Exposure of beta-tubulin regions defined by antibodies on an Arabidopsis thaliana microtubule protofilament model and in the cells
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20167106
PubMed Central
PMC2844066
DOI
10.1186/1471-2229-10-29
PII: 1471-2229-10-29
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis imunologie MeSH
- epitopy imunologie MeSH
- fluorescenční mikroskopie MeSH
- mapování epitopu metody MeSH
- mikrotubuly imunologie MeSH
- molekulární modely MeSH
- monoklonální protilátky imunologie MeSH
- proteiny huseníčku imunologie MeSH
- tubulin imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epitopy MeSH
- monoklonální protilátky MeSH
- proteiny huseníčku MeSH
- tubulin MeSH
BACKGROUND: The function of the cortical microtubules, composed of alphabeta-tubulin heterodimers, is linked to their organizational state which is subject to spatial and temporal modulation by environmental cues. The role of tubulin posttranslational modifications in these processes is largely unknown. Although antibodies against small tubulin regions represent useful tool for studying molecular configuration of microtubules, data on the exposure of tubulin epitopes on plant microtubules are still limited. RESULTS: Using homology modeling we have generated an Arabidopsis thaliana microtubule protofilament model that served for the prediction of surface exposure of five beta-tubulin epitopes as well as tyrosine residues. Peptide scans newly disclosed the position of epitopes detected by antibodies 18D6 (beta1-10), TUB2.1 (beta426-435) and TU-14 (beta436-445). Experimental verification of the results by immunofluorescence microscopy revealed that the exposure of epitopes depended on the mode of fixation. Moreover, homology modeling showed that only tyrosines in the C-terminal region of beta-tubulins (behind beta425) were exposed on the microtubule external side. Immunofluorescence microscopy revealed tyrosine phosphorylation of microtubules in plant cells, implying that beta-tubulins could be one of the targets for tyrosine kinases. CONCLUSIONS: We predicted surface exposure of five beta-tubulin epitopes, as well as tyrosine residues, on the surface of A. thaliana microtubule protofilament model, and validated the obtained results by immunofluorescence microscopy on cortical microtubules in cells.The results suggest that prediction of epitope exposure on microtubules by means of homology modeling combined with site-directed antibodies can contribute to a better understanding of the interactions of plant microtubules with associated proteins.
Zobrazit více v PubMed
Goddard RH, Wick SM, Silflow CD, Snustad DP. Microtubule components of plant cell cytoskeleton. Plant Physiol. 1994;104:1–6. PubMed PMC
Amos LA, Schlieper D. Microtubules and maps. Adv Protein Chem. 2005;71:257–298. full_text. PubMed
Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP. The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. Plant Cell. 1992;4:539–547. doi: 10.1105/tpc.4.5.539. PubMed DOI PMC
Snustad DP, Haas NA, Kopczak SD, Silflow CD. The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. Plant Cell. 1992;4:549–556. doi: 10.1105/tpc.4.5.549. PubMed DOI PMC
Verhey KJ, Gaertig J. The tubulin code. Cell Cycle. 2007;6:2152–2160. PubMed
Nogales E, Wolf SG, Downing KH. Structure of the αβ tubulin dimer by electron crystallography. Nature. 1998;391:199–203. doi: 10.1038/34465. PubMed DOI
Löwe J, Li H, Downing KH, Nogales E. Refined structure of αβ-tubulin at 3.5 A resolution. J Mol Biol. 2001;313:1045–1057. doi: 10.1006/jmbi.2001.5077. PubMed DOI
