Iron-Chelation Treatment by Novel Thiosemicarbazone Targets Major Signaling Pathways in Neuroblastoma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-34083A
Ministry of Healthcare of the Czech Republic
17-33104A
Ministry of Healthcare of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
35008802
PubMed Central
PMC8745636
DOI
10.3390/ijms23010376
PII: ijms23010376
Knihovny.cz E-zdroje
- Klíčová slova
- DpC, EGFR, MYC, NDRG1, lipid droplet, neuroblastoma, thiosemicarbazone,
- MeSH
- amplifikace genu účinky léků MeSH
- biologické modely MeSH
- chelátory železa farmakologie MeSH
- down regulace účinky léků MeSH
- erbB receptory metabolismus MeSH
- fosforylace účinky léků MeSH
- fyziologický stres účinky léků MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- neuroblastom metabolismus patologie MeSH
- proteiny buněčného cyklu metabolismus MeSH
- protoonkogen n-myc metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- pyridiny farmakologie MeSH
- signální transdukce * MeSH
- thiosemikarbazony farmakologie MeSH
- tvar buňky účinky léků MeSH
- umlčování genů účinky léků MeSH
- upregulace účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chelátory železa MeSH
- di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone MeSH Prohlížeč
- erbB receptory MeSH
- intracelulární signální peptidy a proteiny MeSH
- N-myc downstream-regulated gene 1 protein MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- protoonkogen n-myc MeSH
- protoonkogenní proteiny c-akt MeSH
- pyridiny MeSH
- thiosemikarbazony MeSH
Despite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as MYCN amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma. In this study, we found that di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) potently decreases N-MYC in MYCN-amplified and c-MYC in MYCN-nonamplified neuroblastoma cell lines. Furthermore, DpC succeeded in downregulating total EGFR and phosphorylation of its most prominent tyrosine residues through the involvement of NDRG1, a positive prognostic marker in neuroblastoma, which was markedly upregulated after thiosemicarbazone treatment. These findings could provide useful knowledge for the treatment of MYC-driven neuroblastomas that are unresponsive to conventional therapies.
Zobrazit více v PubMed
Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. Nat. Rev. Dis. Prim. 2016;2:1–21. doi: 10.1038/nrdp.2016.78. PubMed DOI
Nuchtern J.G., London W.B., Barnewolt C.E., Naranjo A., McGrady P.W., Geiger J.D., Diller L., Schmidt M., Lou Maris J.M., Cohn S.L. et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: A children’s oncology group study. Ann. Surg. 2012;256:573. doi: 10.1097/SLA.0b013e31826cbbbd. PubMed DOI PMC
Baker D.L., Schmidt M.L., Cohn S.L., Maris J.M., London W.B., Buxton A., Stram D., Castleberry R.P., Shimada H., Sandler A., et al. Outcome after Reduced Chemotherapy for Intermediate-Risk Neuroblastoma. N. Engl. J. Med. 2010;363:1313–1323. doi: 10.1056/NEJMoa1001527. PubMed DOI PMC
Johnsen J.I., Dyberg C., Wickström M. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 2019;12:9. doi: 10.3389/fnmol.2019.00009. PubMed DOI PMC
Park J.R., Bagatell R., London W.B., Maris J.M., Cohn S.L., Mattay K.M., Hogarty M. Children’s Oncology Group’s 2013 blueprint for research: Neuroblastoma. Pediatr. Blood Cancer. 2013;60:985–993. doi: 10.1002/pbc.24433. PubMed DOI
