Iron-Chelation Treatment by Novel Thiosemicarbazone Targets Major Signaling Pathways in Neuroblastoma

. 2021 Dec 29 ; 23 (1) : . [epub] 20211229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35008802

Grantová podpora
16-34083A Ministry of Healthcare of the Czech Republic
17-33104A Ministry of Healthcare of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

Despite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as MYCN amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma. In this study, we found that di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) potently decreases N-MYC in MYCN-amplified and c-MYC in MYCN-nonamplified neuroblastoma cell lines. Furthermore, DpC succeeded in downregulating total EGFR and phosphorylation of its most prominent tyrosine residues through the involvement of NDRG1, a positive prognostic marker in neuroblastoma, which was markedly upregulated after thiosemicarbazone treatment. These findings could provide useful knowledge for the treatment of MYC-driven neuroblastomas that are unresponsive to conventional therapies.

Zobrazit více v PubMed

Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. Nat. Rev. Dis. Prim. 2016;2:1–21. doi: 10.1038/nrdp.2016.78. PubMed DOI

Nuchtern J.G., London W.B., Barnewolt C.E., Naranjo A., McGrady P.W., Geiger J.D., Diller L., Schmidt M., Lou Maris J.M., Cohn S.L. et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: A children’s oncology group study. Ann. Surg. 2012;256:573. doi: 10.1097/SLA.0b013e31826cbbbd. PubMed DOI PMC

Baker D.L., Schmidt M.L., Cohn S.L., Maris J.M., London W.B., Buxton A., Stram D., Castleberry R.P., Shimada H., Sandler A., et al. Outcome after Reduced Chemotherapy for Intermediate-Risk Neuroblastoma. N. Engl. J. Med. 2010;363:1313–1323. doi: 10.1056/NEJMoa1001527. PubMed DOI PMC

Johnsen J.I., Dyberg C., Wickström M. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 2019;12:9. doi: 10.3389/fnmol.2019.00009. PubMed DOI PMC

Park J.R., Bagatell R., London W.B., Maris J.M., Cohn S.L., Mattay K.M., Hogarty M. Children’s Oncology Group’s 2013 blueprint for research: Neuroblastoma. Pediatr. Blood Cancer. 2013;60:985–993. doi: 10.1002/pbc.24433. PubMed DOI

Brodeur G.M., Seeger R.C., Schwab M., Varmus H.E., Michael Bishop J. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–1124. doi: 10.1126/science.6719137. PubMed DOI

London W.B., Castleberry R.P., Matthay K.K., Look A.T., Seeger R.C., Shimada H., Thorner P., Brodeur G., Maris J.M., Reynolds C.P., et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005;23:6459–6465. doi: 10.1200/JCO.2005.05.571. PubMed DOI

Thompson D., Vo K.T., London W.B., Fischer M., Ambros P.F., Nakagawara A., Brodeur G.M., Matthay K.K., DuBois S.G. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project. Cancer. 2016;122:935–945. doi: 10.1002/cncr.29848. PubMed DOI PMC

Otte J., Dyberg C., Pepich A., Johnsen J.I. MYCN Function in Neuroblastoma Development. Front. Oncol. 2021;27:624079. doi: 10.3389/fonc.2020.624079. PubMed DOI PMC

Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI

Dang C.V. MYC on the path to cancer. Cell. 2012;149:22–35. doi: 10.1016/j.cell.2012.03.003. PubMed DOI PMC

Zimmerman M.W., Liu Y., He S., Durbin A.D., Abraham B.J., Easton J., Shao Y., Xu B., Zhu S., Zhang X., et al. MYC Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discov. 2018;8:320–335. doi: 10.1158/2159-8290.CD-17-0993. PubMed DOI PMC

Westermann F., Muth D., Benner A., Bauer T., Henrich K.O., Oberthuer A., Brors B., Beissbarth T., Vandesompele J., Pattyn F., et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol. 2008;9:R150. doi: 10.1186/gb-2008-9-10-r150. PubMed DOI PMC

Dominguez-Sola D., Ying C.Y., Grandori C., Ruggiero L., Chen B., Li M., Galloway D.A., Gu W., Gautier J., Dalla-Favera R. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448:445–451. doi: 10.1038/nature05953. PubMed DOI

Shachaf C.M., Kopelman A.M., Arvanitis C., Karlsson Å., Beer S., Mandl S., Bachmann M.H., Borowsky A.D., Ruebner B., Cardiff R.D., et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431:1112–1117. doi: 10.1038/nature03043. PubMed DOI

Jain M., Arvanitis C., Chu K., Dewey W., Leonhardt E., Trinh M., Sundberg C.D., Bishop J.M., Felsher D.W. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297:102–104. doi: 10.1126/science.1071489. PubMed DOI

