Circumventing the stability problems of graphene nanoribbon zigzag edges
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
863098
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
635919
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
101022150
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
PID2019-107338RB-C62
Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
ED431G2019/03
Xunta de Galicia
PubMed
36163268
PubMed Central
PMC10665199
DOI
10.1038/s41557-022-01042-8
PII: 10.1038/s41557-022-01042-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Carbon nanostructures with zigzag edges exhibit unique properties-such as localized electronic states and spins-with exciting potential applications. Such nanostructures however are generally synthesized under vacuum because their zigzag edges are unstable under ambient conditions: a barrier that must be surmounted to achieve their scalable integration into devices for practical purposes. Here we show two chemical protection/deprotection strategies, demonstrated on labile, air-sensitive chiral graphene nanoribbons. Upon hydrogenation, the chiral graphene nanoribbons survive exposure to air, after which they are easily converted back to their original structure by annealing. We also approach the problem from another angle by synthesizing a form of the chiral graphene nanoribbons that is functionalized with ketone side groups. This oxidized form is chemically stable and can be converted to the pristine hydrocarbon form by hydrogenation and annealing. In both cases, the deprotected chiral graphene nanoribbons regain electronic properties similar to those of the pristine nanoribbons. We believe both approaches may be extended to other graphene nanoribbons and carbon-based nanostructures.
Centro de Física de Materiales CSIC UPV EHU San Sebastián Spain
Donostia International Physics Center San Sebastián Spain
Ikerbasque Basque Foundation for Science Bilbao Spain
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Nanomaterials and Nanotechnology Research Center CSIC UNIOVI PA El Entrego Spain
Zobrazit více v PubMed
Corso, M., Carbonell-Sanromà, E. & de Oteyza, D. G. in On-Surface Synthesis II 113–152 (Springer, 2018).
Yano Y, Mitoma N, Ito H, Itami K. A quest for structurally uniform graphene nanoribbons: synthesis, properties, and applications. J. Org. Chem. 2020;85:4–33. doi: 10.1021/acs.joc.9b02814. PubMed DOI
Zhou X, Yu G. Modified engineering of graphene nanoribbons prepared via on‐surface synthesis. Adv. Mater. 2020;32:1905957. doi: 10.1002/adma.201905957. PubMed DOI
Chen Y-C, et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015;10:156–160. doi: 10.1038/nnano.2014.307. PubMed DOI
Rizzo DJ, et al. Topological band engineering of graphene nanoribbons. Nature. 2018;560:204–208. doi: 10.1038/s41586-018-0376-8. PubMed DOI
Gröning O, et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature. 2018;560:209–213. doi: 10.1038/s41586-018-0375-9. PubMed DOI
Li J, et al. Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons. Sci. Adv. 2018;4:eaaq0582. doi: 10.1126/sciadv.aaq0582. PubMed DOI PMC
Li J, et al. Electrically addressing the spin of a magnetic porphyrin through covalently connected graphene electrodes. Nano Lett. 2019;19:3288–3294. doi: 10.1021/acs.nanolett.9b00883. PubMed DOI
Mateo LM, et al. On‐surface synthesis and characterization of triply fused porphyrin–graphene nanoribbon hybrids. Angew. Chem. Int. Ed. 2020;59:1334–1339. doi: 10.1002/anie.201913024. PubMed DOI
Yazyev OV. A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 2013;46:2319–2328. doi: 10.1021/ar3001487. PubMed DOI
Yazyev OV. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 2010;73:056501. doi: 10.1088/0034-4885/73/5/056501. DOI
Fairbrother A, et al. High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons. Nanoscale. 2017;9:2785–2792. doi: 10.1039/C6NR08975E. PubMed DOI
Ma C, et al. Oxidization stability of atomically precise graphene nanoribbons. Phys. Rev. Mater. 2018;2:014006. doi: 10.1103/PhysRevMaterials.2.014006. DOI
Berdonces-Layunta A, et al. Chemical stability of (3,1)-chiral graphene nanoribbons. ACS Nano. 2021;15:5610–5617. doi: 10.1021/acsnano.1c00695. PubMed DOI
Yoon K-Y, Dong G. Liquid-phase bottom-up synthesis of graphene nanoribbons. Mater. Chem. Front. 2020;4:29–45. doi: 10.1039/C9QM00519F. DOI
Narita A, Wang X-Y, Feng X, Müllen K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015;44:6616–6643. doi: 10.1039/C5CS00183H. PubMed DOI
Kan E, Li Z, Yang J, Hou JG. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008;130:4224–4225. doi: 10.1021/ja710407t. PubMed DOI
Carbonell-Sanromà E, et al. Doping of graphene nanoribbons via functional group edge modification. ACS Nano. 2017;11:7355–7361. doi: 10.1021/acsnano.7b03522. PubMed DOI
Li J, et al. Band depopulation of graphene nanoribbons induced by chemical gating with amino groups. ACS Nano. 2020;14:1895–1901. doi: 10.1021/acsnano.9b08162. PubMed DOI
Anthony JE. The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed. 2008;47:452–483. doi: 10.1002/anie.200604045. PubMed DOI
Greene, T. W. & Wuts, P. G. M. Protective Groups in Organic Synthesis (Wiley, 1999).
