Comparative Analysis of Pretreatment Methods for Processing Bulk Flax and Hemp Oilseeds Under Uniaxial Compression
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA Project Number - 2023:31130/1312/3110
Internal Grant Agency of the Czech University of Life Sciences Prague
PubMed
40002073
PubMed Central
PMC11854633
DOI
10.3390/foods14040629
PII: foods14040629
Knihovny.cz E-zdroje
- Klíčová slova
- drying temperatures, heating methods, linear compression, oilseeds, regression models,
- Publikační typ
- časopisecké články MeSH
The purpose of this study was to examine the effect of oven and vacuum pretreatment techniques at drying temperatures between 40 °C and 90 °C and a constant heating time of 60 min on the oil yield, energy output, and compressive stress of bulk flax and hemp oilseeds samples. The results showed that heating temperatures linearly increased the amounts of oil yield but did not correlate linearly with energy requirement. The oven pretreatment slightly increased the oil yield and energy compared to the vacuum pretreatment. Higher compressive stress values were observed for hemp oilseeds than flax oilseeds which could be attributed to the inherent structure of the oilseeds. Hemp oilseeds showed more toughness to compress than flax oilseeds which tend to have a softer texture. The lack-of-fit p-values > 0.05 of the linear regression models dependent on the heating temperature under both drying conditions indicate adequacy for predicting the calculated parameters. Tukey's significance test showed that the means of oil yield and energy of bulk flax and hemp oilseeds under the oven and vacuum pretreatments revealed no significant difference implying that both pretreatment methods can initiate the same heat treatment effect on oil extraction efficiency with the corresponding energy requirement.
Zobrazit více v PubMed
Dunford N.T. Enzyme-aided oil and oilseed processing: Opportunities and challenges. Curr. Opin. Food Sci. 2022;48:100943. doi: 10.1016/j.cofs.2022.100943. DOI
Nevara G.A., Ibrahim S.G., Muhammad S.K.S., Zawawi N., Mustapha N.A., Karim R. Oilseed meals into foods: An approach for the valorization of oilseed by-products. Crit. Rev. Food. Sci. Nutr. 2023;63:6330–6343. doi: 10.1080/10408398.2022.2031092. PubMed DOI
Midhun J., Stephi D., Selvi K.M., Kameshwari Y., Swatika S.K., Sunil C.K. Effect of emerging pretreatment methods on extraction and quality of edible oils: A review. Food Humanit. 2023;1:1511–1522. doi: 10.1016/j.foohum.2023.10.018. DOI
Yong K.J., Wu T.Y. Second-generation bioenergy from oilseed crop residues: Recent technologies, techno-economic assessments and policies. Energy Convers. Manag. 2022;267:115869. doi: 10.1016/j.enconman.2022.115869. DOI
Zhang Z., Liu Y., Che L. Effects of different drying methods on the extraction rate and qualities of oils from demucilaged flaxseed. Dry. Technol. 2018;36:1642–1652. doi: 10.1080/07373937.2017.1421220. DOI
Sundar S., Singh B., Kaur A. Infrared pretreatment for improving oxidative stability, physiochemical properties, phenolic, phytosterol and tocopherol profile of hemp (Cannabis sativa L.) seed oil. Ind. Crops Prod. 2023;206:117705. doi: 10.1016/j.indcrop.2023.117705. DOI
Xue W., Shen X., Wu L. Microwave pretreatment of hemp seeds changes the flavor and quality of hemp seed oil. Ind. Crops Prod. 2024;213:118396. doi: 10.1016/j.indcrop.2024.118396. DOI
Rizvi Q.E.H., Sharma V., Shams R., Dar A.H., Jan B., Manzoor A. Extraction of oil from flaxseed using three phase partitioning techniques. J. Postharvest Technol. 2021;9:35–45.
