Protection of Erythrocytes and Microvascular Endothelial Cells against Oxidative Damage by Fragaria vesca L. and Rubus idaeus L. Leaves Extracts-The Mechanism of Action
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
B010 / 0014/22.
Wroclaw University of Environmental and Life Sciences
PubMed
36144602
PubMed Central
PMC9501125
DOI
10.3390/molecules27185865
PII: molecules27185865
Knihovny.cz E-resources
- Keywords
- Fragaria vesca L., HMEC-1, Rubus idaeus L., bioactivity, cells, cytotoxicity, erythrocytes, membrane, oxidation, raspberry, wild strawberry,
- MeSH
- Antioxidants chemistry pharmacology MeSH
- Endothelial Cells MeSH
- Erythrocytes MeSH
- Hydrolyzable Tannins MeSH
- Fragaria * chemistry MeSH
- Humans MeSH
- Membrane Lipids MeSH
- Oxidative Stress MeSH
- Plant Extracts chemistry pharmacology MeSH
- Rubus * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Hydrolyzable Tannins MeSH
- Membrane Lipids MeSH
- Plant Extracts MeSH
The aim of this work is to determine the biological activity of ellagitannins rich extracts from leaves of raspberry (Rubus idaeus L.) and wild strawberry (Fragaria vesca L.) in relation to cells and cell membranes. Detailed qualitative and quantitative analysis of phenolic compounds of the extract was made using chromatographic methods. Cytotoxic and antioxidant activities of tested extracts in relation to erythrocytes and human vascular endothelial cells (HMEC-1) were determined by using fluorimetric and spectrophotometric methods. In order to establish the influence of the extracts on the physical properties of the membrane, such as osmotic resistance and erythrocytes shapes, mobility and/or hydration of polar heads and fluidity of hydrocarbon chains of membrane lipids, microscopic and spectroscopic methods were used. The results showed that the extracts are non-toxic for erythrocytes and HMEC-1 cells (up to concentration of 50 µg/mL), but they effectively protect cells and their membranes against oxidative damage. The increase in osmotic resistance of erythrocytes, formation of echinocytes and changes only in the polar part of the membrane caused by the extracts demonstrate their location mainly in the hydrophilic part of the membrane. The results indicate that tested extracts have high biological activities and may be potentially used in delaying the ageing process of organisms and prevention of many diseases, especially those associated with oxidative stress.
See more in PubMed
Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC
Kaur R., Kaur J., Mahajan J., Kumar R., Arora S. Oxidative stress-implication, source and its prevention. Environ. Sci. Pollut. Res. 2014;21:1599–1613. doi: 10.1007/s11356-013-2251-3. PubMed DOI
Poetsch A.R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 2020;18:207–219. doi: 10.1016/j.csbj.2019.12.013. PubMed DOI PMC
Powell C.L., Swenberg J.A., Rusyn I. Expression of base excision DNA repair genes as biomarker of oxidative DNA damage. Cancer Lett. 2005;229:1–11. PubMed
Alfarisi H.A.H., Mohamed Z.B.H., Ibrahim M.B. Basic pathogenic mechanisms of atherosclerosis. Egypt. J. Basic Appl. Sci. 2020;7:116–125. doi: 10.1080/2314808X.2020.1769913. DOI
Sumpio B.E., Riley J.T., Dardik A. Cells in focus: Endothelial cell. Int. J. Biochem. Cell Biol. 2002;34:1508–1512. doi: 10.1016/S1357-2725(02)00075-4. PubMed DOI
Cai H., Harrison D.G. Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circ. Res. 2020;87:840–844. doi: 10.1161/01.RES.87.10.840. PubMed DOI
Clemens M.R., Waller H.D. Lipid peroxidation in erythrocytes. Chem. Phys. Lipids. 1987;45:251–268. doi: 10.1016/0009-3084(87)90068-5. PubMed DOI
Stolze K., Nohl H. Free radical formation and erythrocyte membrane alterations during MetHb formation induced by the BHA metabolite, tert-butylhydroquinone. Free Radic. Res. 1999;30:295–303. doi: 10.1080/10715769900300321. PubMed DOI
Sinha A., Chu T., Dao M., Chandramohanadas R. Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress. Sci. Rep. 2015;5:9768. doi: 10.1038/srep09768. PubMed DOI PMC
Tyurina Y.Y., Shvedova A.A., Kawai K., Tyurin V.A., Kommineni C., Quinn P.J., Schor N.F., Fabisiak J.P., Kagan V.E. Phospholipid signalling in apoptosis: Peroxidation and externization of phosphatidylserine. Toxicology. 2000;148:93–101. doi: 10.1016/S0300-483X(00)00199-2. PubMed DOI
