Comparative Analysis of Pretreatment Methods for Processing Bulk Flax and Hemp Oilseeds Under Uniaxial Compression

. 2025 Feb 13 ; 14 (4) : . [epub] 20250213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40002073

Grantová podpora
IGA Project Number - 2023:31130/1312/3110 Internal Grant Agency of the Czech University of Life Sciences Prague

The purpose of this study was to examine the effect of oven and vacuum pretreatment techniques at drying temperatures between 40 °C and 90 °C and a constant heating time of 60 min on the oil yield, energy output, and compressive stress of bulk flax and hemp oilseeds samples. The results showed that heating temperatures linearly increased the amounts of oil yield but did not correlate linearly with energy requirement. The oven pretreatment slightly increased the oil yield and energy compared to the vacuum pretreatment. Higher compressive stress values were observed for hemp oilseeds than flax oilseeds which could be attributed to the inherent structure of the oilseeds. Hemp oilseeds showed more toughness to compress than flax oilseeds which tend to have a softer texture. The lack-of-fit p-values > 0.05 of the linear regression models dependent on the heating temperature under both drying conditions indicate adequacy for predicting the calculated parameters. Tukey's significance test showed that the means of oil yield and energy of bulk flax and hemp oilseeds under the oven and vacuum pretreatments revealed no significant difference implying that both pretreatment methods can initiate the same heat treatment effect on oil extraction efficiency with the corresponding energy requirement.

Zobrazit více v PubMed

Dunford N.T. Enzyme-aided oil and oilseed processing: Opportunities and challenges. Curr. Opin. Food Sci. 2022;48:100943. doi: 10.1016/j.cofs.2022.100943. DOI

Nevara G.A., Ibrahim S.G., Muhammad S.K.S., Zawawi N., Mustapha N.A., Karim R. Oilseed meals into foods: An approach for the valorization of oilseed by-products. Crit. Rev. Food. Sci. Nutr. 2023;63:6330–6343. doi: 10.1080/10408398.2022.2031092. PubMed DOI

Midhun J., Stephi D., Selvi K.M., Kameshwari Y., Swatika S.K., Sunil C.K. Effect of emerging pretreatment methods on extraction and quality of edible oils: A review. Food Humanit. 2023;1:1511–1522. doi: 10.1016/j.foohum.2023.10.018. DOI

Yong K.J., Wu T.Y. Second-generation bioenergy from oilseed crop residues: Recent technologies, techno-economic assessments and policies. Energy Convers. Manag. 2022;267:115869. doi: 10.1016/j.enconman.2022.115869. DOI

Zhang Z., Liu Y., Che L. Effects of different drying methods on the extraction rate and qualities of oils from demucilaged flaxseed. Dry. Technol. 2018;36:1642–1652. doi: 10.1080/07373937.2017.1421220. DOI

Sundar S., Singh B., Kaur A. Infrared pretreatment for improving oxidative stability, physiochemical properties, phenolic, phytosterol and tocopherol profile of hemp (Cannabis sativa L.) seed oil. Ind. Crops Prod. 2023;206:117705. doi: 10.1016/j.indcrop.2023.117705. DOI

Xue W., Shen X., Wu L. Microwave pretreatment of hemp seeds changes the flavor and quality of hemp seed oil. Ind. Crops Prod. 2024;213:118396. doi: 10.1016/j.indcrop.2024.118396. DOI

Rizvi Q.E.H., Sharma V., Shams R., Dar A.H., Jan B., Manzoor A. Extraction of oil from flaxseed using three phase partitioning techniques. J. Postharvest Technol. 2021;9:35–45.

Tonon R.V., Grosso C.R.F., Hubinger M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int. 2011;44:282–289. doi: 10.1016/j.foodres.2010.10.018. DOI

Singh K.K., Mridula D., Rehal J., Barnwal P. Flaxseed—A potential source of food, feed and fiber. Crit. Rev. Food Sci. Nutr. 2011;51:210–222. doi: 10.1080/10408390903537241. PubMed DOI

Wang B., Li D., Wang L.J., Huang Z.G., Zhang L., Chen X.D., Mao Z.H. Effect of Moisture Content on the Physical Properties of Fibered Flaxseed. Int. J. Food Eng. 2007;3:1–11. doi: 10.2202/1556-3758.1281. DOI