Brodeur G.M., Seeger R.C., Schwab M., Varmus H.E., Michael Bishop J. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–1124. doi: 10.1126/science.6719137. PubMed DOI
London W.B., Castleberry R.P., Matthay K.K., Look A.T., Seeger R.C., Shimada H., Thorner P., Brodeur G., Maris J.M., Reynolds C.P., et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005;23:6459–6465. doi: 10.1200/JCO.2005.05.571. PubMed DOI
Thompson D., Vo K.T., London W.B., Fischer M., Ambros P.F., Nakagawara A., Brodeur G.M., Matthay K.K., DuBois S.G. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project. Cancer. 2016;122:935–945. doi: 10.1002/cncr.29848. PubMed DOI PMC
Otte J., Dyberg C., Pepich A., Johnsen J.I. MYCN Function in Neuroblastoma Development. Front. Oncol. 2021;27:624079. doi: 10.3389/fonc.2020.624079. PubMed DOI PMC
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Dang C.V. MYC on the path to cancer. Cell. 2012;149:22–35. doi: 10.1016/j.cell.2012.03.003. PubMed DOI PMC
Zimmerman M.W., Liu Y., He S., Durbin A.D., Abraham B.J., Easton J., Shao Y., Xu B., Zhu S., Zhang X., et al. MYC Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discov. 2018;8:320–335. doi: 10.1158/2159-8290.CD-17-0993. PubMed DOI PMC
Westermann F., Muth D., Benner A., Bauer T., Henrich K.O., Oberthuer A., Brors B., Beissbarth T., Vandesompele J., Pattyn F., et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol. 2008;9:R150. doi: 10.1186/gb-2008-9-10-r150. PubMed DOI PMC
Dominguez-Sola D., Ying C.Y., Grandori C., Ruggiero L., Chen B., Li M., Galloway D.A., Gu W., Gautier J., Dalla-Favera R. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448:445–451. doi: 10.1038/nature05953. PubMed DOI
Shachaf C.M., Kopelman A.M., Arvanitis C., Karlsson Å., Beer S., Mandl S., Bachmann M.H., Borowsky A.D., Ruebner B., Cardiff R.D., et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431:1112–1117. doi: 10.1038/nature03043. PubMed DOI
Jain M., Arvanitis C., Chu K., Dewey W., Leonhardt E., Trinh M., Sundberg C.D., Bishop J.M., Felsher D.W. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297:102–104. doi: 10.1126/science.1071489. PubMed DOI
Wolf E., Eilers M. Targeting MYC Proteins for Tumor Therapy. Annu. Rev. Cancer Biol. 2020;4:61–75. doi: 10.1146/annurev-cancerbio-030518-055826. DOI
Serda M., Kalinowski D.S., Rasko N., Potůčková E., Mrozek-Wilczkiewicz A., Musiol R., Małecki J.G., Sajewicz M., Ratuszna A., Muchowicz A., et al. Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS ONE. 2014;9:e110291. doi: 10.1371/journal.pone.0110291. PubMed DOI PMC
Jansson P.J., Yamagishi T., Arvind A., Seebacher N., Gutierrez E., Stacy A., Maleki S., Sharp D., Sahni S., Richardson D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-Glycoprotein (Pgp) J. Biol. Chem. 2015;290:9588–9603. doi: 10.1074/jbc.M114.631283. PubMed DOI PMC
Chen Z., Zhang D., Yue F., Zheng M., Kovacevic Z., Richardson D.R. The iron chelators Dp44mT and DFO inhibit TGF-β-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1) J. Biol. Chem. 2012;287:17016–17028. doi: 10.1074/jbc.M112.350470. PubMed DOI PMC
Wangpu X., Lu J., Xi R., Yue F., Sahni S., Park K.C., Menezes S., Huang M.L.H., Zheng M., Kovacevic Z., et al. Targeting the metastasis suppressor, n-myc downstream regulated gene-1, with novel di-2-pyridylketone thiosemicarbazones: Suppression of tumor cell migration and cell-collagen adhesion by inhibiting focal adhesion kinase/paxillin signaling. Mol. Pharmacol. 2016;89:521–540. doi: 10.1124/mol.115.103044. PubMed DOI PMC