Garcia J.J., Reiter R.J., Karbownik M., Calvo J.R., Ortiz G.G., Tan D.X., Martinez-Ballarin E., Acuna-Castroviejo D. N-acetylserotonin suppresses hepatic microsomal membrane rigidity associated with lipid peroxidation. Eur. J. Pharmacol. 2001;428:169–175. doi: 10.1016/S0014-2999(01)01342-5. PubMed DOI
Venskutonis P.R., Dvaranauskaite A., Labokas J. Radical scavenging activity and composition of raspberry (R. idaeus) leaves from different locations in Lithuania. Fitoterapia. 2007;78:162–165. doi: 10.1016/j.fitote.2006.10.001. PubMed DOI
Fierascu R.C., Temocico G., Fierascu I., Ortan A., Babeanu N.E. Fragaria Genus: Chemical Composition and Biological Activities. Molecules. 2020;25:498. doi: 10.3390/molecules25030498. PubMed DOI PMC
Durgo K., Belscak-Cvitanovic A., Stancic A., Franekic J., Komes D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J. Med. Food. 2012;15:258–268. doi: 10.1089/jmf.2011.0087. PubMed DOI
Rojas-Vera J., Patel A.V., Dacke C.G. Relaxant activity of raspberry (R. idaeus) leaf extract in guinea-pig ileum in vitro. Phytother. Res. 2002;16:665–668. doi: 10.1002/ptr.1040. PubMed DOI
Liu Z., Schwimer J., Liu D., Lewis J., Greenway F.L., York D.A., Woltering E. Gallic acid is partially responsible for the antiangiogenic activities of Rubus leaf extract. Phytother. Res. 2006;20:806–813. doi: 10.1002/ptr.1966. PubMed DOI
Liberal J., Francisco V., Costa G., Figueirinha A., Amaral M.T., Marques C., Girão H., Lopes M.C., Cruz M.T., Batista M.T. Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. J. Ethnopharmacol. 2014;158:113–122. doi: 10.1016/j.jep.2014.09.043. PubMed DOI
Zhang S., Liu Z., Li X., Abubaker M.A., Liu X., Li Z., Wang X., Zhu X., Zhang J., Chen X. Comparative Study of Three Raspberry Cultivar (Rubus idaeus L.) Leaves Metabolites: Metabolome Profiling and Antioxidant Activities. Appl. Sci. 2022;12:990. doi: 10.3390/app12030990. DOI
Liberal J., Costa G., Carmo A., Vitorino R., Marques C., Domingues M.R., Domingues P., Goncalves A.C., Alves R., Sarmento-Ribeiro A.B., et al. Chemical characterization and cytotoxic potential of an ellagitannin-enriched fraction from Fragaria vesca leaves. Arab. J. Chem. 2015;12:3652–3666. doi: 10.1016/j.arabjc.2015.11.014. DOI
Mudnic I., Modun D., Brizic I., Vukovic J., Generalic I., Katalinic V., Bilusic T., Ljubenkov I., Boban M. Cardiovascular effects in vitro of aqueous extract of wild strawberry (Fragaria vesca, L.) leaves. Phytomedicine. 2009;16:462–469. doi: 10.1016/j.phymed.2008.11.004. PubMed DOI
Nogueira E., Vassilieff V.S. Hypnotic, anticonvulsant and muscle relaxant effects of R. brasiliensis. Involvement of GABAA-system. J. Ethnopharmacol. 2000;70:275–280. doi: 10.1016/S0378-8741(99)00205-6. PubMed DOI
Ziemlewska A., Zagórska-Dziok M., Nizioł-Łukaszewska Z. Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci. Rep. 2021;11:3240. doi: 10.1038/s41598-021-82207-2. PubMed DOI PMC
Couto J., Figueirinha A., Batista M.T., Paranhos A., Nunes C., Gonçalves L.M., Marto J., Fitas M., Pinto P., Ribeiro H.M., et al. Fragaria vesca L. Extract: A Promising Cosmetic Ingredient with Antioxidant Properties. Antioxidants. 2020;9:154. doi: 10.3390/antiox9020154. PubMed DOI PMC
Szejk-Arendt M., Czubak-Prowizor K., Macieja A., Poplawski T., Olejnik A.K., Pawlaczyk-Graja I., Gancarz R., Zbikowska H.M. Polyphenolic-polysaccharide conjugates from medicinal plants of Rosaceae/Asteraceae family protect human lymphocytes but not myeloid leukemia K562 cells against radiation-induced death. Int. J. Biol. Macromol. 2020;156:1445–1454. doi: 10.1016/j.ijbiomac.2019.11.186. PubMed DOI
Szejka M., Poplawski T., Czubatka-Bienkowska A., Olejnik A.K., Pawlaczyk-Graja I., Gancarz R., Zbikowska H.M. A comparative study on the radioprotective potential of the polyphenolic glycoconjugates from medicinal plants of Rosaceae and Asteraceae families versus their aglycones. J. Photochem. Photobiol. B Biol. 2017;171:50–57. doi: 10.1016/j.jphotobiol.2017.04.027. PubMed DOI
Bernhardt I., Ellory J.C. Red Cell Membrane Transport in Health and Disease. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013.