Wolf E., Eilers M. Targeting MYC Proteins for Tumor Therapy. Annu. Rev. Cancer Biol. 2020;4:61–75. doi: 10.1146/annurev-cancerbio-030518-055826. DOI

Serda M., Kalinowski D.S., Rasko N., Potůčková E., Mrozek-Wilczkiewicz A., Musiol R., Małecki J.G., Sajewicz M., Ratuszna A., Muchowicz A., et al. Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS ONE. 2014;9:e110291. doi: 10.1371/journal.pone.0110291. PubMed DOI PMC

Jansson P.J., Yamagishi T., Arvind A., Seebacher N., Gutierrez E., Stacy A., Maleki S., Sharp D., Sahni S., Richardson D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-Glycoprotein (Pgp) J. Biol. Chem. 2015;290:9588–9603. doi: 10.1074/jbc.M114.631283. PubMed DOI PMC

Chen Z., Zhang D., Yue F., Zheng M., Kovacevic Z., Richardson D.R. The iron chelators Dp44mT and DFO inhibit TGF-β-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1) J. Biol. Chem. 2012;287:17016–17028. doi: 10.1074/jbc.M112.350470. PubMed DOI PMC

Wangpu X., Lu J., Xi R., Yue F., Sahni S., Park K.C., Menezes S., Huang M.L.H., Zheng M., Kovacevic Z., et al. Targeting the metastasis suppressor, n-myc downstream regulated gene-1, with novel di-2-pyridylketone thiosemicarbazones: Suppression of tumor cell migration and cell-collagen adhesion by inhibiting focal adhesion kinase/paxillin signaling. Mol. Pharmacol. 2016;89:521–540. doi: 10.1124/mol.115.103044. PubMed DOI PMC

Guo Z.L., Richardson D.R., Kalinowski D.S., Kovacevic Z., Tan-Un K.C., Chan G.C.F. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol. 2016;9:98. doi: 10.1186/s13045-016-0330-x. PubMed DOI PMC

Matsushita K., Uchida K., Saigusa S., Ide S., Hashimoto K., Koike Y., Otake K., Inoue M., Tanaka K., Kusunoki M. Low NDRG1 mRNA expression predicts a poor prognosis in neuroblastoma patients. Pediatr. Surg. Int. 2013;29:363–368. doi: 10.1007/s00383-012-3248-6. PubMed DOI

Li J., Kretzner L. The growth-inhibitory Ndrg1 gene is a Myc negative target in human neuroblastomas and other cell types with overexpressed N- or c-myc. Mol. Cell. Biochem. 2003;250:91–105. doi: 10.1023/A:1024918328162. PubMed DOI

Zhang Jian Chen S., Zhang W., Zhang Jing Liu X., Shi H., Che H., Wang W., Li F., Yao L. Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region. Gene. 2008;417:5–12. doi: 10.1016/j.gene.2008.03.002. PubMed DOI

Lv X.H., Chen J.W., Zhao G., Feng Z.Z., Yang D.H., Sun W.W., Fan J.S., Zhu G.H. N-myc downstream-regulated gene 1/Cap43 may function as tumor suppressor in endometrial cancer. J. Cancer Res. Clin. Oncol. 2012;138:1703–1715. doi: 10.1007/s00432-012-1249-4. PubMed DOI

Zhang X., Feng B., Zhu F., Yu C., Lu J., Pan M., He Z., Wangpu X., Sun J., Yang X. N-myc downstream-regulated gene 1 promotes apoptosis in colorectal cancer via up-regulating death receptor 4. Oncotarget. 2017;8:82593–82608. doi: 10.18632/oncotarget.19658. PubMed DOI PMC

Yang Y., Liu Y., Guo R., Fu Y., Zhang Z., Zhang P., Zhou P., Wang T., Huang T., Li X., et al. The novel dithiocarbamate, DpdtC suppresses HER2-overexpressed cancer cells by up-regulating NDRG1 via inactivation of HER2-ERK 1/2 signaling. Sci. Rep. 2018;8:3398. doi: 10.1038/s41598-018-21768-1. PubMed DOI PMC

Chua M.S., Sun H., Cheung S.T., Mason V., Higgins J., Ross D.T., Fan S.T., So S. Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma. Mod. Pathol. 2007;20:76–83. doi: 10.1038/modpathol.3800711. PubMed DOI

Weiler M., Blaes J., Pusch S., Sahm F., Czabanka M., Luger S., Bunse L., Solecki G., Eichwald V., Jugold M., et al. MTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy. Proc. Natl. Acad. Sci. USA. 2014;111:409–414. doi: 10.1073/pnas.1314469111. PubMed DOI PMC