Tonon R.V., Grosso C.R.F., Hubinger M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int. 2011;44:282–289. doi: 10.1016/j.foodres.2010.10.018. DOI
Singh K.K., Mridula D., Rehal J., Barnwal P. Flaxseed—A potential source of food, feed and fiber. Crit. Rev. Food Sci. Nutr. 2011;51:210–222. doi: 10.1080/10408390903537241. PubMed DOI
Wang B., Li D., Wang L.J., Huang Z.G., Zhang L., Chen X.D., Mao Z.H. Effect of Moisture Content on the Physical Properties of Fibered Flaxseed. Int. J. Food Eng. 2007;3:1–11. doi: 10.2202/1556-3758.1281. DOI
Eržen M., Čeh B., Kolenc Z., Bosancic B., Čerenak A. Evaluation of different hemp (Cannabis sativa L.) progenies resulting from crosses with focus on oil content and seed yield. Ind. Crops Prod. 2023;201:116893. doi: 10.1016/j.indcrop.2023.116893. DOI
Gholivand S., Tan T.B., Yusoff M.M., Choy H.W., Teow S.J., Wang Y., Liu Y., Tan C.P. An in-depth comparative study of various plant-based protein-alginate complexes in the production of hemp seed oil microcapsules by supercritical carbon dioxide solution-enhanced dispersion. Food Hydrocoll. 2024;153:110001. doi: 10.1016/j.foodhyd.2024.110001. DOI
Kassab Z., Abdellaoui Y., Salim M.H., Bouhfid R., Achaby M.E. Micro-and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydr. Polym. 2020;245:116506. doi: 10.1016/j.carbpol.2020.116506. PubMed DOI
Girgih A.T., Alashi A., He R., Malomo S., Aluko R.E. Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur. J. Nutr. 2014;53:1237–1246. doi: 10.1007/s00394-013-0625-4. PubMed DOI
Du S., Zhao Z., Li B., Li Y., Tong N., Che Q., Wang J. Preparation of natural antibacterial regenerated cellulose fibre from seed-type hemp. Ind. Crops Prod. 2024;208:117873. doi: 10.1016/j.indcrop.2023.117873. DOI
Cravotto C., Fabiano-Tixier A.-S., Bartier M., Claux O., Tabasso S. Green extraction of hemp seeds cake (Cannabis sativa L.) with 2-methyloxolane: A response surface optimization study. Sustain. Chem. Pharm. 2024;39:101509. doi: 10.1016/j.scp.2024.101509. DOI
Hu H., Liu H., Shi A., Liu L., Fauconnier M.L., Wang Q. The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil. Molecules. 2018;24:62. doi: 10.3390/molecules24010062. PubMed DOI PMC
Wanyo P., Meeso N., Kaewseejan N., Siriamornpun S. Effects of Drying Methods and Enzyme Aided on the Fatty Acid Profiles and Lipid Oxidation of Rice By-Products. Dry. Technol. 2015;34:953–961. doi: 10.1080/07373937.2015.1087407. DOI
Wu M., Wang P., Zhu F., Zhu Z., Qu X., Wei Y., Cheng Y., Zhang L. Postharvest drying of walnuts: Effect of drying methods on walnut quality. LWT Food Sci. Technol. 2024;191:115565. doi: 10.1016/j.lwt.2023.115565. DOI
Siddiqui S., Ucak I., Jain S., Elsheikh W., Redha A.A., Kurt A., Toker O.S. Impact of drying on techno-functional and nutritional properties of food proteins and carbohydrates—A comprehensive review. Dry. Technol. 2024;42:591–611. doi: 10.1080/07373937.2024.2303580. DOI
Khan M.I.H., Welsh Z., Gu Y., Karim M.A., Bhandari B. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying. Int. J. Heat Mass Transf. 2020;153:119668. doi: 10.1016/j.ijheatmasstransfer.2020.119668. DOI
Zhu G., Liu H., Xie Y., Liao Q., Lin Y., Liu Y., Liu Y., Xio H., Gao Z., Liu S. Postharvest processing and storage methods for Camellia oleifera seeds. Foods Rev. Int. 2019;36:319–339. doi: 10.1080/87559129.2019.1649688. DOI
Dehghannya J., Hosseinlar S.H., Heshmati M.K. Multi-Stage Continuous and Intermittent Microwave Drying of Quince Fruit Coupled with Osmotic Dehydration and Low Temperature Hot Air Drying. Innov. Food Sci. Emerg Technol. 2018;45:132–151. doi: 10.1016/j.ifset.2017.10.007. DOI
Hemis M., Watson D., Gariepy Y., Lyew D., Raghavan V. Modelling study of dielectric of seed to improve mathematical modelling for microwave-assisted hot-air drying. J. Microw. Power Electromagn. Energy. 2019;53:94–114. doi: 10.1080/08327823.2019.1607491. DOI