Tzouwara-Karayanni S.M., Philianos S.M. Isolation of quercetin and kaempferol from R. ulmifolius and their fluorometric assay. Microchem. J. 1982;27:144–161. doi: 10.1016/0026-265X(82)90102-3. DOI
Simirgiotis M.J., Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD–ESI-MS and free radical quenching techniques. J. Food Comp. Anal. 2010;23:545–553. doi: 10.1016/j.jfca.2009.08.020. DOI
Gudej J., Tomczyk M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. Species. Arch. Pharmacal. Res. 2004;27:1114–1119. doi: 10.1007/BF02975114. PubMed DOI
Raudoniūtė I., Rovira J., Petras J., Venskutonis R., Damašius J., Rivero-Pérez M.D., González-SanJosé M.L. Antioxidant properties of garden strawberry leaf extract and its effect on fish oil oxidation. Int. J. Food Sci. Technol. 2011;46:935–943. doi: 10.1111/j.1365-2621.2011.02582.x. DOI
Gudej J. Kaempferol and quercetin glycosides from Idaeus L. leaves. Acta Pol. Pharm. 2003;60:313–316. PubMed
Oszmiański J., Wojdyło A., Nowicka P., Teleszko M., Cebulak T., Wolanin M. Determination of phenolic compounds and antioxidant activity in leaves from wild Rubus L. spaces. Molecules. 2015;20:4951–4966. doi: 10.3390/molecules20034951. PubMed DOI PMC
Tomé-Carneiro J., Visioli F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. Phytomedicine. 2016;23:1145–1174. doi: 10.1016/j.phymed.2015.10.018. PubMed DOI
Maggioni D., Biffi L., Nicolini G., Garavello W. Flavonoids in oral cancer prevention and therapy. Eur. J. Cancer Prev. 2015;24:517–528. doi: 10.1097/CEJ.0000000000000109. PubMed DOI
Briguglio G., Costa C., Pollicino M., Giambò F., Catania S., Fenga C. Polyphenols in cancer prevention: New insights (Review) Int. J. Funct. Nutr. 2020;1:9. doi: 10.3892/ijfn.2020.9. DOI
Nawwar M.A., Ayoub N.A., El-Rai M.A., Bassyouny F., Mostafa E.S., Al-Abd A.M., Harms M., Wende K., Lindequist U., Linscheid M.W. Cytotoxic ellagitannins from Reaumuria vermiculata. Fitoterapia. 2012;83:1256–1266. doi: 10.1016/j.fitote.2012.06.007. PubMed DOI
Nawwar M.A., Youb N.A., El-Raey M.A., Zaghloul S.S., Hashem A.M., Mostafa E.S., Eldahshan O., Werner V., Becker A., Haertel B., et al. Polyphenols in Ammania auriculata: Structures, antioxidative activity and cytotoxicity. Pharmazie. 2014;69:860–864. PubMed
Barrajón-Catalána E., Fernández-Arroyo S., Saura D., Guillén E., Fernández-Gutiérrez A., Segura-Carretero A., Micol V. Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem. Toxicol. 2010;48:2273–2282. doi: 10.1016/j.fct.2010.05.060. PubMed DOI
Sheetz M.P., Singer S.J. Biological Membranes as Bilayer Couples. A Molecular Mechanism of Drug-Erythrocyte Interactions. Proc. Natl. Acad. Sci. USA. 1974;71:4457–4461. doi: 10.1073/pnas.71.11.4457. PubMed DOI PMC
Lakowicz J.R. Fluorescence Polarization in Principles of Fluorescence Spectroscopy. Plenum Press; New York, NY, USA: 2006. pp. 353–382.
Karonen M. Insights into Polyphenol–Lipid Interactions: Chemical Methods, Molecular Aspects and Their Effects on Membrane Structures. Plants. 2022;11:1809. doi: 10.3390/plants11141809. PubMed DOI PMC
Stepanenko A.A., Dmitrenko V.V. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. 2015;754:193–203. doi: 10.1016/j.gene.2015.08.009. PubMed DOI
Serraino I., Dugo L., Dugo P., Mondello L., Mazzon E., Dugo G., Caputi A.P., Cuzzocrea S. Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sci. 2003;73:1097–1114. doi: 10.1016/S0024-3205(03)00356-4. PubMed DOI
Gąsiorowski K., Szyba K., Brokos B., Kołaczyńska B., Jankowiak-Włodarczyk M., Oszmiański J. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett. 1997;119:37–46. doi: 10.1016/S0304-3835(97)00248-6. PubMed DOI
Oszmiański J., Wojdyło A., Gorzelany J., Kapusta I. Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J. Agric. Food Chem. 2011;59:12830–12835. doi: 10.1021/jf203052j. PubMed DOI
Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Arch. Biochem. 1963;100:119–130. doi: 10.1016/0003-9861(63)90042-0. PubMed DOI
Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 1977;83:346–356. doi: 10.1016/0003-2697(77)90043-4. PubMed DOI
Cyboran-Mikołajczyk S., Solarska-Ściuk K., Mieszała K., Glatzel-Plucińska N., Matczak K., Kleszczyńska H. The Impact of O-Glycosylation on Cyanidin Interaction with RBCs and HMEC-1 Cells—Structure–Activity Relationships. Int. J. Mol. Sci. 2019;20:1928. doi: 10.3390/ijms20081928. PubMed DOI PMC