Eržen M., Čeh B., Kolenc Z., Bosancic B., Čerenak A. Evaluation of different hemp (Cannabis sativa L.) progenies resulting from crosses with focus on oil content and seed yield. Ind. Crops Prod. 2023;201:116893. doi: 10.1016/j.indcrop.2023.116893. DOI

Gholivand S., Tan T.B., Yusoff M.M., Choy H.W., Teow S.J., Wang Y., Liu Y., Tan C.P. An in-depth comparative study of various plant-based protein-alginate complexes in the production of hemp seed oil microcapsules by supercritical carbon dioxide solution-enhanced dispersion. Food Hydrocoll. 2024;153:110001. doi: 10.1016/j.foodhyd.2024.110001. DOI

Kassab Z., Abdellaoui Y., Salim M.H., Bouhfid R., Achaby M.E. Micro-and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydr. Polym. 2020;245:116506. doi: 10.1016/j.carbpol.2020.116506. PubMed DOI

Girgih A.T., Alashi A., He R., Malomo S., Aluko R.E. Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur. J. Nutr. 2014;53:1237–1246. doi: 10.1007/s00394-013-0625-4. PubMed DOI

Du S., Zhao Z., Li B., Li Y., Tong N., Che Q., Wang J. Preparation of natural antibacterial regenerated cellulose fibre from seed-type hemp. Ind. Crops Prod. 2024;208:117873. doi: 10.1016/j.indcrop.2023.117873. DOI

Cravotto C., Fabiano-Tixier A.-S., Bartier M., Claux O., Tabasso S. Green extraction of hemp seeds cake (Cannabis sativa L.) with 2-methyloxolane: A response surface optimization study. Sustain. Chem. Pharm. 2024;39:101509. doi: 10.1016/j.scp.2024.101509. DOI

Hu H., Liu H., Shi A., Liu L., Fauconnier M.L., Wang Q. The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil. Molecules. 2018;24:62. doi: 10.3390/molecules24010062. PubMed DOI PMC

Wanyo P., Meeso N., Kaewseejan N., Siriamornpun S. Effects of Drying Methods and Enzyme Aided on the Fatty Acid Profiles and Lipid Oxidation of Rice By-Products. Dry. Technol. 2015;34:953–961. doi: 10.1080/07373937.2015.1087407. DOI

Wu M., Wang P., Zhu F., Zhu Z., Qu X., Wei Y., Cheng Y., Zhang L. Postharvest drying of walnuts: Effect of drying methods on walnut quality. LWT Food Sci. Technol. 2024;191:115565. doi: 10.1016/j.lwt.2023.115565. DOI

Siddiqui S., Ucak I., Jain S., Elsheikh W., Redha A.A., Kurt A., Toker O.S. Impact of drying on techno-functional and nutritional properties of food proteins and carbohydrates—A comprehensive review. Dry. Technol. 2024;42:591–611. doi: 10.1080/07373937.2024.2303580. DOI

Khan M.I.H., Welsh Z., Gu Y., Karim M.A., Bhandari B. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying. Int. J. Heat Mass Transf. 2020;153:119668. doi: 10.1016/j.ijheatmasstransfer.2020.119668. DOI

Zhu G., Liu H., Xie Y., Liao Q., Lin Y., Liu Y., Liu Y., Xio H., Gao Z., Liu S. Postharvest processing and storage methods for Camellia oleifera seeds. Foods Rev. Int. 2019;36:319–339. doi: 10.1080/87559129.2019.1649688. DOI

Dehghannya J., Hosseinlar S.H., Heshmati M.K. Multi-Stage Continuous and Intermittent Microwave Drying of Quince Fruit Coupled with Osmotic Dehydration and Low Temperature Hot Air Drying. Innov. Food Sci. Emerg Technol. 2018;45:132–151. doi: 10.1016/j.ifset.2017.10.007. DOI

Hemis M., Watson D., Gariepy Y., Lyew D., Raghavan V. Modelling study of dielectric of seed to improve mathematical modelling for microwave-assisted hot-air drying. J. Microw. Power Electromagn. Energy. 2019;53:94–114. doi: 10.1080/08327823.2019.1607491. DOI

Karasu S., Akcicek A., Kayacan S. Effects of different drying methods on drying kinetics, microstructure, color and the rehydration ratio of minced meat. Foods. 2019;8:216. doi: 10.3390/foods8060216. PubMed DOI PMC

