• This record comes from PubMed

Thiosemicarbazones and selected tyrosine kinase inhibitors synergize in pediatric solid tumors: NDRG1 upregulation and impaired prosurvival signaling in neuroblastoma cells

. 2022 ; 13 () : 976955. [epub] 20220907

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Tyrosine kinase inhibitors (TKIs) are frequently used in combined therapy to enhance treatment efficacy and overcome drug resistance. The present study analyzed the effects of three inhibitors, sunitinib, gefitinib, and lapatinib, combined with iron-chelating agents, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) or di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). Simultaneous administration of the drugs consistently resulted in synergistic and/or additive activities against the cell lines derived from the most frequent types of pediatric solid tumors. The results of a detailed analysis of cell signaling in the neuroblastoma cell lines revealed that TKIs inhibited the phosphorylation of the corresponding receptor tyrosine kinases, and thiosemicarbazones downregulated the expression of epidermal growth factor receptor, platelet-derived growth factor receptor, and insulin-like growth factor-1 receptor, leading to a strong induction of apoptosis. Marked upregulation of the metastasis suppressor N-myc downstream regulated gene-1 (NDRG1), which is known to be activated and upregulated by thiosemicarbazones in adult cancers, was also detected in thiosemicarbazone-treated neuroblastoma cells. Importantly, these effects were more pronounced in the cells treated with drug combinations, especially with the combinations of lapatinib with thiosemicarbazones. Therefore, these results provide a rationale for novel strategies combining iron-chelating agents with TKIs in therapy of pediatric solid tumors.

See more in PubMed

Ahmad T., Farnie G., Bundred N. J., Anderson N. G. (2004). The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J. Biol. Chem. 279, 1713–1719. 10.1074/jbc.M306156200 PubMed DOI

Alisi A., Cho W., Locatelli F., Fruci D. (2013). Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. Int. J. Mol. Sci. 14, 24706–24725. 10.3390/ijms141224706 PubMed DOI PMC

Aller S. G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., et al. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Sci. 80. 323, 1718–1722. 10.1126/science.1168750 PubMed DOI PMC

Amanchy R., Zhong J., Hong R., Kim J. H., Gucek M., Cole R. N., et al. (2009). Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Mol. Oncol. 3, 439–450. 10.1016/j.molonc.2009.07.001 PubMed DOI PMC

Bae D. H., Jansson P. J., Huang M. L., Kovacevic Z., Kalinowski D., Lee C. S., et al. (2013). The role of NDRG1 in the pathology and potential treatment of human cancers. J. Clin. Pathol. 66, 911–917. 10.1136/jclinpath-2013-201692 PubMed DOI

Bates S. E., Mickley L. A., Chen Y. N., Richert N., Rudick J., Biedler J. L., et al. (1989). Expression of a drug resistance gene in human neuroblastoma cell lines: Modulation by retinoic acid-induced differentiation. Mol. Cell. Biol. 9, 4337–4344. 10.1128/mcb.9.10.4337 PubMed DOI PMC

Bergh J., Bondarenko I. M., Lichinitser M. R., Liljegren A., Greil R., Voytko N. L., et al. (2012). First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: Results of a prospective, randomized phase III study. J. Clin. Oncol. 30, 921–929. 10.1200/JCO.2011.35.7376 PubMed DOI

Brambilla D., Zamboni S., Federici C., Lugini L., Lozupone F., Milito A. D., et al. (2012). P-glycoprotein binds to ezrin at amino acid residues 149-242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma. Int. J. Cancer 130, 2824–2834. 10.1002/ijc.26285 PubMed DOI

Bromann P. A., Korkaya H., Courtneidge S. A. (2004). The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23, 7957–7968. 10.1038/sj.onc.1208079 PubMed DOI

Calero R., Morchon E., Johnsen J. I., Serrano R. (2014). Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis. PLoS One 9, e95628. 10.1371/journal.pone.0095628 PubMed DOI PMC