Karasu S., Akcicek A., Kayacan S. Effects of different drying methods on drying kinetics, microstructure, color and the rehydration ratio of minced meat. Foods. 2019;8:216. doi: 10.3390/foods8060216. PubMed DOI PMC
Panigrahi S., Rana A., Meda V., Chang P.R. Microwave-Vacuum Drying of Flax Fiber for Biocomposite Production. J. Microw. Power Electromagn. Energy. 2016;43:35–41. doi: 10.1080/08327823.2008.11688614. PubMed DOI
de Araújo Bezerra J., Lamarão C.V., Sanches E.A., Rodrigues S., Fernandes F.A., Ramos G.L.P., Esmerino E.A., Cruz A.G., Campelo P.H. Cold plasma as a pretreatment for processing improvement in food: A review. Food Res. Int. 2023;167:112663. doi: 10.1016/j.foodres.2023.112663. PubMed DOI
Jablaoui C., Besombes C., Jamoussi B., Rhazi L., Allaf K. Comparison of expander and instant controlled pressure-drop DIC technologies as thermomechanical pretreatments in enhancing solvent extraction of vegetal soybean oil. Arab. J. Chem. 2020;13:7235–7246. doi: 10.1016/j.arabjc.2020.08.005. DOI
Onwude D.I., Hashim N., Janius R., Abdan K., Chen G., Oladejo A.O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innov. Food Sci. Emerg Technol. 2017;43:223–238. doi: 10.1016/j.ifset.2017.08.010. DOI
Cai Z., Li K., Lee W.J., Reaney M.T.J., Zhang N., Wang Y. Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review. Fundam. Res. 2021;1:767–784. doi: 10.1016/j.fmre.2021.06.022. DOI
Grosshagauer S., Steinschaden R., Pignitter M. Strategies to increase the oxidative stability of cold pressed oils. LWT Food Sci. Technol. 2019;106:72–77. doi: 10.1016/j.lwt.2019.02.046. DOI
Vieira S.A., Zhang G., Decker E.A. Biological implications of lipid oxidation products. J. Am. Oil Chem. Soc. 2017;94:339–351. doi: 10.1007/s11746-017-2958-2. DOI
Min D.B., Boff J.M. Food Lipids. CRC Press; Boca Raton, FL, USA: 2002. Lipid oxidation of edible oil; pp. 335–364.
Kabutey A., Herák D., Mizera Č. Assessment of quality and efficiency of cold-pressed oil from selected oilseeds. Foods. 2023;12:3636. doi: 10.3390/foods12193636. PubMed DOI PMC
Kabutey A., Mizera Č., Herák D. Evaluation of percentage oil yield, energy requirement and mechanical properties of selected bulk oilseeds under compression loading. J. Food Eng. 2024;360:111719. doi: 10.1016/j.jfoodeng.2023.111719. DOI
Indian Standard Methods for Analysis of Oilseeds. Indian Standard Institute; New Delhi, India: 1996.
Blahovec J. Agromaterials Study Guide. Czech University of Life Sciences Prague; Prague, Czech Republic: 2008.
Deli S., Farah Masturah M., Tajul Aris Y., Wan Nadiah W.A. The effects of physical parameters of the screw press oil expeller on oil yield from Nigella sativa L. seeds. Int. Food Res. J. 2011;18:1367–1373.
Chanioti S., Tzia C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT Food Sci. Technol. 2017;79:178–189. doi: 10.1016/j.lwt.2017.01.029. DOI
Lysiak G. Fracture toughness of pea: Weibull analysis. J. Food Eng. 2007;83:436–443. doi: 10.1016/j.jfoodeng.2007.03.034. DOI
Chakespari A.G., Rajabipour A., Mobli H. Strength behaviour study of apples (cv. Shafi Abadi & Golab Kohanz) under compression loading. Mod. Appl. Sci. 2010;4:173–182.
Herak D., Kabutey A., Sedlacek A., Gurdil G. Mechanical behaviour of several layers of selected plant seeds under compression loading. Res. Agric. Eng. 2012;58:24–29. doi: 10.17221/11/2010-RAE. DOI
Divisova M., Herak D., Kabutey A., Sigalingging R., Svatonova T. Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Sci. Agric. Bohem. 2014;45:180–186.
Statsoft Inc. STATISTICA for Windows. Statsoft Inc.; Tulsa, OK, USA: 2013.
Hoffmann G. The Chemistry and Technology of Edible Oils and Fats and Their High-Fat Products. Academic Press; New York, NY, USA: 1989. pp. 63–68.
Reuber M.A. Master’s thesis. Iowa State University; Ames, IA, USA: 1992. New Technologies for Processing Crambe abyssinica.
