015;7:650–652. doi: 10.1016/j.eujim.2015.10.012. DOI
Qin N., Jia C., Xu J., Li D., Xu F., Bai J., Li Z. New amides from seeds of Silybum Marianum with potential antioxidant and antidiabetic activities. Fitoterapia. 2017;119:83–89. doi: 10.1016/j.fitote.2017.04.008. PubMed DOI
Taleb A., Ahmad K.A., Ihsan A.U., Qu J., Lin N., Hezam K., Koju N., Hui L., Qilong D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018;102:689–698. doi: 10.1016/j.biopha.2018.03.140. PubMed DOI
Raikos V., Duthie G., Ranawana V. Denaturation and oxidative stability of hemp seed (Cannabis sativa L.) protein isolate as affected by heat treatment. Plant Foods Hum. Nutr. 2015;70:304–309. doi: 10.1007/s11130-015-0494-5. PubMed DOI
Xu Y., Li J., Zhao J., Wang W., Griffin J., Li Y., Bean S., Tilley M., Wang D. Hempseed as a nutritious and healthy human food or animal feed source: A review. Int. J. Food Sci. Technol. 2020;56:530–543. doi: 10.1111/ijfs.14755. DOI
Wang T., Wang N., Dai Y., Yu D., Cheng J. Interfacial adsorption properties, rheological properties and oxidation kinetics of oleogel-in-water emulsion stabilized by hemp seed protein. Food Hydrocoll. 2023;137:108402. doi: 10.1016/j.foodhyd.2022.108402. DOI
Izzo L., Pacifico S., Piccolella S., Castaldo L., Narvaez A., Grosso M., Ritieni A. Chemical analysis of minor bioactive components and cannabidiolic acid in commercial hemp seed oil. Molecules. 2020;25:3710. doi: 10.3390/molecules25163710. PubMed DOI PMC
Montserrat-De La Paz S., Marin-Aguilar F., Garcia-Gimenez M.D., Fernandez-Arche M.A. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction. J. Agric. Food Chem. 2014;62:1105–1110. doi: 10.1021/jf404278q. PubMed DOI
Liang J., Aachary A.A., Hollader U.T. Hemp seed oil: Minor components and oil quality. Lipid Technol. 2015;27:231–233. doi: 10.1002/lite.201500050. DOI
Fike J. Industrial hemp: Renewed opportunities for an ancient crop. Crit. Rev. Plant Sci. 2016;35:406–424. doi: 10.1080/07352689.2016.1257842. DOI
Tura M., Mandrioli M., Valli E., Toschi T.G. Quality indexes and composition of 13 commercial hemp seed oils. J. Food Compos. Anal. 2023;117:105112. doi: 10.1016/j.jfca.2022.105112. DOI
Spano M., Di Matteo G., Rapa M., Ciano S., Ingallina C., Cesa S., Menghini L., Carradori S., Giusti A.M., Di Sotto A., et al. Commercial hemp seed oils: A multimethodological characterization. Appl. Sci. 2020;10:6933. doi: 10.3390/app10196933. DOI
Burdock G.A. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul. Toxicol. Pharmacol. 2022;128:105088. doi: 10.1016/j.yrtph.2021.105088. PubMed DOI
Cruz-Tirado J.P., de Franca R.L., Tumbajulca M., Barraza-Jauregui G., Barbin D.F., Siche R. Detection of cumin powder adulteration with allergenic nutshells using FT-IR and portable NIRS coupled with chemometrics. J. Food Compos. Anal. 2023;116:105044. doi: 10.1016/j.jfca.2022.105044. DOI
Wadud M.A., Das S., Khokon M.A.R. Prevalence of the alternaria blight of cumin (Cuminum cyminum L.) in Bangladesh: Morphology, phylogeny and pathogenic variation of Alternaria spp. Saudi J. Biol. Sci. 2021;28:5865–5874. doi: 10.1016/j.sjbs.2021.06.038. PubMed DOI PMC
Kumar D., Saraf M., Joshi C.G., Joshi M. Rhizosphere microbiome analysis of healthy and infected cumin (Cuminum cyminum L.) varieties from Gujarat, India. Curr. Res. Microb. 2022;3:100163. doi: 10.1016/j.crmicr.2022.100163. PubMed DOI PMC
Karik U., Demirbolat I., Toluk O., Kartal M. Comparative study on yields, chemical compositions, antioxidant and antimicrobial activities of cumin (Cuminum cyminum L.) seed essential oils from different geographic origins. J. Essent. Oil Bear. Plants. 2021;24:724–735. doi: 10.1080/0972060X.2021.1983472. DOI
Zhao Y., Wang P., Zheng W., Yu G., Li Z., She Y., Lee M. Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents. Ind. Crops Prod. 2019;140:111660. doi: 10.1016/j.indcrop.2019.111660. DOI
Rathore S.S., Saxena S.N., Singh B. Potential health benefits of major seed spices. Int. J. Seed Spices. 2013;3:1–12.
Singh R.P., Gangadharappa H.V., Mruthunjaya K. Cuminum Cyminum—A popular spice: An updated review. Pharmacogn. J. 2017;9:292–301. doi: 10.5530/pj.2017.3.51. DOI
ISI . Indian Standard Methods for Analysis of Oilseeds. ISI; New Delhi, India: 1966. IS:3579.
Huang S., Hu Y., Li F., Jin W., Godara V., Wu B. Optimization of mechanical oil extraction process from Camellia oleifera seeds regarding oil yield and energy. J. Food Process Eng. 2019;42:e13157. doi: 10.1111/jfpe.13157. DOI
Blahovec J. Agromatereials Study Guide. Czech University of Life Sciences Prague; Prague, Czech Republic: 2008.
