On-Surface Synthesis with Atomic Hydrogen
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32897690
PubMed Central
PMC7596777
DOI
10.1021/acsnano.0c05160
Knihovny.cz E-zdroje
- Klíčová slova
- atomic hydrogen, graphene nanoribbon, hydrogenation, molecular polymers, on-surface synthesis, organometallic state,
- Publikační typ
- časopisecké články MeSH
Surface-assisted synthesis has become a powerful approach for generation of molecular nanostructures, which could not be obtained via traditional solution chemistry. Nowadays there is an intensive search for reactions that could proceed on flat surfaces in order to boost the versatility and applicability of synthesized nano-objects. Here we propose application of atomic hydrogen combined with on-surface synthesis in order to tune the reaction pathways. We demonstrate that atomic hydrogen could be widely applied: (1) as a cleaning tool, which allows removal of halogen residues from the surface after Ullmann couplings/polymerization, (2) by reaction with surface organometallics to provide stable hydrogenated species, and (3) as a reagent for debromination or desulfurization of adsorbed species.
Zobrazit více v PubMed
Clair S.; de Oteyza D. G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119, 4717–4776. 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Grill L.; Dyer M.; Lafferentz L.; Persson M.; Peters M. V.; Hecht S. Nano-Architectures by Covalent Assembly of Molecular Building Blocks. Nat. Nanotechnol. 2007, 2, 687–691. 10.1038/nnano.2007.346. PubMed DOI
Cai J.; Ruffieux P.; Jaafar R.; Bieri M.; Braun T.; Blankenburg S.; Muoth M.; Seitsonen A. P.; Saleh M.; Feng X.; Müllen K.; Fasel R. Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473. 10.1038/nature09211. PubMed DOI
Ruffieux P.; Wang S.; Yang B.; Sánchez-Sánchez C.; Liu J.; Dienel T.; Talirz L.; Shinde P.; Pignedoli C. A.; Passerone D.; Dumslaff T.; Feng X.; Müllen K.; Fasel R. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature 2016, 531, 489–493. 10.1038/nature17151. PubMed DOI
Rogers C.; Chen C.; Pedramrazi Z.; Omrani A. A.; Tsai H. Z.; Jung H. S.; Lin S.; Crommie M. F.; Fischer F. R. Closing the Nanographene Gap: Surface-Assisted Synthesis of Peripentacene from 6,6′-Bipentacene Precursors. Angew. Chem., Int. Ed. 2015, 54, 15143–15146. 10.1002/anie.201507104. PubMed DOI
Zuzak R.; Pozo I.; Engelund M.; Garcia-Lekue A.; Vilas-Varela M.; Alonso J. M.; Szymonski M.; Guitián E.; Pérez D.; Godlewski S.; Peña D. Synthesis and Reactivity of a Trigonal Porous Nanographene on a Gold Surface. Chem. Sci. 2019, 10, 10143.10.1039/C9SC03404H. PubMed DOI PMC
Xu K.; Urgel J. I.; Eimre K.; Di Giovannantonio M.; Keerthi A.; Komber H.; Wang S.; Narita A.; Berger R.; Ruffieux P.; Pignedoli C. A.; Liu J.; Müllen K.; Fasel R.; Feng X. On-Surface Synthesis of a Nonplanar Porous Nanographene. J. Am. Chem. Soc. 2019, 141, 7726–7730. 10.1021/jacs.9b03554. PubMed DOI PMC
Zuzak R.; Castro-Esteban J.; Brandimarte P.; Engelund M.; Cobas A.; Piątkowski P.; Kolmer M.; Pérez D.; Guitián E.; Szymonski M.; Sánchez-Portal D.; Godlewski S.; Peña D. Building a 22-Ring Nanographene by Combining In-Solution and On-Surface Syntheses. Chem. Commun. 2018, 54, 10256–10259. 10.1039/C8CC05353G. PubMed DOI
Pavliček N.; Mistry A.; Majzik Z.; Moll N.; Meyer G.; Fox D. J.; Gross L. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017, 12, 308–311. 10.1038/nnano.2016.305. PubMed DOI
Mishra S.; Beyer D.; Eimre K.; Liu J.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Fasel R.; Feng X.; Ruffieux P. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019, 141, 10621–10625. 10.1021/jacs.9b05319. PubMed DOI
Mishra S.; Beyer D.; Eimre K.; Kezilebieke S.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Liljeroth P.; Ruffieux P.; Feng X.; Fasel R. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020, 15, 22–28. 10.1038/s41565-019-0577-9. PubMed DOI
Franc G.; Gourdon A. Covalent Networks through On-Surface Chemistry in Ultra-High Vacuum: State-Of-The-Art and Recent Developments. Phys. Chem. Chem. Phys. 2011, 13, 14283–14292. 10.1039/c1cp20700h. PubMed DOI
Lackinger M. Surface-Assisted Ullmann Coupling. Chem. Commun. 2017, 53, 7872–7885. 10.1039/C7CC03402D. PubMed DOI
Xiao Z.; Ma C.; Lu W.; Huang J.; Liang L.; Hong K.; Li A.-P.; Sumpter B. G.; Bernholc J. Ab Initio Investigation of the Cyclodehydrogenation Process for Polyanthrylene Transformation to Graphene Nanoribbons. NPJ. Comput. Mater. 2019, 5, 91.10.1038/s41524-019-0228-6. DOI
