On-Surface Synthesis with Atomic Hydrogen

. 2020 Oct 27 ; 14 (10) : 13316-13323. [epub] 20200915

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32897690

Surface-assisted synthesis has become a powerful approach for generation of molecular nanostructures, which could not be obtained via traditional solution chemistry. Nowadays there is an intensive search for reactions that could proceed on flat surfaces in order to boost the versatility and applicability of synthesized nano-objects. Here we propose application of atomic hydrogen combined with on-surface synthesis in order to tune the reaction pathways. We demonstrate that atomic hydrogen could be widely applied: (1) as a cleaning tool, which allows removal of halogen residues from the surface after Ullmann couplings/polymerization, (2) by reaction with surface organometallics to provide stable hydrogenated species, and (3) as a reagent for debromination or desulfurization of adsorbed species.

Erratum v

PubMed

Zobrazit více v PubMed

Clair S.; de Oteyza D. G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119, 4717–4776. 10.1021/acs.chemrev.8b00601. PubMed DOI PMC

Grill L.; Dyer M.; Lafferentz L.; Persson M.; Peters M. V.; Hecht S. Nano-Architectures by Covalent Assembly of Molecular Building Blocks. Nat. Nanotechnol. 2007, 2, 687–691. 10.1038/nnano.2007.346. PubMed DOI

Cai J.; Ruffieux P.; Jaafar R.; Bieri M.; Braun T.; Blankenburg S.; Muoth M.; Seitsonen A. P.; Saleh M.; Feng X.; Müllen K.; Fasel R. Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473. 10.1038/nature09211. PubMed DOI

Ruffieux P.; Wang S.; Yang B.; Sánchez-Sánchez C.; Liu J.; Dienel T.; Talirz L.; Shinde P.; Pignedoli C. A.; Passerone D.; Dumslaff T.; Feng X.; Müllen K.; Fasel R. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature 2016, 531, 489–493. 10.1038/nature17151. PubMed DOI

Rogers C.; Chen C.; Pedramrazi Z.; Omrani A. A.; Tsai H. Z.; Jung H. S.; Lin S.; Crommie M. F.; Fischer F. R. Closing the Nanographene Gap: Surface-Assisted Synthesis of Peripentacene from 6,6′-Bipentacene Precursors. Angew. Chem., Int. Ed. 2015, 54, 15143–15146. 10.1002/anie.201507104. PubMed DOI

Zuzak R.; Pozo I.; Engelund M.; Garcia-Lekue A.; Vilas-Varela M.; Alonso J. M.; Szymonski M.; Guitián E.; Pérez D.; Godlewski S.; Peña D. Synthesis and Reactivity of a Trigonal Porous Nanographene on a Gold Surface. Chem. Sci. 2019, 10, 10143.10.1039/C9SC03404H. PubMed DOI PMC

Xu K.; Urgel J. I.; Eimre K.; Di Giovannantonio M.; Keerthi A.; Komber H.; Wang S.; Narita A.; Berger R.; Ruffieux P.; Pignedoli C. A.; Liu J.; Müllen K.; Fasel R.; Feng X. On-Surface Synthesis of a Nonplanar Porous Nanographene. J. Am. Chem. Soc. 2019, 141, 7726–7730. 10.1021/jacs.9b03554. PubMed DOI PMC

Zuzak R.; Castro-Esteban J.; Brandimarte P.; Engelund M.; Cobas A.; Piątkowski P.; Kolmer M.; Pérez D.; Guitián E.; Szymonski M.; Sánchez-Portal D.; Godlewski S.; Peña D. Building a 22-Ring Nanographene by Combining In-Solution and On-Surface Syntheses. Chem. Commun. 2018, 54, 10256–10259. 10.1039/C8CC05353G. PubMed DOI

Pavliček N.; Mistry A.; Majzik Z.; Moll N.; Meyer G.; Fox D. J.; Gross L. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017, 12, 308–311. 10.1038/nnano.2016.305. PubMed DOI

Mishra S.; Beyer D.; Eimre K.; Liu J.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Fasel R.; Feng X.; Ruffieux P. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019, 141, 10621–10625. 10.1021/jacs.9b05319. PubMed DOI

Mishra S.; Beyer D.; Eimre K.; Kezilebieke S.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Liljeroth P.; Ruffieux P.; Feng X.; Fasel R. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020, 15, 22–28. 10.1038/s41565-019-0577-9. PubMed DOI

Franc G.; Gourdon A. Covalent Networks through On-Surface Chemistry in Ultra-High Vacuum: State-Of-The-Art and Recent Developments. Phys. Chem. Chem. Phys. 2011, 13, 14283–14292. 10.1039/c1cp20700h. PubMed DOI

Lackinger M. Surface-Assisted Ullmann Coupling. Chem. Commun. 2017, 53, 7872–7885. 10.1039/C7CC03402D. PubMed DOI

Xiao Z.; Ma C.; Lu W.; Huang J.; Liang L.; Hong K.; Li A.-P.; Sumpter B. G.; Bernholc J. Ab Initio Investigation of the Cyclodehydrogenation Process for Polyanthrylene Transformation to Graphene Nanoribbons. NPJ. Comput. Mater. 2019, 5, 91.10.1038/s41524-019-0228-6. DOI

Roman T.; Gossenberger F.; Forster-Tonigold K.; Groβ A. Halide Adsorption on Close-Packed Metal Electrodes. Phys. Chem. Chem. Phys. 2014, 16, 13630–13634. 10.1039/C4CP00237G. PubMed DOI