Cetin B., Benekli M., Turker I., Koral L., Ulas A., Dane F., et al. (2014). Lapatinib plus capecitabine for HER2-positive advanced breast cancer: A multicentre study of anatolian society of medical oncology (ASMO). J. Chemother. 26, 300–305. 10.1179/1973947813Y.0000000147 PubMed DOI

Chekmarev J., Ayad M. G., Richardson D. R. (2021). The oncogenic signaling disruptor, NDRG1: Molecular and cellular mechanisms of activity. Cells 10, 1–30. 10.3390/cells10092382 PubMed DOI PMC

Chen Z., Zhang D., Yue F., Zheng M., Kovacevic Z., Richardson D. R. (2012). The iron chelators Dp44mT and DFO inhibit TGF-β-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J. Biol. Chem. 287, 17016–17028. 10.1074/jbc.M112.350470 PubMed DOI PMC

Chou T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681. 10.1124/pr.58.3.10 PubMed DOI

Crose L. E. S., Linardic C. M. (2010). Receptor tyrosine kinases as therapeutic targets in rhabdomyosarcoma. Sarcoma 2011, 756982. 10.1155/2011/756982 PubMed DOI PMC

Dai C.-L., Tiwari A. K., Wu C.-P., Su X., Wang S.-R., Liu D., et al. (2008). Lapatinib (tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 68, 7905–7914. 10.1158/0008-5472.can-08-0499 PubMed DOI PMC

Dalzell A. M., Mistry P., Wright J., Williams F. M., Brown C. D. A. (2015). Characterization of multidrug transporter-mediated efflux of avermectins in human and mouse neuroblastoma cell lines. Toxicol. Lett. 235, 189–198. 10.1016/j.toxlet.2015.04.005 PubMed DOI

Degasperi A., Birtwistle M. R., Volinsky N., Rauch J., Kolch W., Kholodenko B. N. (2014). Evaluating strategies to normalise biological replicates of Western blot data. PLoS One 9, e87293. 10.1371/journal.pone.0087293 PubMed DOI PMC

Di Leo A., Gomez H. L., Aziz Z., Zvirbule Z., Bines J., Arbushites M. C., et al. (2008). Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer. J. Clin. Oncol. 26, 5544–5552. 10.1200/JCO.2008.16.2578 PubMed DOI PMC

Dixon K. M., Lui G. Y. L., Kovacevic Z., Zhang D., Yao M., Chen Z., et al. (2013). Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer 108, 409–419. 10.1038/bjc.2012.582 PubMed DOI PMC

Du Z., Lovly C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58–13. 10.1186/s12943-018-0782-4 PubMed DOI PMC

Fouladi M., Stewart C. F., Blaney S. M., Onar-Thomas A., Schaiquevich P., Packer R. J., et al. (2013). A molecular biology and phase II trial of lapatinib in children with refractory CNS malignancies: A pediatric brain tumor consortium study. J. Neurooncol. 114, 173–179. 10.1007/s11060-013-1166-7 PubMed DOI PMC

Gallego S., Llort A., Parareda A., Sanches de Toledo J. (2004). Expression of multidrug resistance-1 and multidrug resistance-associated protein genes in pediatric rhabdomyosarcoma. Oncol. Rep. 11, 179–183. 10.3892/or.11.1.179 PubMed DOI

Geleta B., Park K. C., Jansson P. J., Sahni S., Maleki S., Xu Z., et al. (2021). Breaking the cycle: Targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma. FASEB J. 35, e21347. 10.1096/fj.202002279R PubMed DOI

Gotink K. J., Broxterman H. J., Labots M., De Haas R. R., Dekker H., Honeywell R. J., et al. (2011). Lysosomal sequestration of sunitinib: A novel mechanism of drug resistance. Clin. Cancer Res. 17, 7337–7346. 10.1158/1078-0432.CCR-11-1667 PubMed DOI PMC

Guo Z.-L., Richardson D. R., Kalinowski D. S., Kovacevic Z., Cheng Tan-Un K., Chi-Fung Chan G. (2016). The novel thiosemicarbazone, di-2- pyridylketone 4-cyclohexyl-4-methyl-3- thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol. 9, 98–16. 10.1186/s13045-016-0330-x PubMed DOI PMC