Aung K., Chit S.P., Hninsi K., Chan Z.M. Design and stress analysis of screw shaft for peanut oil screw press expeller. IJPSAT. 2019;16:207–212.
Deli S., Farah M.M., Tajul A.Y., Wan N.W.A. The effects of physical parameters of the screw press oil expeller on oil yield from Nigeria sativa L seeds. Int. Food Res. J. 2011;18:1367–1373.
Chanioti S., Tzia C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT–Food Sci. Technol. 2017;79:178–189. doi: 10.1016/j.lwt.2017.01.029. DOI
Chatepa L.E.C., Uluko H., Masamba K. Comparison of oil quality extracted from selected conventional and non conventional sources of vegetable oil from Malawi. Afr. J. Biotechnol. 2019;18:171–180.
Kharbach M., Marmouzi I., Kamal R., Yu H., Barra I., Cherrah Y., Alaoui K., Heyden Y.V., Bouklouze A. Extra virgin argan oils’ shelf-life monitoring and prediction based on chemical properties or FTIR fingerprints and chemometrics. Food Control. 2021;121:107607. doi: 10.1016/j.foodcont.2020.107607. DOI
Mitrea L., Teleky B.-E., Leopold L.-F., Nemes S.-A., Plamada D., Dulf F.V., Pop I.-D., Vodnar D.C. The physicochemical properties of five vegetable oils exposed at high temperature for a short-time-interval. J. Food Compost. Anal. 2022;106:104305. doi: 10.1016/j.jfca.2021.104305. DOI
Nduka J.K.C., Omozuwa P.O., Imanah O.E. Effect of heating on the physiological properties of selected vegetable oils. Arab. J. Chem. 2021;14:103063. doi: 10.1016/j.arabjc.2021.103063. DOI
StatSoft Inc . Statistica for Windows. StatSoft Inc.; Tulsa, OK, USA: 2013.
Singh J., Bargale P.C. Mechanical expression of oil from linseed (Linum usitatissimum L) J. Oilseeds Res. 1990;7:106–110.
Singh K.K., Wiesenborn D.P., Tostenson K., Kangas N. Influence of moisture content and cooking on screw pressing of Crambe seed. JAOCS. 2002;79:165–170. doi: 10.1007/s11746-002-0452-3. DOI
Gaber M.A.F.M., Mansour M.P., Trujillo F.J., Juliano P. Microwave pre-treatment of canola seeds and flaked seeds for increased hot expeller oil yield. J. Food Sci. Technol. 2021;58:323–332. doi: 10.1007/s13197-020-04545-9. PubMed DOI PMC
Willems P., Kuipers N.J.M., Haan A.B.D. Hydraulic pressing of oilseeds: Experimental determination and modeling of yield and pressing rates. J. Food Eng. 2008;89:8–16. doi: 10.1016/j.jfoodeng.2008.03.023. DOI
Evangelista R.L., Cermak S. Full-press oil extraction of Cuphea (PSR23) seeds. JAOCS. 2007;84:1169–1175. doi: 10.1007/s11746-007-1142-5. DOI
Orhevba B.A., Chukwu O., Oguagwu V., Osunde Z.D. Effect of moisture content on some quality parameters of mechanically expressed neem seed kernel oil. IJES. 2013;2:1–7.
Torres M.M., Maestri D.M. Chemical composition of arbequina virgin olive oil in relation to extraction storage conditions. J. Sci. Food Agric. 2006;86:2311–2317. doi: 10.1002/jsfa.2614. DOI
Hernandez-Santos B., Rodriguez-Miranda J., Herman-Lara E., Torruco-Uco J.G., Carmona-Garcia R., Juarez-Barrientos J.M., Chavez-Zamudio R., Martinez-Sanchez C.E. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo) Ultrason. Sonochem. 2016;31:429–436. doi: 10.1016/j.ultsonch.2016.01.029. PubMed DOI
Kaewwinud N., Khokhajaikiat P., Boonma A. Effect of biomass characteristics of durability of cassava stalk residues pellets. Res. Agr. Eng. 2018;64:15–19. doi: 10.17221/113/2016-RAE. DOI
Ekwu F.C., Nwagu A. Effect of processing on the quality of cashew nut oils. J. Sci. Agric. Food Technol. Environ. 2004;4:105–110.
Zahir E., Saeed R., Hameed M.A., Yousuf A. Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier Transform-Infrared (FT-IR) spectroscopy. Arab. J. Chem. 2017;10:S3870–S3876. doi: 10.1016/j.arabjc.2014.05.025. DOI
Flores M., Avendano V., Bravo J., Valdes C., Forero-Doria O., Quitral V., Vilcanqui Y., Ortiz-Viedma J. Edible oil parameters during deterioration processes. Int. J. Food Sci. 2021;2021:7105170. doi: 10.1155/2021/7105170. PubMed DOI PMC
Perkin E.G. Effect of lipid oxidation on oil and food quality in deep frying. In: Angels A.J.S., editor. Lipid Oxidation in Food, Chapter 18. American Chemical Society; Washington, DC, USA: 1992. pp. 310–321. (ACS Symposium Series No. 500; ACS).
Okparanta S., Daminabo V., Solomon L. Assessment of rancidity and other physicochemical properties of edible oils (mustard and corn oils) stored at room temperature. J. Nutr. Food Sci. 2018;6:70–75. doi: 10.11648/j.jfns.20180603.11. DOI