Roman T.; Gossenberger F.; Forster-Tonigold K.; Groβ A. Halide Adsorption on Close-Packed Metal Electrodes. Phys. Chem. Chem. Phys. 2014, 16, 13630–13634. 10.1039/C4CP00237G. PubMed DOI
Basagni A.; Vasseur G.; Pignedoli C. A.; Vilas-Varela M.; Peña D.; Nicolas L.; Vitali L.; Lobo-Checa J.; de Oteyza D. G.; Sedona F.; Casarin M.; Ortega J. E.; Sambi M. Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires. ACS Nano 2016, 10, 2644–2651. 10.1021/acsnano.5b07683. PubMed DOI PMC
Vasseur G.; Fagot-Revurat Y.; Sicot M.; Kierren B.; Moreau L.; Malterre D.; Cardenas L.; Galeotti G.; Lipton-Duffin J.; Rosei F.; Di Giovannantonio M.; Contini G.; Le Fèvre P.; Bertran F.; Liang L.; Meunier V.; Perepichka D. F. Quasi One-Dimensional Band Dispersion and Surface Metallization in Long-Range Ordered Polymeric Wires. Nat. Commun. 2016, 7, 10235.10.1038/ncomms10235. PubMed DOI PMC
Fan Q.; Gottfried J. M.; Zhu J. Surface-Catalyzed C–C Covalent Coupling Strategies toward the Synthesis of Low-Dimensional Carbon-Based Nanostructures. Acc. Chem. Res. 2015, 48, 2484–2494. 10.1021/acs.accounts.5b00168. PubMed DOI
Eichhorn J.; Strunskus T.; Rastgoo-Lahrood A.; Samanta D.; Schmittel M.; Lackinger M. On-Surface Ullmann Polymerization via Intermediate Organometallic Networks on Ag(111). Chem. Commun. 2014, 50, 7680–7682. 10.1039/C4CC02757D. PubMed DOI
Dong L.; Liu P. N.; Lin N. Surface-Activated Coupling Reactions Confined on a Surface. Acc. Chem. Res. 2015, 48, 2765–2774. 10.1021/acs.accounts.5b00160. PubMed DOI
Li J.; Martin K.; Avarvari N.; Wäckerlin C.; Ernst K.-H. Spontaneous Separation of On-Surface Synthesized Tris-Helicenes into Two-Dimensional Homochiral Domains. Chem. Commun. 2018, 54, 7948–7951. 10.1039/C8CC04235G. PubMed DOI
Mairena A.; Baljozovic M.; Kawecki M.; Grenader K.; Wienke M.; Martin K.; Bernard L.; Avarvari N.; Terfort A.; Ernst K.-H.; Wäckerlin C. The Fate of Bromine after Temperature-Induced Dehydrogenation of On-Surface Synthesized Bisheptahelicene. Chem. Sci. 2019, 10, 2998–3004. 10.1039/C8SC04720K. PubMed DOI PMC
Zagranyarski Y.; Chen L.; Jansch D.; Gessner T.; Li C.; Müllen K. Toward Perylene Dyes by the Hundsdiecker Reaction. Org. Lett. 2014, 16, 2814–2817. 10.1021/ol5008586. PubMed DOI
Tran V.; Pham T. A.; Grunst M.; Kivala M.; Stöhr M. Surface-Confined [2 + 2] Cycloaddition towards One-Dimensional Polymers Featuring Cyclobutadiene Units. Nanoscale 2017, 9, 18305.10.1039/C7NR06187K. PubMed DOI
Nguyen M.-T.; Pignedoli C. A.; Passerone D. An Ab Initio Insight into the Cu(111)–Mediated Ullmann Reaction. Phys. Chem. Chem. Phys. 2011, 13, 154–160. 10.1039/C0CP00759E. PubMed DOI
Saywell A.; Greń W.; Franc G.; Gourdon A.; Bouju X.; Grill L. Manipulating the Conformation of Single Organometallic Chains on Au(111). J. Phys. Chem. C 2014, 118, 1719–1728. 10.1021/jp409323g. DOI
Telychko M.; Su J.; Gallardo A.; Gu Y.; Mendieta-Moreno J. I.; Qi D.; Tadich A.; Song S.; Lyu P.; Qiu Z.; Fang H.; Joo Koh M.; Wu J.; Jelínek P.; Lu J. Strain-Induced Isomerization in One-Dimensional Metal–Organic Chains. Angew. Chem., Int. Ed. 2019, 58, 18591–18597. 10.1002/anie.201909074. PubMed DOI
Zheltov V. V.; Cherkez V. V.; Andryushechkin B. V.; Zhidomirov G. M.; Kierren B.; Fagot-Revurat Y.; Malterre D.; Eltsov K. N. Structural Paradox in Submonolayer Chlorine Coverage on Au(111). Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 195425.10.1103/PhysRevB.89.195425. DOI
Gross L.; Mohn F.; Moll N.; Liljeroth P.; Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. 10.1126/science.1176210. PubMed DOI
Kawai S.; Sadeghi A.; Okamoto T.; Mitsui C.; Pawlak R.; Meier T.; Takeya J.; Goedecker S.; Meyer E. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy. Small 2016, 12, 5303–5311. 10.1002/smll.201601216. PubMed DOI
Zhang H.; Lin H.; Sun K.; Chen L.; Zagranyarski Y.; Aghdassi N.; Duhm S.; Li Q.; Zhong D.; Li Y.; Müllen K.; Fuchs H.; Chi L. On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025. 10.1021/ja511995r. PubMed DOI
Kimouche A.; Ervasti M. M.; Drost R.; Halonen S.; Harju A.; Joensuu P. M.; Sainio J.; Liljeroth P. Ultra-Narrow Metallic Armchair Graphene Nanoribbons. Nat. Commun. 2015, 6, 10177.10.1038/ncomms10177. PubMed DOI PMC
Tuning the Diradical Character of Pentacene Derivatives via Non-Benzenoid Coupling Motifs
Circumventing the stability problems of graphene nanoribbon zigzag edges