Gutierrez E., Richardson D. R., Jansson P. J. (2014). The anticancer agent di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms: Persistent induction of autophagosome synthesis and impairment of lysosomal integrity. J. Biol. Chem. 289, 33568–33589. 10.1074/jbc.M114.599480 PubMed DOI PMC

Hosomi Y., Morita S., Sugawara S., Kato T., Fukuhara T., Gemma A., et al. (2020). Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J. Clin. Oncol. 38, 115–123. 10.1200/JCO.19.01488 PubMed DOI

Jansson P. J., Yamagishi T., Arvind A., Seebacher N., Gutierrez E., Stacy A., et al. (2015). Di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp). J. Biol. Chem. 290, 9588–9603. 10.1074/jbc.M114.631283 PubMed DOI PMC

Jiao Q., Bi L., Ren Y., Song S., Wang Q., Wang Y.-S. (2018). Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 17, 36. 10.1186/s12943-018-0801-5 PubMed DOI PMC

Kannaiyan R., Mahadevan D. (2018). A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer Ther. 18, 1249–1270. 10.1080/14737140.2018.1527688 PubMed DOI PMC

Kazmi F., Hensley T., Pope C., Funk R. S., Loewen G. J., Buckley D. B., et al. (2013). Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab. Dispos. 41, 897–905. 10.1124/DMD.112.050054 PubMed DOI PMC

Kennedy S. P., Hastings J. F., Han J. Z. R., Croucher D. R. (2016). The under-appreciated promiscuity of the epidermal growth factor receptor family. Front. Cell Dev. Biol. 4, 88–11. 10.3389/fcell.2016.00088 PubMed DOI PMC

Kitazaki T., Oka M., Nakamura Y., Tsurutani J., Doi S., Yasunaga M., et al. (2005). Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49, 337–343. 10.1016/J.LUNGCAN.2005.03.035 PubMed DOI

Kovacevic Z., Chikhani S., Lui G. Y. L., Sivagurunathan S., Richardson D. R. (2013). The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways. Antioxid. Redox Signal. 18, 874–887. 10.1089/ars.2011.4273 PubMed DOI

Kovacevic Z., Menezes S. V., Sahni S., Kalinowski D. S., Bae D. H., Lane D. J. R., et al. (2016). The metastasis suppressor, N-MYC downstream-regulated gene-1 (NDRG1), down-regulates the ErbB family of receptors to inhibit downstream oncogenic signaling pathways. J. Biol. Chem. 291, 1029–1052. 10.1074/jbc.M115.689653 PubMed DOI PMC

Krchniakova M., Skoda J., Neradil J., Chlapek P., Veselska R. (2020). Repurposing tyrosine kinase inhibitors to overcome multidrug resistance in cancer: A focus on transporters and lysosomal sequestration. Int. J. Mol. Sci. 21, 3157. 10.3390/ijms21093157 PubMed DOI PMC

Lane D. J. R., Merlot A. M., Huang H., Bae D.-H., Jansson P. J., Sahni S., et al. (2015). Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim. Biophys. Acta 1853, 1130–1144. 10.1016/j.bbamcr.2015.01.021 PubMed DOI

Lane D. J. R., Saletta F., Rahmanto Y. S., Kovacevic Z., Richardson D. R. (2013). N-Myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion. PLoS One 8, e57273. 10.1371/journal.pone.0057273 PubMed DOI PMC

Li J., Kretzner L. (2003). The growth-inhibitory Ndrg1 gene is a Myc negative target in human neuroblastomas and other cell types with overexpressed N- or c-myc. Mol. Cell. Biochem. 250, 91–105. 10.1023/A:1024918328162 PubMed DOI

Li P., Zheng X., Shou K., Niu Y., Jian C., Zhao Y., et al. (2016). The iron chelator Dp44mT suppresses osteosarcoma’s proliferation, invasion and migration: In vitro and in vivo . Am. J. Transl. Res. 8, 5370–5385. PubMed PMC