Basagni A.; Vasseur G.; Pignedoli C. A.; Vilas-Varela M.; Peña D.; Nicolas L.; Vitali L.; Lobo-Checa J.; de Oteyza D. G.; Sedona F.; Casarin M.; Ortega J. E.; Sambi M. Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires. ACS Nano 2016, 10, 2644–2651. 10.1021/acsnano.5b07683. PubMed DOI PMC

Vasseur G.; Fagot-Revurat Y.; Sicot M.; Kierren B.; Moreau L.; Malterre D.; Cardenas L.; Galeotti G.; Lipton-Duffin J.; Rosei F.; Di Giovannantonio M.; Contini G.; Le Fèvre P.; Bertran F.; Liang L.; Meunier V.; Perepichka D. F. Quasi One-Dimensional Band Dispersion and Surface Metallization in Long-Range Ordered Polymeric Wires. Nat. Commun. 2016, 7, 10235.10.1038/ncomms10235. PubMed DOI PMC

Fan Q.; Gottfried J. M.; Zhu J. Surface-Catalyzed C–C Covalent Coupling Strategies toward the Synthesis of Low-Dimensional Carbon-Based Nanostructures. Acc. Chem. Res. 2015, 48, 2484–2494. 10.1021/acs.accounts.5b00168. PubMed DOI

Eichhorn J.; Strunskus T.; Rastgoo-Lahrood A.; Samanta D.; Schmittel M.; Lackinger M. On-Surface Ullmann Polymerization via Intermediate Organometallic Networks on Ag(111). Chem. Commun. 2014, 50, 7680–7682. 10.1039/C4CC02757D. PubMed DOI

Dong L.; Liu P. N.; Lin N. Surface-Activated Coupling Reactions Confined on a Surface. Acc. Chem. Res. 2015, 48, 2765–2774. 10.1021/acs.accounts.5b00160. PubMed DOI

Li J.; Martin K.; Avarvari N.; Wäckerlin C.; Ernst K.-H. Spontaneous Separation of On-Surface Synthesized Tris-Helicenes into Two-Dimensional Homochiral Domains. Chem. Commun. 2018, 54, 7948–7951. 10.1039/C8CC04235G. PubMed DOI

Mairena A.; Baljozovic M.; Kawecki M.; Grenader K.; Wienke M.; Martin K.; Bernard L.; Avarvari N.; Terfort A.; Ernst K.-H.; Wäckerlin C. The Fate of Bromine after Temperature-Induced Dehydrogenation of On-Surface Synthesized Bisheptahelicene. Chem. Sci. 2019, 10, 2998–3004. 10.1039/C8SC04720K. PubMed DOI PMC

Zagranyarski Y.; Chen L.; Jansch D.; Gessner T.; Li C.; Müllen K. Toward Perylene Dyes by the Hundsdiecker Reaction. Org. Lett. 2014, 16, 2814–2817. 10.1021/ol5008586. PubMed DOI

Tran V.; Pham T. A.; Grunst M.; Kivala M.; Stöhr M. Surface-Confined [2 + 2] Cycloaddition towards One-Dimensional Polymers Featuring Cyclobutadiene Units. Nanoscale 2017, 9, 18305.10.1039/C7NR06187K. PubMed DOI

Nguyen M.-T.; Pignedoli C. A.; Passerone D. An Ab Initio Insight into the Cu(111)–Mediated Ullmann Reaction. Phys. Chem. Chem. Phys. 2011, 13, 154–160. 10.1039/C0CP00759E. PubMed DOI

Saywell A.; Greń W.; Franc G.; Gourdon A.; Bouju X.; Grill L. Manipulating the Conformation of Single Organometallic Chains on Au(111). J. Phys. Chem. C 2014, 118, 1719–1728. 10.1021/jp409323g. DOI

Telychko M.; Su J.; Gallardo A.; Gu Y.; Mendieta-Moreno J. I.; Qi D.; Tadich A.; Song S.; Lyu P.; Qiu Z.; Fang H.; Joo Koh M.; Wu J.; Jelínek P.; Lu J. Strain-Induced Isomerization in One-Dimensional Metal–Organic Chains. Angew. Chem., Int. Ed. 2019, 58, 18591–18597. 10.1002/anie.201909074. PubMed DOI

Zheltov V. V.; Cherkez V. V.; Andryushechkin B. V.; Zhidomirov G. M.; Kierren B.; Fagot-Revurat Y.; Malterre D.; Eltsov K. N. Structural Paradox in Submonolayer Chlorine Coverage on Au(111). Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 195425.10.1103/PhysRevB.89.195425. DOI

Gross L.; Mohn F.; Moll N.; Liljeroth P.; Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. 10.1126/science.1176210. PubMed DOI

Kawai S.; Sadeghi A.; Okamoto T.; Mitsui C.; Pawlak R.; Meier T.; Takeya J.; Goedecker S.; Meyer E. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy. Small 2016, 12, 5303–5311. 10.1002/smll.201601216. PubMed DOI

Zhang H.; Lin H.; Sun K.; Chen L.; Zagranyarski Y.; Aghdassi N.; Duhm S.; Li Q.; Zhong D.; Li Y.; Müllen K.; Fuchs H.; Chi L. On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025. 10.1021/ja511995r. PubMed DOI

Kimouche A.; Ervasti M. M.; Drost R.; Halonen S.; Harju A.; Joensuu P. M.; Sainio J.; Liljeroth P. Ultra-Narrow Metallic Armchair Graphene Nanoribbons. Nat. Commun. 2015, 6, 10177.10.1038/ncomms10177. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...