Chelators as Antineuroblastomas Agents
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37888971
PubMed Central
PMC10669945
DOI
10.33549/physiolres.935184
PII: 935184
Knihovny.cz E-zdroje
- MeSH
- apoptóza MeSH
- chelátory farmakologie terapeutické užití MeSH
- dítě MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- neuroblastom * farmakoterapie MeSH
- onkogenní proteiny * genetika metabolismus farmakologie MeSH
- proliferace buněk MeSH
- protoonkogen n-myc genetika metabolismus terapeutické užití MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chelátory MeSH
- jaderné proteiny MeSH
- onkogenní proteiny * MeSH
- protoonkogen n-myc MeSH
Neuroblastoma represents 8-10 % of all malignant tumors in childhood and is responsible for 15 % of cancer deaths in the pediatric population. Aggressive neuroblastomas are often resistant to chemotherapy. Canonically, neuroblastomas can be classified according to the MYCN (N-myc proto-oncogene protein) gene amplification, a common marker of tumor aggressiveness and poor prognosis. It has been found that certain compounds with chelating properties may show anticancer activity, but there is little evidence for the effect of chelators on neuroblastoma. The effect of new chelators characterized by the same functional group, designated as HLZ (1-hydrazino phthalazine), on proliferation (WST-1 and methylene blue assay), cell cycle (flow cytometry), apoptosis (proliferation assay after use of specific pharmacological inhibitors and western blot analysis) and ROS production (fluorometric assay based on dichlorofluorescein diacetate metabolism) was studied in three neuroblastoma cell lines with different levels of MYCN amplification. The molecules were effective only on MYCN-non-amplified cells in which they arrested the cell cycle in the G0/G1 phase. We investigated the mechanism of action and identified the activation of cell signaling that involves protein kinase C.
Zobrazit více v PubMed
Davis AE. Thesis. University of South Carolina; Columbia, USA: 2012. Neuroblastoma: A Theoretical Dose Dependent Drug Study With Therapeutic Implications.
Mohan N. Ph. D. Thesis. University of South Carolina; Columbia, USA: 2012. Combination Therapy for the Treatment of Human Malignant Neuroblastoma.
Balaraman P. Ph. D. Thesis. University College; London, London, Great Britain: 2005. An Investigation of the Mechanism of Cisplatinum-Induced Apoptosis in SH-SY5Y Neuroblastoma Cells.
Monclair T, Brodeur GM, Ambros PF, Brisse HJ, et al. The International Neuroblastoma Risk Group (INRG) Staging System: An INRG Task Force Report. J Clin Oncol. 2009;27:298–303. doi: 10.1200/JCO.2008.16.6876. PubMed DOI PMC
Kojima M, Hiyama E, Fukuba I, Yamaoka E, Ueda Y, Onitake Y, Kurihara S, Sueda T. Detection of MYCN amplification using blood plasma: noninvasive therapy evaluation and prediction of prognosis in neuroblastoma. Pediatr Surg Int. 2013;29:1139–1145. doi: 10.1007/s00383-013-3374-9. PubMed DOI
Schwab M, Westermann F, Hero B, Berthold F. Neuroblastoma: biology and molecular and chromosomal pathology. Lancet Oncol. 2003;4:472–480. doi: 10.1016/S1470-2045(03)01166-5. PubMed DOI
Seeger RC, Brodeur GM. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastoma. N Engl J Med. 1985;313:1111–1116. doi: 10.1056/NEJM198510313131802. PubMed DOI
Chan HS, Gallie BL, DeBoer G, Haddad G, Ikegaki N, Dimitroulakos J, Yeger H, Ling V. MYCN protein expression as a predictor of neuroblastoma prognosis. Clin Cancer Res. 1997;3:1699–1706. PubMed
Chayka O, D’Acunto CW, Middleton O, Arab M, Sala A. Identification and Pharmacological Inactivation of the MYCN Gene Network as a Therapeutic Strategy for Neuroblastic Tumor Cells. J Biol Chem. 2015;290:2198–2212. doi: 10.1074/jbc.M114.624056. PubMed DOI PMC
Whitnall M, Howard J, Ponka P, Richardson DR. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci U S A. 2006;40:14901–14906. doi: 10.1073/pnas.0604979103. PubMed DOI PMC
Zhou T, Ma Y, Kong X, Hider RC. Design of iron chelators with therapeutic application. R Soc Chem. 2012;41:6371–6389. doi: 10.1039/c2dt12159j. PubMed DOI
Shen L, Zhao HY, Du J, Wang F. Anti-tumor activities of four chelating agents against human neuroblastoma cells. In vivo. 2005;19:233–236. PubMed
Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997;1331:1–40. doi: 10.1016/S0304-4157(96)00014-7. PubMed DOI
Keer HN, Kozlowski JM, Tsai YC, Lee C, McEwan RN, Grayhack JT. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J Urol. 1990;143:381–385. doi: 10.1016/S0022-5347(17)39970-6. PubMed DOI
Bierings MB, Baert MR, van Eijk HG, van Dijk JP. Transferrin receptor expression and the regulation of placental iron uptake. Mol Cell Biochem. 1991;100:31–38. doi: 10.1007/BF00230807. PubMed DOI
Buss JL, Greene BT, Turner J, Torti FM, Torti SV. Iron chelators in cancer chemotherapy. Curr Top Med Chem. 2004;4:1623–1635. doi: 10.2174/1568026043387269. PubMed DOI