Lim S. C., Jansson P. J., Assinder S. J., Maleki S., Richardson D. R., Kovacevic Z. (2020). Unique targeting of androgen-dependent and -independent AR signaling in prostate cancer to overcome androgen resistance. FASEB J. 34, 11511–11528. 10.1096/fj.201903167R PubMed DOI

Liu W., Xing F., Iiizumi-Gairani M., Okuda H., Watabe M., Pai S. K., et al. (2012). N-myc downstream regulated gene 1 modulates Wnt-β-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol. Med. 4, 93–108. 10.1002/emmm.201100190 PubMed DOI PMC

Liu W., Yue F., Zheng M., Merlot A., Bae D. H., Huang M., et al. (2015). The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget 6, 8851–8874. 10.18632/oncotarget.3316 PubMed DOI PMC

Lovejoy D. B., Jansson P. J., Brunk U. T., Wong J., Ponka P., Richardson D. R. (2011). Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res. 71, 5871–5880. 10.1158/0008-5472.CAN-11-1218 PubMed DOI

Lovejoy D. B., Sharp D. M., Seebacher N., Obeidy P., Prichard T., Stefani C., et al. (2012). Novel second-generation di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstrate potent activity against lung cancer xenografts after oral and intravenous administration in vivo . J. Med. Chem. 55, 7230–7244. 10.1021/jm300768u PubMed DOI

Lui G. Y. L., Kovacevic Z., Richardson V., Merlot A. M., Kalinowski D. S., Richardson D. R. (2015a). Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget 6, 18748–18779. 10.18632/oncotarget.4349 PubMed DOI PMC

Lui G. Y. L., Kovacevic Z., Menezes S., Kalinowski D. S., Merlot A. M., Sahni S., et al. (2015b). Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: Inhibition of constitutive and interleukin 6–induced activation by iron depletion. Mol. Pharmacol. 87, 543–560. 10.1124/mol.114.096529 PubMed DOI

Macsek P., Skoda J., Krchniakova M., Neradil J., Veselska R. (2022). Iron‐chelation treatment by novel thiosemicarbazone targets major signaling pathways in neuroblastoma. Int. J. Mol. Sci. 23, 376. 10.3390/ijms23010376 PubMed DOI PMC

Maqbool S. N., Lim S. C., Park K. C., Hanif R., Richardson D. R., Jansson P. J., et al. (2020). Overcoming tamoxifen resistance in oestrogen receptor‐positive breast cancer using the novel thiosemicarbazone anti‐cancer agent, DpC. Br. J. Pharmacol. 177, 2365–2380. 10.1111/bph.14985 PubMed DOI PMC

Matsushita K., Uchida K., Saigusa S., Ide S., Hashimoto K., Koike Y., et al. (2013). Low NDRG1 mRNA expression predicts a poor prognosis in neuroblastoma patients. Pediatr. Surg. Int. 29, 363–368. 10.1007/s00383-012-3248-6 PubMed DOI

Menezes S. V., Fouani L., Huang M. L. H., Geleta B., Maleki S., Richardson A., et al. (2019a). The metastasis suppressor, NDRG1, attenuates oncogenic TGF-β and NF-κB signaling to enhance membrane E-cadherin expression in pancreatic cancer cells. Carcinogenesis 40, 805–818. 10.1093/carcin/bgy178 PubMed DOI

Menezes S. V., Kovacevic Z., Richardson D. R. (2019b). The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. J. Biol. Chem. 294, 4045–4064. 10.1074/jbc.RA118.006279 PubMed DOI PMC

Menezes S. V., Sahni S., Kovacevic Z., Richardson D. R. (2017). Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. J. Biol. Chem. 292, 12772–12782. 10.1074/jbc.R117.776393 PubMed DOI PMC

Miller K. D., Nogueira L., Mariotto A. B., Rowland J. H., Yabroff K. R., Alfano C. M., et al. (2019). Cancer treatment and survivorship statistics, 2019. Ca. Cancer J. Clin. 69, 363–385. 10.3322/caac.21565 PubMed DOI