Panigrahi S., Rana A., Meda V., Chang P.R. Microwave-Vacuum Drying of Flax Fiber for Biocomposite Production. J. Microw. Power Electromagn. Energy. 2016;43:35–41. doi: 10.1080/08327823.2008.11688614. PubMed DOI

de Araújo Bezerra J., Lamarão C.V., Sanches E.A., Rodrigues S., Fernandes F.A., Ramos G.L.P., Esmerino E.A., Cruz A.G., Campelo P.H. Cold plasma as a pretreatment for processing improvement in food: A review. Food Res. Int. 2023;167:112663. doi: 10.1016/j.foodres.2023.112663. PubMed DOI

Jablaoui C., Besombes C., Jamoussi B., Rhazi L., Allaf K. Comparison of expander and instant controlled pressure-drop DIC technologies as thermomechanical pretreatments in enhancing solvent extraction of vegetal soybean oil. Arab. J. Chem. 2020;13:7235–7246. doi: 10.1016/j.arabjc.2020.08.005. DOI

Onwude D.I., Hashim N., Janius R., Abdan K., Chen G., Oladejo A.O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innov. Food Sci. Emerg Technol. 2017;43:223–238. doi: 10.1016/j.ifset.2017.08.010. DOI

Cai Z., Li K., Lee W.J., Reaney M.T.J., Zhang N., Wang Y. Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review. Fundam. Res. 2021;1:767–784. doi: 10.1016/j.fmre.2021.06.022. DOI

Grosshagauer S., Steinschaden R., Pignitter M. Strategies to increase the oxidative stability of cold pressed oils. LWT Food Sci. Technol. 2019;106:72–77. doi: 10.1016/j.lwt.2019.02.046. DOI

Vieira S.A., Zhang G., Decker E.A. Biological implications of lipid oxidation products. J. Am. Oil Chem. Soc. 2017;94:339–351. doi: 10.1007/s11746-017-2958-2. DOI

Min D.B., Boff J.M. Food Lipids. CRC Press; Boca Raton, FL, USA: 2002. Lipid oxidation of edible oil; pp. 335–364.

Kabutey A., Herák D., Mizera Č. Assessment of quality and efficiency of cold-pressed oil from selected oilseeds. Foods. 2023;12:3636. doi: 10.3390/foods12193636. PubMed DOI PMC

Kabutey A., Mizera Č., Herák D. Evaluation of percentage oil yield, energy requirement and mechanical properties of selected bulk oilseeds under compression loading. J. Food Eng. 2024;360:111719. doi: 10.1016/j.jfoodeng.2023.111719. DOI

Indian Standard Methods for Analysis of Oilseeds. Indian Standard Institute; New Delhi, India: 1996.

Blahovec J. Agromaterials Study Guide. Czech University of Life Sciences Prague; Prague, Czech Republic: 2008.

Deli S., Farah Masturah M., Tajul Aris Y., Wan Nadiah W.A. The effects of physical parameters of the screw press oil expeller on oil yield from Nigella sativa L. seeds. Int. Food Res. J. 2011;18:1367–1373.

Chanioti S., Tzia C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT Food Sci. Technol. 2017;79:178–189. doi: 10.1016/j.lwt.2017.01.029. DOI

Lysiak G. Fracture toughness of pea: Weibull analysis. J. Food Eng. 2007;83:436–443. doi: 10.1016/j.jfoodeng.2007.03.034. DOI

Chakespari A.G., Rajabipour A., Mobli H. Strength behaviour study of apples (cv. Shafi Abadi & Golab Kohanz) under compression loading. Mod. Appl. Sci. 2010;4:173–182.

Herak D., Kabutey A., Sedlacek A., Gurdil G. Mechanical behaviour of several layers of selected plant seeds under compression loading. Res. Agric. Eng. 2012;58:24–29. doi: 10.17221/11/2010-RAE. DOI

Divisova M., Herak D., Kabutey A., Sigalingging R., Svatonova T. Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Sci. Agric. Bohem. 2014;45:180–186.

Statsoft Inc. STATISTICA for Windows. Statsoft Inc.; Tulsa, OK, USA: 2013.

Hoffmann G. The Chemistry and Technology of Edible Oils and Fats and Their High-Fat Products. Academic Press; New York, NY, USA: 1989. pp. 63–68.

Reuber M.A. Master’s thesis. Iowa State University; Ames, IA, USA: 1992. New Technologies for Processing Crambe abyssinica.