Guo Z.L., Richardson D.R., Kalinowski D.S., Kovacevic Z., Tan-Un K.C., Chan G.C.F. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol. 2016;9:98. doi: 10.1186/s13045-016-0330-x. PubMed DOI PMC
Matsushita K., Uchida K., Saigusa S., Ide S., Hashimoto K., Koike Y., Otake K., Inoue M., Tanaka K., Kusunoki M. Low NDRG1 mRNA expression predicts a poor prognosis in neuroblastoma patients. Pediatr. Surg. Int. 2013;29:363–368. doi: 10.1007/s00383-012-3248-6. PubMed DOI
Li J., Kretzner L. The growth-inhibitory Ndrg1 gene is a Myc negative target in human neuroblastomas and other cell types with overexpressed N- or c-myc. Mol. Cell. Biochem. 2003;250:91–105. doi: 10.1023/A:1024918328162. PubMed DOI
Zhang Jian Chen S., Zhang W., Zhang Jing Liu X., Shi H., Che H., Wang W., Li F., Yao L. Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region. Gene. 2008;417:5–12. doi: 10.1016/j.gene.2008.03.002. PubMed DOI
Lv X.H., Chen J.W., Zhao G., Feng Z.Z., Yang D.H., Sun W.W., Fan J.S., Zhu G.H. N-myc downstream-regulated gene 1/Cap43 may function as tumor suppressor in endometrial cancer. J. Cancer Res. Clin. Oncol. 2012;138:1703–1715. doi: 10.1007/s00432-012-1249-4. PubMed DOI
Zhang X., Feng B., Zhu F., Yu C., Lu J., Pan M., He Z., Wangpu X., Sun J., Yang X. N-myc downstream-regulated gene 1 promotes apoptosis in colorectal cancer via up-regulating death receptor 4. Oncotarget. 2017;8:82593–82608. doi: 10.18632/oncotarget.19658. PubMed DOI PMC
Yang Y., Liu Y., Guo R., Fu Y., Zhang Z., Zhang P., Zhou P., Wang T., Huang T., Li X., et al. The novel dithiocarbamate, DpdtC suppresses HER2-overexpressed cancer cells by up-regulating NDRG1 via inactivation of HER2-ERK 1/2 signaling. Sci. Rep. 2018;8:3398. doi: 10.1038/s41598-018-21768-1. PubMed DOI PMC
Chua M.S., Sun H., Cheung S.T., Mason V., Higgins J., Ross D.T., Fan S.T., So S. Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma. Mod. Pathol. 2007;20:76–83. doi: 10.1038/modpathol.3800711. PubMed DOI
Weiler M., Blaes J., Pusch S., Sahm F., Czabanka M., Luger S., Bunse L., Solecki G., Eichwald V., Jugold M., et al. MTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy. Proc. Natl. Acad. Sci. USA. 2014;111:409–414. doi: 10.1073/pnas.1314469111. PubMed DOI PMC
Dixon K.M., Lui G.Y.L., Kovacevic Z., Zhang D., Yao M., Chen Z., Dong Q., Assinder S.J., Richardson D.R. Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer. 2013;108:409–419. doi: 10.1038/bjc.2012.582. PubMed DOI PMC
Kovacevic Z., Chikhani S., Lui G.Y.L., Sivagurunathan S., Richardson D.R. The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways. Antioxid. Redox Signal. 2013;18:874–887. doi: 10.1089/ars.2011.4273. PubMed DOI
Liu W., Yue F., Zheng M., Merlot A., Bae D.H., Huang M., Lane D., Jansson P., Liu G., Richardson V., et al. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget. 2015;6:8851–8874. doi: 10.18632/oncotarget.3316. PubMed DOI PMC
Kovacevic Z., Menezes S.V., Sahni S., Kalinowski D.S., Bae D.H., Lane D.J.R., Richardson D.R. The metastasis suppressor, N-MYC downstream-regulated gene-1 (NDRG1), down-regulates the ErbB family of receptors to inhibit downstream oncogenic signaling pathways. J. Biol. Chem. 2016;291:1029–1052. doi: 10.1074/jbc.M115.689653. PubMed DOI PMC