Nogales E, Whittaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell. 1999;96:79–88. doi: 10.1016/S0092-8674(00)80961-7. PubMed DOI
Meurer-Grob P, Kasparian J, Wade RH. Microtubule structure at improved resolution. Biochemistry. 2001;40:8000–8008. doi: 10.1021/bi010343p. PubMed DOI
Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH. Microtubule structure at 8 A resolution. Structure. 2002;10:1317–1328. doi: 10.1016/S0969-2126(02)00827-4. PubMed DOI
Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol. 2000;16:89–111. doi: 10.1146/annurev.cellbio.16.1.89. PubMed DOI
Andreu JM, de Pereda JM. Site-directed antibodies to tubulin. Cell Motil Cytoskel. 1993;26:1–6. doi: 10.1002/cm.970260102. PubMed DOI
Dráberová E, Viklický V, Dráber P. Exposure of lumenal microtubule sites after mild fixation. Eur J Cell Biol. 2000;79:982–985. doi: 10.1078/0171-9335-00129. PubMed DOI
Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986;5:823–826. PubMed PMC
Carpenter EJ, Huzil JT, Ludueña RF, Tuszynski JA. Homology modeling of tubulin: influence predictions for microtubule's biophysical properties. Eur Biophys J Biophys Lett. 2006;36:35–43. PubMed
Tuszynski JA, Huzil JT, Carpenter EJ. In: The plant cytoskeleton: a key tool for agro-biotechnology. Blume Y, Baird WV, Yemets AI, Breviario D, editor. Dordrecht, The Netherlands: Springer; 2008. Tubulin isotypes and their role in microtubule dynamic instability, implication for modeling and rational design of inhibitors; pp. 305–326.
Smertenko A, Blume Y, Viklický V, Dráber P. Exposure of tubulin structural domains in Nicotiana tabacum microtubules probed by monoclonal antibodies. Eur J Cell Biol. 1997;72:104–112. PubMed
Blume Y, Yemets A, Sulimenko V, Sulimenko T, Chan J, Lloyd C, Dráber P. Tyrosine phosphorylation of plant tubulin. Planta. 2008;229:143–150. doi: 10.1007/s00425-008-0816-z. PubMed DOI
Linhartová I, Dráber P, Dráberová E, Viklický V. Immunological discrimination of β-tubulin isoforms in developing mouse brain. Posttranslational modification of non-class III β-tubulins. Biochem J. 1992;288:919–924. PubMed PMC
Matthes T, Wolff A, Soubiran P, Gros F, Dighiero G. Antitubulin antibodies. 2. Natural autoantibodies and induced antibodies recognize different epitopes on the tubulin molecule. J Immunol. 1988;141:3135–3141. PubMed
Theodorakis NG, Cleveland DW. Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation. Mol Cell Biol. 1992;12:791–799. PubMed PMC
Serrano L, Wandosell F, Delatorre J, Avila J. Proteolytic modification of tubulin. Methods Enzymol. 1986;134:179–190. full_text. PubMed
Krauhs E, Little M, Kempf T, Hofer-Warbinek R, Ade W, Ponstingl H. Complete amino acid sequence of β-tubulin from porcine brain. Proc Natl Acad Sci USA. 1981;78:4156–4160. doi: 10.1073/pnas.78.7.4156. PubMed DOI PMC
Libusová L, Sulimenko T, Sulimenko V, Janisch R, Hozák P, Dráber P. Distinct localization of a beta-tubulin epitope in the Tetrahymena thermophila and Paramecium caudatum cortex. Protoplasma. 2005;225:157–167. doi: 10.1007/s00709-005-0097-3. PubMed DOI
Peknicova J, Pexidrova M, Kubatova A, Koubek P, Tepla O, Sulimenko T, Draber P. Expression of beta-tubulin epitope in human sperm with pathological spermiogram. Fertil Steril. 2007;88:1120–1128. doi: 10.1016/j.fertnstert.2006.12.070. PubMed DOI
Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol. 2003;4:938–945. doi: 10.1038/nrm1260. PubMed DOI
Diaz JF, Valpuesta JM, Chacon P, Diakun G, Andreu JM. Changes in microtubule protofilament number induced by Taxol binding to an easily accessible site. Internal microtubule dynamics. J Biol Chem. 1998;273:33803–33810. doi: 10.1074/jbc.273.50.33803. PubMed DOI