Dixon K.M., Lui G.Y.L., Kovacevic Z., Zhang D., Yao M., Chen Z., Dong Q., Assinder S.J., Richardson D.R. Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer. 2013;108:409–419. doi: 10.1038/bjc.2012.582. PubMed DOI PMC

Kovacevic Z., Chikhani S., Lui G.Y.L., Sivagurunathan S., Richardson D.R. The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways. Antioxid. Redox Signal. 2013;18:874–887. doi: 10.1089/ars.2011.4273. PubMed DOI

Liu W., Yue F., Zheng M., Merlot A., Bae D.H., Huang M., Lane D., Jansson P., Liu G., Richardson V., et al. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget. 2015;6:8851–8874. doi: 10.18632/oncotarget.3316. PubMed DOI PMC

Kovacevic Z., Menezes S.V., Sahni S., Kalinowski D.S., Bae D.H., Lane D.J.R., Richardson D.R. The metastasis suppressor, N-MYC downstream-regulated gene-1 (NDRG1), down-regulates the ErbB family of receptors to inhibit downstream oncogenic signaling pathways. J. Biol. Chem. 2016;291:1029–1052. doi: 10.1074/jbc.M115.689653. PubMed DOI PMC

Menezes S.V., Kovacevic Z., Richardson D.R. The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. J. Biol. Chem. 2019;294:4045–4064. doi: 10.1074/jbc.RA118.006279. PubMed DOI PMC

Paukovcekova S., Skoda J., Neradil J., Mikulenkova E., Chlapek P., Sterba J., Richardson D.R., Veselska R. Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers. 2020;12:3781. doi: 10.3390/cancers12123781. PubMed DOI PMC

Hossain S., Takatori A., Nakamura Y., Suenaga Y., Kamijo T., Nakagawara A. NLRR1 enhances EGF-mediated MYCN induction in neuroblastoma and accelerates tumor growth in vivo. Cancer Res. 2012;72:4587–4596. doi: 10.1158/0008-5472.CAN-12-0943. PubMed DOI

Wee P., Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017;9:52. doi: 10.3390/cancers9050052. PubMed DOI PMC

Salnikow K., Blagosklonny M.V., Ryan H., Johnson R., Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 2000;60:38–41. PubMed

Cangul H. Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet. 2004;5:27. doi: 10.1186/1471-2156-5-27. PubMed DOI PMC

Lingappan K. NF-κB in Oxidative Stress. Curr. Opin. Toxicol. 2018;7:81. doi: 10.1016/j.cotox.2017.11.002. PubMed DOI PMC

Zhang H., Park S.-H., Pantazides B.G., Karpiuk O., Warren M.D., Hardy C.W., Duong D.M., Park S.-J., Kim H.-S., Vassilopoulos A., et al. SIRT2 directs the replication stress response through CDK9 deacetylation. Proc. Natl. Acad. Sci. USA. 2013;110:13546. doi: 10.1073/pnas.1301463110. PubMed DOI PMC

Kankanamalage S.G., Karra A.S., Cobb M.H. WNK pathways in cancer signaling networks. Cell Commun. Signal. 2018;16:1–6. doi: 10.1186/s12964-018-0287-1. PubMed DOI PMC

Kim J.L., Lee D.-H., Na Y.J., Kim B.R., Jeong Y.A., Lee S.I., Kang S., Joung S.Y., Lee S.-Y., Oh S.C., et al. Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumor Biol. 2016;377:9709–9719. doi: 10.1007/s13277-016-4878-4. PubMed DOI

Le N.T.V., Richardson D.R. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: A link between iron metabolism and proliferation. Blood. 2004;104:2967–2975. doi: 10.1182/blood-2004-05-1866. PubMed DOI

Shimono A., Okuda T., Kondoh H. N-myc-dependent repression of Ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech. Dev. 1999;83:39–52. doi: 10.1016/S0925-4773(99)00025-8. PubMed DOI

Malynn B.A., Alboran IM de O’Hagan R.C., Bronson R., Davidson L., DePinho R.A., Alt F.W. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000;14:1390. doi: 10.1101/gad.14.11.1390. PubMed DOI PMC

Beltran H. The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Mol. Cancer Res. 2014;12:815–822. doi: 10.1158/1541-7786.MCR-13-0536. PubMed DOI

Zirath H., Frenzel A., Oliynyk G., Segerström L., Westermark U.K., Larsson K., Persson M.M., Hultenby K., Lehtiö J., Einvik C., et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc. Natl. Acad. Sci. USA. 2013;110:10258–10263. doi: 10.1073/pnas.1222404110. PubMed DOI PMC