Menezes S.V., Kovacevic Z., Richardson D.R. The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. J. Biol. Chem. 2019;294:4045–4064. doi: 10.1074/jbc.RA118.006279. PubMed DOI PMC
Paukovcekova S., Skoda J., Neradil J., Mikulenkova E., Chlapek P., Sterba J., Richardson D.R., Veselska R. Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers. 2020;12:3781. doi: 10.3390/cancers12123781. PubMed DOI PMC
Hossain S., Takatori A., Nakamura Y., Suenaga Y., Kamijo T., Nakagawara A. NLRR1 enhances EGF-mediated MYCN induction in neuroblastoma and accelerates tumor growth in vivo. Cancer Res. 2012;72:4587–4596. doi: 10.1158/0008-5472.CAN-12-0943. PubMed DOI
Wee P., Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017;9:52. doi: 10.3390/cancers9050052. PubMed DOI PMC
Salnikow K., Blagosklonny M.V., Ryan H., Johnson R., Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 2000;60:38–41. PubMed
Cangul H. Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet. 2004;5:27. doi: 10.1186/1471-2156-5-27. PubMed DOI PMC
Lingappan K. NF-κB in Oxidative Stress. Curr. Opin. Toxicol. 2018;7:81. doi: 10.1016/j.cotox.2017.11.002. PubMed DOI PMC
Zhang H., Park S.-H., Pantazides B.G., Karpiuk O., Warren M.D., Hardy C.W., Duong D.M., Park S.-J., Kim H.-S., Vassilopoulos A., et al. SIRT2 directs the replication stress response through CDK9 deacetylation. Proc. Natl. Acad. Sci. USA. 2013;110:13546. doi: 10.1073/pnas.1301463110. PubMed DOI PMC
Kankanamalage S.G., Karra A.S., Cobb M.H. WNK pathways in cancer signaling networks. Cell Commun. Signal. 2018;16:1–6. doi: 10.1186/s12964-018-0287-1. PubMed DOI PMC
Kim J.L., Lee D.-H., Na Y.J., Kim B.R., Jeong Y.A., Lee S.I., Kang S., Joung S.Y., Lee S.-Y., Oh S.C., et al. Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumor Biol. 2016;377:9709–9719. doi: 10.1007/s13277-016-4878-4. PubMed DOI
Le N.T.V., Richardson D.R. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: A link between iron metabolism and proliferation. Blood. 2004;104:2967–2975. doi: 10.1182/blood-2004-05-1866. PubMed DOI
Shimono A., Okuda T., Kondoh H. N-myc-dependent repression of Ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech. Dev. 1999;83:39–52. doi: 10.1016/S0925-4773(99)00025-8. PubMed DOI
Malynn B.A., Alboran IM de O’Hagan R.C., Bronson R., Davidson L., DePinho R.A., Alt F.W. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000;14:1390. doi: 10.1101/gad.14.11.1390. PubMed DOI PMC
Beltran H. The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Mol. Cancer Res. 2014;12:815–822. doi: 10.1158/1541-7786.MCR-13-0536. PubMed DOI
Zirath H., Frenzel A., Oliynyk G., Segerström L., Westermark U.K., Larsson K., Persson M.M., Hultenby K., Lehtiö J., Einvik C., et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc. Natl. Acad. Sci. USA. 2013;110:10258–10263. doi: 10.1073/pnas.1222404110. PubMed DOI PMC
Bae D.-H., Jansson P.J., Huang M.L., Kovacevic Z., Kalinowski D., Lee C.S., Sahni S., Richardson D.R. The role of NDRG1 in the pathology and potential treatment of human cancers. J. Clin. Pathol. 2013;66:911–917. doi: 10.1136/jclinpath-2013-201692. PubMed DOI
Fan L., Iyer J., Zhu S., Frick K.K., Wada R.K., Eskenazi A.E., Berg P.E., Ikegaki N., Kennett R.H., Frantz C.N. Inhibition of N-myc Expression and Induction of Apoptosis by Iron Chelation in Human Neuroblastoma Cells 1. Cancer Res. 2001;61:1073–1079. PubMed