Singh K.K., Wiesenborn D.P., Tostenson K., Kangas N. Influence of moisture content and cooking on screw pressing of crambe seed. J. Am. Oil Chem. Soc. 2002;79:165–170. doi: 10.1007/s11746-002-0452-3. DOI
Singh J., Bargale P.C. Development of a small capacity double stage compression screw press for oil expression. J. Food Eng. 2000;43:75–82. doi: 10.1016/S0260-8774(99)00134-X. DOI
Gaber M.A.F.M., Mansour M.P., Trujillo F.J., Juliano P. Microwave pre-treatment of canola seeds and flaked seeds for increased hot expeller oil yield. J. Food. Sci. Technol. 2021;58:323–332. doi: 10.1007/s13197-020-04545-9. PubMed DOI PMC
Evangelista R.L., Cermak S. Full-press oil extraction of Cuphea (PSR23) seeds. J. Am. Oil Chem. Soc. 2007;84:1169–1175. doi: 10.1007/s11746-007-1142-5. DOI
Savoire R., Lanoiselle J.-L., Vorobiev E. Mechanical continuous oil expression from oilseeds: A review. Food Bioprocess Technol. 2013;6:1–16. doi: 10.1007/s11947-012-0947-x. DOI
Baljatu C., Mateescu M., Anghelache D., Tabarasu A.M. The importance of moisture in extracting oils from oilseeds—A Review. Ann. Fac. Eng. Hunedoara Int. J. Eng. 2022;2:167–170.
Karaj S., Muller J. Characterization of Physico-Chemcial Properties of Jatropha curcas L. and Optimization of Mechanical Oil Extraction and Sedimentation. Institute of Agricultural Engineering, Universitat Hohenheim; Stuttgart, Germany: 2014. pp. 1–103.
Olayanju T.M.A., Akinoso R., Oresanya M.O. Effect of wormshaft speed, moisture content and variety on oil recovery from expelled beniseed. Agric. Eng. Int. 2006;8:1–7.
Beerens P. Master’s Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: 2007. Screw-Pressing of Jatropha Seeds for Fueling Purposes in Less Developed Countries; pp. 1–80.
Karaj S., Muller J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind. Crops Prod. 2011;34:1010–1016. doi: 10.1016/j.indcrop.2011.03.009. DOI
Willems P., Kuipers N.J.M., De Haan A.B. Hydraulic pressing of oilseeds: Experimental determination and modeling of yield and pressing rates. J. Food Eng. 2008;89:8–16. doi: 10.1016/j.jfoodeng.2008.03.023. DOI
Willems P., Kuipers N.J.M., de Haan A.B. A consolidation-based extruder model to explore GAME process configurations. J. Food Eng. 2009;90:238–245. doi: 10.1016/j.jfoodeng.2008.06.027. DOI
Baryeh E.A. Effect of palm oil processing parameters on yield. J. Food Eng. 2001;48:1–6. doi: 10.1016/S0260-8774(00)00137-0. DOI
Adeeko K.A., Ajibola O.O. Processing factors affecting yield and quality of mechanically expressed groundnut oil. J. Agric. Eng. Res. 1990;45:31–43. doi: 10.1016/S0021-8634(05)80136-2. DOI
Hamzat K.O., Clarke B. Prediction of oil yields from groundnuts using the concept of quasi-equilibrium oil yield. J. Agric. Eng. Res. 1993;28:495–503. doi: 10.1006/jaer.1993.1034. DOI
Mohamed Ahmed I.A., Musa Özcan M., Uslu N., Juhaimi F.A., Osman M.A., Alqah H.A., Ghafoor K., Babiker E.E. Effect of microwave roasting on color, total phenol, antioxidant activity, fatty acid composition, tocopherol, and chemical composition of sesame seed and oils obtained from different countries. J. Food Process Perserv. 2020;44:e14807. doi: 10.1111/jfpp.14807. DOI
Ren X., Wang L., Xu B., Wei B., Liu Y., Zhou C., Ma H., Wang Z. Influence of microwave pretreatment on the flavor attributes and oxidative stability of cold-pressed rapeseed oil. Dry. Technol. 2019;37:397–408. doi: 10.1080/07373937.2018.1459682. DOI
Yang K.M., Hsu F.L., Chen C.W., Hsu C.L., Cheng M.C. Quality characterization and oxidative stability of camellia seed oils produced with different roasting temperatures. J. Oleo Sci. 2018;67:389–396. doi: 10.5650/jos.ess17190. PubMed DOI
Karaj S., Muller J. Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha curcas L. Ind. Crops Prod. 2010;32:129–138. doi: 10.1016/j.indcrop.2010.04.001. DOI