Bae D.-H., Jansson P.J., Huang M.L., Kovacevic Z., Kalinowski D., Lee C.S., Sahni S., Richardson D.R. The role of NDRG1 in the pathology and potential treatment of human cancers. J. Clin. Pathol. 2013;66:911–917. doi: 10.1136/jclinpath-2013-201692. PubMed DOI

Fan L., Iyer J., Zhu S., Frick K.K., Wada R.K., Eskenazi A.E., Berg P.E., Ikegaki N., Kennett R.H., Frantz C.N. Inhibition of N-myc Expression and Induction of Apoptosis by Iron Chelation in Human Neuroblastoma Cells 1. Cancer Res. 2001;61:1073–1079. PubMed

Siriwardana G., Seligman P.A. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: Separating cell cycle events associated with each block. Physiol. Rep. 2013;1:176. doi: 10.1002/phy2.176. PubMed DOI PMC

Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell. 2014;5:750. doi: 10.1007/s13238-014-0083-7. PubMed DOI PMC

Chen H., Liu H., Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 2018;3:1–7. doi: 10.1038/s41392-018-0008-7. PubMed DOI PMC

Yang X.H., Tang F., Shin J., Cunningham J.M. A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature) Sci. Rep. 2017;7:41. doi: 10.1038/s41598-017-00122-x. PubMed DOI PMC

Liu Q., Turner K.M., Yung W.K.A., Chen K., Zhang W. Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro. Oncol. 2014;16:1313–1323. doi: 10.1093/neuonc/nou058. PubMed DOI PMC

Lui G.Y., Kovacevic Z., Richardson V., Merlot A.M., Kalinowski D.S., Richardson D.R. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget. 2015;6:18748–18779. doi: 10.18632/oncotarget.4349. PubMed DOI PMC

Nogueira V., Park Y., Chen C.C., Xu P.Z., Chen M.L., Tonic I., Unterman T., Hay N. Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis. Cancer Cell. 2008;14:458–470. doi: 10.1016/j.ccr.2008.11.003. PubMed DOI PMC

Los M., Maddika S., Erb B., Schulze-Osthoff K. Switching Akt: From survival signaling to deadly response. BioEssays. 2009;31:492–495. doi: 10.1002/bies.200900005. PubMed DOI PMC

Liu Q., Yu S., Zhao W., Qin S., Chu Q., Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer. 2018;17:53. doi: 10.1186/s12943-018-0793-1. PubMed DOI PMC

Pietiäinen V., Vassilev B., Blom T., Wang W., Nelson J., Bittman R., Bäck N., Zelcer N., Ikonen E. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. J. Cell Sci. 2013;126:3961–3971. doi: 10.1242/jcs.128132. PubMed DOI

Kalaydjieva L., Gresham D., Gooding R., Heather L., Baas F., Jonge R., de Blechschmidt K., Angelicheva D., Chandler D., Worsley P., et al. N-myc Downstream-Regulated Gene 1 Is Mutated in Hereditary Motor and Sensory Neuropathy–Lom. Am. J. Hum. Genet. 2000;67:47–58. doi: 10.1086/302978. PubMed DOI PMC

Cai K., El-Merahbi R., Loeffler M., Mayer A.E., Sumara G. Ndrg1 promotes adipocyte differentiation and sustains their function. Sci. Rep. 2017;71:7191. doi: 10.1038/s41598-017-07497-x. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Skoda J., Hermanova M., Loja T., Nemec P., Neradil J., Karasek P., Veselska R. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma. PLoS ONE. 2016;11:e0159255. doi: 10.1371/journal.pone.0159255. PubMed DOI PMC

Neradil J., Kyr M., Polaskova K., Kren L., Macigova P., Skoda J., Sterba J., Veselska R. Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Front. Oncol. 2019;9:930. doi: 10.3389/fonc.2019.00930. PubMed DOI PMC

Sestak V., Stariat J., Cermanova J., Potuckova E., Chladek J., Roh J., Bures J., Jansova H., Prusa P., Sterba M., et al. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget. 2015;6:42411–42428. doi: 10.18632/oncotarget.6389. PubMed DOI PMC

Wijesinghe T.P., Dharmasivam M., Dai C.C., Richardson D.R. Innovative Therapies for Neuroblastoma: The Surprisingly Potent Role of Iron Chelation in Up-Regulating Metastasis and Tumor Suppressors and Down-Regulating the Key Oncogene, N-myc. Pharmacol. Res. 2021;173:105889. doi: 10.1016/j.phrs.2021.105889. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...