Singh K.K., Wiesenborn D.P., Tostenson K., Kangas N. Influence of moisture content and cooking on screw pressing of crambe seed. J. Am. Oil Chem. Soc. 2002;79:165–170. doi: 10.1007/s11746-002-0452-3. DOI

Singh J., Bargale P.C. Development of a small capacity double stage compression screw press for oil expression. J. Food Eng. 2000;43:75–82. doi: 10.1016/S0260-8774(99)00134-X. DOI

Gaber M.A.F.M., Mansour M.P., Trujillo F.J., Juliano P. Microwave pre-treatment of canola seeds and flaked seeds for increased hot expeller oil yield. J. Food. Sci. Technol. 2021;58:323–332. doi: 10.1007/s13197-020-04545-9. PubMed DOI PMC

Evangelista R.L., Cermak S. Full-press oil extraction of Cuphea (PSR23) seeds. J. Am. Oil Chem. Soc. 2007;84:1169–1175. doi: 10.1007/s11746-007-1142-5. DOI

Savoire R., Lanoiselle J.-L., Vorobiev E. Mechanical continuous oil expression from oilseeds: A review. Food Bioprocess Technol. 2013;6:1–16. doi: 10.1007/s11947-012-0947-x. DOI

Baljatu C., Mateescu M., Anghelache D., Tabarasu A.M. The importance of moisture in extracting oils from oilseeds—A Review. Ann. Fac. Eng. Hunedoara Int. J. Eng. 2022;2:167–170.

Karaj S., Muller J. Characterization of Physico-Chemcial Properties of Jatropha curcas L. and Optimization of Mechanical Oil Extraction and Sedimentation. Institute of Agricultural Engineering, Universitat Hohenheim; Stuttgart, Germany: 2014. pp. 1–103.

Olayanju T.M.A., Akinoso R., Oresanya M.O. Effect of wormshaft speed, moisture content and variety on oil recovery from expelled beniseed. Agric. Eng. Int. 2006;8:1–7.

Beerens P. Master’s Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: 2007. Screw-Pressing of Jatropha Seeds for Fueling Purposes in Less Developed Countries; pp. 1–80.

Karaj S., Muller J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind. Crops Prod. 2011;34:1010–1016. doi: 10.1016/j.indcrop.2011.03.009. DOI

Willems P., Kuipers N.J.M., De Haan A.B. Hydraulic pressing of oilseeds: Experimental determination and modeling of yield and pressing rates. J. Food Eng. 2008;89:8–16. doi: 10.1016/j.jfoodeng.2008.03.023. DOI

Willems P., Kuipers N.J.M., de Haan A.B. A consolidation-based extruder model to explore GAME process configurations. J. Food Eng. 2009;90:238–245. doi: 10.1016/j.jfoodeng.2008.06.027. DOI

Baryeh E.A. Effect of palm oil processing parameters on yield. J. Food Eng. 2001;48:1–6. doi: 10.1016/S0260-8774(00)00137-0. DOI

Adeeko K.A., Ajibola O.O. Processing factors affecting yield and quality of mechanically expressed groundnut oil. J. Agric. Eng. Res. 1990;45:31–43. doi: 10.1016/S0021-8634(05)80136-2. DOI

Hamzat K.O., Clarke B. Prediction of oil yields from groundnuts using the concept of quasi-equilibrium oil yield. J. Agric. Eng. Res. 1993;28:495–503. doi: 10.1006/jaer.1993.1034. DOI

Mohamed Ahmed I.A., Musa Özcan M., Uslu N., Juhaimi F.A., Osman M.A., Alqah H.A., Ghafoor K., Babiker E.E. Effect of microwave roasting on color, total phenol, antioxidant activity, fatty acid composition, tocopherol, and chemical composition of sesame seed and oils obtained from different countries. J. Food Process Perserv. 2020;44:e14807. doi: 10.1111/jfpp.14807. DOI

Ren X., Wang L., Xu B., Wei B., Liu Y., Zhou C., Ma H., Wang Z. Influence of microwave pretreatment on the flavor attributes and oxidative stability of cold-pressed rapeseed oil. Dry. Technol. 2019;37:397–408. doi: 10.1080/07373937.2018.1459682. DOI

Yang K.M., Hsu F.L., Chen C.W., Hsu C.L., Cheng M.C. Quality characterization and oxidative stability of camellia seed oils produced with different roasting temperatures. J. Oleo Sci. 2018;67:389–396. doi: 10.5650/jos.ess17190. PubMed DOI

Karaj S., Muller J. Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha curcas L. Ind. Crops Prod. 2010;32:129–138. doi: 10.1016/j.indcrop.2010.04.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...