Mokhtari R. B., Homayouni T. S., Baluch N., Morgatskaya E., Kumar S., Das B., et al. (2017). Combination therapy in combating cancer. Oncotarget 8, 38022–38043. 10.18632/oncotarget.16723 PubMed DOI PMC

Monami G., Emiliozzi V., Morrione A. (2008). Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J. Cell. Physiol. 216, 426–437. 10.1002/jcp.21405 PubMed DOI

Mudry P., Slaby O., Neradil J., Soukalova J., Melicharkova K., Rohleder O., et al. (2017). Case report: Rapid and durable response to PDGFR targeted therapy in a child with refractory multiple infantile myofibromatosis and a heterozygous germline mutation of the PDGFRB gene. BMC Cancer 17, 119. 10.1186/s12885-017-3115-x PubMed DOI PMC

Neradil J., Kyr M., Polaskova K., Kren L., Macigova P., Skoda J., et al. (2019). Phospho-protein arrays as effective tools for screening possible targets for kinase inhibitors and their use in precision pediatric oncology. Front. Oncol. 9, 930. 10.3389/fonc.2019.00930 PubMed DOI PMC

Oeffinger K. C., Mertens A. C., Sklar C. A. (2007). Chronic health conditions in adult survivors of childhood cancer. Oncol. Times 29, 26. 10.1097/01.COT.0000265629.30194.8e PubMed DOI

Othman R. T., Kimishi I., Bradshaw T. D., Storer L. C., Korshunov A., Pfister S. M., et al. (2014). Overcoming multiple drug resistance mechanisms in medulloblastoma. Acta Neuropathol. Commun. 2, 57–14. 10.1186/2051-5960-2-57 PubMed DOI PMC

Park K. C., Geleta B., Leck L. Y. W., Paluncic J., Chiang S., Jansson P. J., et al. (2020a). Thiosemicarbazones suppress expression of the c-Met oncogene by mechanisms involving lysosomal degradation and intracellular shedding. J. Biol. Chem. 295, 481–503. 10.1074/jbc.RA119.011341 PubMed DOI PMC

Park K. C., Menezes S. V., Kalinowski D. S., Sahni S., Jansson P. J., Kovacevic Z., et al. (2018). Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochim. Biophys. Acta. Mol. Basis Dis. 1864, 2644–2663. 10.1016/j.bbadis.2018.04.011 PubMed DOI

Park K. C., Paluncic J., Kovacevic Z., Richardson D. R. (2020b). Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic. Biol. Med. 157, 154–175. 10.1016/j.freeradbiomed.2019.05.020 PubMed DOI

Paukovcekova S., Skoda J., Neradil J., Mikulenkova E., Chlapek P., Sterba J., et al. (2020). Novel thiosemicarbazones sensitize pediatric solid tumor cell-types to conventional chemotherapeutics through multiple molecular mechanisms. Cancers (Basel) 12, 3781. 10.3390/cancers12123781 PubMed DOI PMC

Pollack I. F., Steward C. F., Kocak M., Young Poussaint T., Broniccer A., Banerjee A., et al. (2010). A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: A report from the pediatric brain tumor consortium. Neuro. Oncol. 12, 116–121. PubMed PMC

Potuckova E., Jansova H., Machacek M., Vavrova A., Haskova P., Tichotova L., et al. (2014). Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. PLoS One 9, e88754. 10.1371/journal.pone.0088754 PubMed DOI PMC

Radic-Sarikas B., Halasz M., Huber K. V. M., Winter G. E., Tsafou K. P., Papamarkou T., et al. (2017). Lapatinib potentiates cytotoxicity of YM155 in neuroblastoma via inhibition of the ABCB1 efflux transporter. Sci. Rep. 7, 3091–3098. 10.1038/s41598-017-03129-6 PubMed DOI PMC

Ross R. A., Biedler J. L., Spengler B. A. (2003). A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors. Cancer Lett. 197, 35–39. 10.1016/S0304-3835(03)00079-X PubMed DOI