Silber JH, Evans AE, Fridman M. Models to predict outcome from childhood neuroblastoma: the role of serum ferritin and tumor histology. Cancer Res. 1991;51:1426–1433. PubMed
Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta. 2009;1790:702–717. doi: 10.1016/j.bbagen.2008.04.003. PubMed DOI
Fan L, Iyer J, Zhu S, Frick KK, Wada RK, Eskenazi AE, et al. Inhibition of N-myc expression and induction of apoptosis by iron chelation in human neuroblastoma cells. Cancer Res. 2001;61:1073–1079. PubMed
Blatt J, Stitely S. Antineuroblastoma activity of desferrioxamine in human cell lines. Cancer Res. 1987;47:1749–1750. PubMed
Richardson DR. Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol. 2002;42:267–281. doi: 10.1016/S1040-8428(01)00218-9. PubMed DOI
D’Acunto CW, Kaplánek R, Gbelcová H, Kejík Z, Bříza T, Vasina L, Havlík M, Ruml T, Král V. Metallomics for Alzheimer’s disease treatment: Use of new generation of chelators combining metal-cation binding and transport properties. Eur J Med Chem. 2018;150:140–155. doi: 10.1016/j.ejmech.2018.02.084. PubMed DOI
Kaplánek R, Havlík M, Dolenský B, Rak J, et al. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorg Med Chem. 2015;23:1651–1659. doi: 10.1016/j.bmc.2015.01.029. PubMed DOI
Corvetta D, Chayka O, Gherardi S, D’Acunto CW, Džubák P, Konečný P, Hajdúch M, et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem. 2013;288:8332–8341. doi: 10.1074/jbc.M113.454280. PubMed DOI PMC
Nghia TV, Richardson DR. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochem Biophys Acta. 2002;1603:31–46. doi: 10.1016/S0304-419X(02)00068-9. PubMed DOI
Donfrancesco A, Deb G, Dominici C, Angioni A, Caniglia M, De Sio L. Deferoxamine, cyclophosphamide, etoposide, carboplatin, and thiotepa (D-CECaT): a new cytoreductive chelation-chemotherapy regimen in patients with advanced neuroblastoma. Am J Clin Oncol. 1992;15:319–322. doi: 10.1097/00000421-199208000-00009. PubMed DOI
Richardson DR. Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. Curr Med Chem. 2005;12:2711–2729. doi: 10.2174/092986705774462996. PubMed DOI
Salis O, Bedir A, Kilinc V, Alacam H, Gulten S, Okuyucu A. The anticancer effects of desferrioxamine on human breast adenocarcinoma and hepatocellular carcinoma cells. Cancer Biomark. 2014;14:419. doi: 10.3233/CBM-140422. PubMed DOI
Bajbouj K, Shafarin J, Hamad M. High-dose deferoxamine treatment disrupts intracellular iron homeostasis, reduces growth, and induces apoptosis in metastatic and nonmetastatic breast cancer cell lines. Technol Cancer Res Treat. 2018;17:1533033818764470. doi: 10.1177/1533033818764470. PubMed DOI PMC
Corcé V, Gouin S, Renaud S, Gaboriau F, Deniaud D. Recent advances in cancer treatment by iron chelators. Bioorganic Med Chem Lett. 2016;26:251–256. doi: 10.1016/j.bmcl.2015.11.094. PubMed DOI
Kim JL, Lee DH, Na YJ, Kim BR, Jeong YA, Lee SI, Kang S, et al. Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol. 2016;37:9709–9719. doi: 10.1007/s13277-016-4878-4. PubMed DOI
Abdelaal G, Veuger S. Reversing oncogenic transformation with iron chelation. Oncotarget. 2021;12:106–124. doi: 10.18632/oncotarget.27866. PubMed DOI PMC
Yu Y, Richardson DR. Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1. J Biol Chem. 2011;286:15413–15427. doi: 10.1074/jbc.M111.225946. PubMed DOI PMC
Choi EY, Lee S, Oh H-M, Kim Y-D, Choi E-J, Kim S-H, Kim S-W, et al. Involvement of protein kinase Cdelta in iron chelator-induced IL-8 production in human intestinal epithelial cells. Life Sci. 2007;80:436–445. doi: 10.1016/j.lfs.2006.09.044. PubMed DOI
Perez LM, Milkiewicz P, Ahmed-Choudhury J, Elias E, Ochoa JE, Sánchez Pozzi EJ, Coleman R, Roma MG. Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: protective effect of PKA. Free Radic Biol Med. 2006;40:2005–2017. doi: 10.1016/j.freeradbiomed.2006.01.034. PubMed DOI
Flora SJS, Mittal M, Mehta A. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res. 2008;128:501–523. PubMed
Olivieri G, Hess C, Savaskan E, Ly C, Meier F, Baysang G, Brockhaus M, Müller-Spahn F. Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased β-amyloid secretion. J Pineal Res. 2001;31:320–325. doi: 10.1034/j.1600-079X.2001.310406.x. PubMed DOI
Ho VT, Bunn HF. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem Biophys Res Commun. 1996;223:175–180. doi: 10.1006/bbrc.1996.0865. PubMed DOI
Gottwald EM, Schuh CD, Drücker P, Haenni D, Pearson A, Ghazi S, Bugarski M, et al. The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability. Sci Rep. 2020;10:1577. doi: 10.1038/s41598-020-58386-9. PubMed DOI PMC
Macsek P, Skoda J, Krchniakova M, Neradil J, Veselska R. Iron-Chelation Treatment by Novel Thiosemicarbazone Targets Major Signaling Pathways in Neuroblastoma. Int J Mol Sci. 2021;23:376. doi: 10.3390/ijms23010376. PubMed DOI PMC