Siriwardana G., Seligman P.A. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: Separating cell cycle events associated with each block. Physiol. Rep. 2013;1:176. doi: 10.1002/phy2.176. PubMed DOI PMC
Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell. 2014;5:750. doi: 10.1007/s13238-014-0083-7. PubMed DOI PMC
Chen H., Liu H., Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 2018;3:1–7. doi: 10.1038/s41392-018-0008-7. PubMed DOI PMC
Yang X.H., Tang F., Shin J., Cunningham J.M. A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature) Sci. Rep. 2017;7:41. doi: 10.1038/s41598-017-00122-x. PubMed DOI PMC
Liu Q., Turner K.M., Yung W.K.A., Chen K., Zhang W. Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro. Oncol. 2014;16:1313–1323. doi: 10.1093/neuonc/nou058. PubMed DOI PMC
Lui G.Y., Kovacevic Z., Richardson V., Merlot A.M., Kalinowski D.S., Richardson D.R. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget. 2015;6:18748–18779. doi: 10.18632/oncotarget.4349. PubMed DOI PMC
Nogueira V., Park Y., Chen C.C., Xu P.Z., Chen M.L., Tonic I., Unterman T., Hay N. Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis. Cancer Cell. 2008;14:458–470. doi: 10.1016/j.ccr.2008.11.003. PubMed DOI PMC
Los M., Maddika S., Erb B., Schulze-Osthoff K. Switching Akt: From survival signaling to deadly response. BioEssays. 2009;31:492–495. doi: 10.1002/bies.200900005. PubMed DOI PMC
Liu Q., Yu S., Zhao W., Qin S., Chu Q., Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer. 2018;17:53. doi: 10.1186/s12943-018-0793-1. PubMed DOI PMC
Pietiäinen V., Vassilev B., Blom T., Wang W., Nelson J., Bittman R., Bäck N., Zelcer N., Ikonen E. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. J. Cell Sci. 2013;126:3961–3971. doi: 10.1242/jcs.128132. PubMed DOI
Kalaydjieva L., Gresham D., Gooding R., Heather L., Baas F., Jonge R., de Blechschmidt K., Angelicheva D., Chandler D., Worsley P., et al. N-myc Downstream-Regulated Gene 1 Is Mutated in Hereditary Motor and Sensory Neuropathy–Lom. Am. J. Hum. Genet. 2000;67:47–58. doi: 10.1086/302978. PubMed DOI PMC
Cai K., El-Merahbi R., Loeffler M., Mayer A.E., Sumara G. Ndrg1 promotes adipocyte differentiation and sustains their function. Sci. Rep. 2017;71:7191. doi: 10.1038/s41598-017-07497-x. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Skoda J., Hermanova M., Loja T., Nemec P., Neradil J., Karasek P., Veselska R. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma. PLoS ONE. 2016;11:e0159255. doi: 10.1371/journal.pone.0159255. PubMed DOI PMC
Neradil J., Kyr M., Polaskova K., Kren L., Macigova P., Skoda J., Sterba J., Veselska R. Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Front. Oncol. 2019;9:930. doi: 10.3389/fonc.2019.00930. PubMed DOI PMC
Sestak V., Stariat J., Cermanova J., Potuckova E., Chladek J., Roh J., Bures J., Jansova H., Prusa P., Sterba M., et al. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget. 2015;6:42411–42428. doi: 10.18632/oncotarget.6389. PubMed DOI PMC
Wijesinghe T.P., Dharmasivam M., Dai C.C., Richardson D.R. Innovative Therapies for Neuroblastoma: The Surprisingly Potent Role of Iron Chelation in Up-Regulating Metastasis and Tumor Suppressors and Down-Regulating the Key Oncogene, N-myc. Pharmacol. Res. 2021;173:105889. doi: 10.1016/j.phrs.2021.105889. PubMed DOI
Chelators as Antineuroblastomas Agents