Chia C-I, Crespi VH. Stabilizing the zigzag edge: graphene nanoribbons with sterically constrained terminations. Phys. Rev. Lett. 2012;109:076802. doi: 10.1103/PhysRevLett.109.076802. PubMed DOI
Li Y, Zhou Z, Cabrera CR, Chen Z. Preserving the edge magnetism of zigzag graphene nanoribbons by ethylene termination: insight by Clar’s rule. Sci. Rep. 2013;3:2030. doi: 10.1038/srep02030. PubMed DOI PMC
Sun Z, et al. Dibenzoheptazethrene isomers with different biradical characters: an exercise of Clar’s aromatic sextet rule in singlet biradicaloids. J. Am. Chem. Soc. 2013;135:18229–18236. doi: 10.1021/ja410279j. PubMed DOI
Clair S, de Oteyza DG. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 2019;119:4717–4776. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Wang T, Zhu J. Confined on-surface organic synthesis: strategies and mechanisms. Surf. Sci. Rep. 2019;74:97–140. doi: 10.1016/j.surfrep.2019.05.001. DOI
Held PA, Fuchs H, Studer A. Covalent-bond formation via on-surface chemistry. Chem. Eur. J. 2017;23:5874–5892. doi: 10.1002/chem.201604047. PubMed DOI
Song S, et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 2021;50:3238–3262. doi: 10.1039/D0CS01060J. PubMed DOI
Liu J, Feng X. Synthetic tailoring of graphene nanostructures with zigzag‐edged topologies: progress and perspectives. Angew. Chem. Int. Ed. 2020;59:23386–23401. doi: 10.1002/anie.202008838. PubMed DOI PMC
Li J, et al. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 2019;10:200. doi: 10.1038/s41467-018-08060-6. PubMed DOI PMC
Mishra S, et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 2020;15:22–28. doi: 10.1038/s41565-019-0577-9. PubMed DOI
Zuzak R, et al. On-surface synthesis of chlorinated narrow graphene nanoribbon organometallic hybrids. J. Phys. Chem. Lett. 2020;11:10290–10297. doi: 10.1021/acs.jpclett.0c03134. PubMed DOI PMC
Zuzak R, Jančařík A, Gourdon A, Szymonski M, Godlewski S. On-surface synthesis with atomic hydrogen. ACS Nano. 2020;14:13316–13323. doi: 10.1021/acsnano.0c05160. PubMed DOI PMC
de Oteyza DG, et al. Substrate-independent growth of atomically precise chiral graphene nanoribbons. ACS Nano. 2016;10:9000–9008. doi: 10.1021/acsnano.6b05269. PubMed DOI PMC
Merino-Díez N, et al. Transferring axial molecular chirality through a sequence of on-surface reactions. Chem. Sci. 2020;11:5441–5446. doi: 10.1039/D0SC01653E. PubMed DOI PMC
Merino-Díez N, et al. Unraveling the electronic structure of narrow atomically-precise chiral graphene nanoribbons. J. Phys. Chem. Lett. 2018;9:25–30. doi: 10.1021/acs.jpclett.7b02767. PubMed DOI PMC
Li J, et al. Topological phase transition in chiral graphene nanoribbons: from edge bands to end states. Nat. Commun. 2021;12:5538. doi: 10.1038/s41467-021-25688-z. PubMed DOI PMC
Konishi A, Kubo T. Benzenoid quinodimethanes. Top. Curr. Chem. 2017;375:83. doi: 10.1007/s41061-017-0171-2. PubMed DOI
Clar, E. The Aromatic Sextet (J. Wiley, 1972).
Mohammed MSG, et al. Electronic decoupling of polyacenes from the underlying metal substrate by sp3 carbon atoms. Commun. Phys. 2020;3:159. doi: 10.1038/s42005-020-00425-y. DOI
Merino-Díez N, et al. Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111) ACS Nano. 2017;11:11661–11668. doi: 10.1021/acsnano.7b06765. PubMed DOI PMC
Endo O, Nakamura M, Amemiya K, Ozaki H. Graphene nanoribbons formed from n-alkane by thermal dehydrogenation on Au(111) surface. Surf. Sci. 2015;635:44–48. doi: 10.1016/j.susc.2014.12.005. DOI
Wang T, et al. Magnetic interactions between radical pairs in chiral graphene nanoribbons. Nano Lett. 2022;22:164–171. doi: 10.1021/acs.nanolett.1c03578. PubMed DOI
Itoh T, Matsuno M, Kamiya E, Hirai K, Tomioka H. Preparation of copper ion complexes of sterically congested diaryldiazomethanes having a pyridine ligand and characterization of their photoproducts. J. Am. Chem. Soc. 2005;127:7078–7093. doi: 10.1021/ja0424225. PubMed DOI
Di Giovannantonio M, et al. On-surface growth dynamics of graphene nanoribbons: the role of halogen functionalization. ACS Nano. 2018;12:74–81. doi: 10.1021/acsnano.7b07077. PubMed DOI
Berdonces-Layunta A, et al. Order from a mess: the growth of 5-armchair graphene nanoribbons. ACS Nano. 2021;15:16552–16561. doi: 10.1021/acsnano.1c06226. PubMed DOI
Blum V, et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI
Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Lewis JP, et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B. 2011;248:1989–2007. doi: 10.1002/pssb.201147259. DOI
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B90, 085421 (2014).
Krejčí O, Hapala P, Ondráček M, Jelínek P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI
Spinons in nanographene spin chains