Saito Y., Haendeler J., Hojo Y., Yamamoto K., Berk B. C. (2001). Receptor heterodimerization: Essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation. Mol. Cell. Biol. 21, 6387–6394. 10.1128/mcb.21.19.6387-6394.2001 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Seebacher N. A., Richardson D. R., Jansson P. J. (2016a). A mechanism for overcoming P-glycoprotein-mediated drug resistance: Novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis. 7, e2510. 10.1038/cddis.2016.381 PubMed DOI PMC

Seebacher N., Lane D. J. R., Richardson D. R., Jansson P. J. (2016b). Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic. Biol. Med. 96, 432–445. 10.1016/j.freeradbiomed.2016.04.201 PubMed DOI

Ségaliny A. I., Tellez-Gabriel M., Heymann M. F., Heymann D. (2015). Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J. Bone Oncol. 4, 1–12. 10.1016/j.jbo.2015.01.001 PubMed DOI PMC

Shukla S., Robey R. W., Bates S. E., Ambudkar S. V. (2009). Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab. Dispos. 37, 359–365. 10.1124/dmd.108.024612 PubMed DOI PMC

Tong C. W. S., Wu W. K. K., Loong H. H. F., Cho W. C. S., To K. K. W. (2017). Drug combination approach to overcome resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Lett. 405, 100–110. 10.1016/j.canlet.2017.07.023 PubMed DOI

Vecchione A., Marchese A., Henry P., Rotin D., Morrione A. (2003). The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol. Cell. Biol. 23, 3363–3372. 10.1128/mcb.23.9.3363-3372.2003 PubMed DOI PMC

Verschuur A. C., Bajčiová V., Mascarenhas L., Khosravan R., Lin X., Ingrosso A., et al. (2019). Sunitinib in pediatric patients with advanced gastrointestinal stromal tumor: Results from a phase I/II trial. Cancer Chemother. Pharmacol. 84, 41–50. 10.1007/s00280-019-03814-5 PubMed DOI PMC

Wu C.-P., Hsieh C.-H., Wu Y.-S. (2011). The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm. 8, 1996–2011. 10.1021/mp200261n PubMed DOI

Xu Y. X., Zeng M. L., Yu D., Ren J., Li F., Zheng A., et al. (2018). In vitro assessment of the role of DpC in the treatment of head and neck squamous cell carcinoma. Oncol. Lett. 15, 7999–8004. 10.3892/ol.2018.8279 PubMed DOI PMC

Yamagishi T., Sahni S., Sharp D. M., Arvind A., Jansson P. J., Richardson D. R. (2013). P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 288, 31761–31771. 10.1074/jbc.M113.514091 PubMed DOI PMC

Yamaoka T., Kusumoto S., Ando K., Ohba M., Ohmori T. (2018). Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci. 19, 3491. 10.3390/ijms19113491 PubMed DOI PMC

Yi J. H., Lee J., Lee J., Park S. H., Park J. O., Yim D.-S., et al. (2012). Randomised phase II trial of docetaxel and sunitinib in patients with metastatic gastric cancer who were previously treated with fluoropyrimidine and platinum. Br. J. Cancer 106, 1469–1474. 10.1038/bjc.2012.100 PubMed DOI PMC

Yu Y., Kalinowski D. S., Kovacevic Z., Siafakas A. R., Jansson P. J., Stefani C., et al. (2009). Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem. 52, 5271–5294. 10.1021/jm900552r PubMed DOI

Zhao G., Chen J., Deng Y., Gao F., Zhu J., Feng Z., et al. (2011). Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells. Biochem. Biophys. Res. Commun. 408, 154–159. 10.1016/j.bbrc.2011.03.140 PubMed DOI

Zhitomirsky B., Assaraf Y. G. (2016). Lysosomes as mediators of drug resistance in cancer. Drug resist. updat. 24, 23–33. 10.1016/J.DRUP.2015.11.004 PubMed DOI

Zhou J., Jiang Y., Zhao J., Zhang H., Fu J., Luo P., et al. (2020). Dp44mT, an iron chelator, suppresses growth and induces apoptosis via RORA-mediated NDRG2-IL6/JAK2/STAT3 signaling in glioma. Cell. Oncol. 43, 461–475. 10.1007/s13402-020-00502-y PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...