Mitra A, Sept D. Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophys J. 2008;95:3252–3258. doi: 10.1529/biophysj.108.133884. PubMed DOI PMC
Dráber P, Dráberová E, Linhartová I, Viklický V. Differences in the exposure of C- and N-terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies. J Cell Sci. 1989;92:519–528. PubMed
de Pereda JM, Andreu JM. Mapping surface sequences of the tubulin dimer and taxol-induced microtubules with limited proteolysis. Biochemistry. 1996;35:14184–14202. doi: 10.1021/bi961356j. PubMed DOI
Hoenger A, Milligan RA. Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry. J Mol Biol. 1997;265:553–564. doi: 10.1006/jmbi.1996.0757. PubMed DOI
Wendt T, Karabay A, Krebs A, Gross H, Walker R, Hoenger A. A structural analysis of the interaction between ncd tail and tubulin protofilaments. J Mol Biol. 2003;333:541–552. doi: 10.1016/j.jmb.2003.08.051. PubMed DOI
Sedbrook JC, Kaloriti D. Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci. 2008;13:303–310. doi: 10.1016/j.tplants.2008.04.002. PubMed DOI
Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol. 1999;11:81–94. doi: 10.1016/S0955-0674(99)80010-6. PubMed DOI
Faruki S, Geahlen RL, Asai DJ. Syk-dependent phosphorylation of microtubules in activated B-lymphocytes. J Cell Sci. 2000;113:2557–2565. PubMed
Peters JD, Furlong MT, Asai DJ, Harrison ML, Geahlen RL. Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates α-tubulin on tyrosine. J Biol Chem. 1996;271:4755–4762. doi: 10.1074/jbc.271.9.4755. PubMed DOI
Yemets A, Sheremet Y, Vissenberg K, Van Orden J, Verbelen JP, Blume YB. Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells. Cell Biol Int. 2008;32:630–637. doi: 10.1016/j.cellbi.2008.01.013. PubMed DOI
Dráber P, Dráberová E, Viklický V. Immunostaining of human spermatozoa with tubulin domain-specific monoclonal antibodies. Histochemistry. 1991;195:519–524. doi: 10.1007/BF00315749. PubMed DOI
Gozes I, Barnstable CJ. Monoclonal antibodies that recognize discrete forms of tubulin. Proc Natl Acad Sci USA. 1982;79:2579–2583. doi: 10.1073/pnas.79.8.2579. PubMed DOI PMC
Dráberová E, Dráber P, Havlíèek F, Viklický V. A common antigenic determinant of vimentin and desmin defined by monoclonal antibody. Folia Biol (Prague) 1986;32:295–303. PubMed
Shelanski ML, Gaskin F, Cantor CR. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA. 1973;70:765–768. doi: 10.1073/pnas.70.3.765. PubMed DOI PMC
Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA. 1975;72:1858–1868. doi: 10.1073/pnas.72.5.1858. PubMed DOI PMC
Sheir-Neiss G, Lai MH, Morris NR. Identification of a gene for beta-tubulin in Aspergillus nidulans. Cell. 1978;15:639–647. doi: 10.1016/0092-8674(78)90032-6. PubMed DOI
Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP. In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol. 2001;125:519–522. doi: 10.1104/pp.125.2.519. PubMed DOI PMC
Dráberová E, Dráber P. A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J Cell Sci. 1993;106:1263–1273. PubMed
Krieger E, Nabuurs SB, Vriend G. In: Structural Bioinformatics. Bourne PE, Weissig H, editor. Chichester, UK: John Wiley & Sons; 2003. Homology modeling; pp. 509–524. full_text.
Nyporko AY, Blume Y. Comparative analysis of secondary structure of tubulins and FtsZ proteins. Biopolymers and Cell. 2001;17:61–69. (in Russian).
Das B, Meirovitch H, Navon IM. Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins. J Comput Chem. 2003;24:1222–1231. doi: 10.1002/jcc.10275. PubMed DOI
Lindahl E, Hess B, van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–317.