High-precision multiparameter estimation of mechanical force by quantum optomechanics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-22950Y
Grantová Agentura České Republiky
19-22950Y
Grantová Agentura České Republiky
19-17765S
Grantová Agentura České Republiky
951737 (NONGAUSS)
European Union's 2020 research and innovation programme (CSA - Coordination and support action, H2020-WIDESPREAD-2020-5)
PubMed
36163483
PubMed Central
PMC9512796
DOI
10.1038/s41598-022-20150-6
PII: 10.1038/s41598-022-20150-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A nanomechanical oscillator can be used as a sensitive probe of a small linearized mechanical force. We propose a simple quantum optomechanical scheme using a coherent light mode in the cavity and weak short-pulsed light-matter interactions. Our main result is that if we transfer some displacement to the mechanical mode in an initialization phase, then a much weaker optomechanical interaction is enough to obtain a high-precision multiparameter estimation of the unknown force. This approach includes not only estimating the displacement caused by the force but also simultaneously observing the phase shift and squeezing of the mechanical mode. We show that the proposed scheme is robust against typical experimental imperfections and demonstrate the feasibility of our scheme using orders of magnitude weaker optomechanical interactions than in previous related works. Thus, we present a simple, robust estimation scheme requiring only very weak light-matter interactions, which could open the way to new nanomechanical sensors.
Zobrazit více v PubMed
Chan J, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature. 2011;478:89–92. doi: 10.1038/nature10461. PubMed DOI
Teufel JD, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature. 2011;475:359–363. doi: 10.1038/nature10261. PubMed DOI
Lei CU, et al. Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit. Phys. Rev. Lett. 2016;117:100801. doi: 10.1103/PhysRevLett.117.100801. PubMed DOI
Rugar D, Budakian R, Mamin HJ, Chui BW. Single spin detection by magnetic resonance force microscopy. Nature. 2004;430:329–332. doi: 10.1038/nature02658. PubMed DOI
Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D. Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. 2009;106:1313–1317. doi: 10.1073/pnas.0812068106. PubMed DOI PMC
Hälg D, et al. Membrane-based scanning force microscopy. Phys. Rev. Appl. 2021;15:L021001. doi: 10.1103/PhysRevApplied.15.L021001. DOI
Munday JN, Capasso F, Parsegian VA. Measured long-range repulsive Casimir-Lifshitz forces. Nature. 2009;457:170–173. doi: 10.1038/nature07610. PubMed DOI PMC
Helden L, Eichhorn R, Bechinger C. Direct measurement of thermophoretic forces. Soft Matter. 2015;11:2379–2386. doi: 10.1039/C4SM02833C. PubMed DOI
Evans E, Ritchie K, Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J . 1995;68:2580–2587. doi: 10.1016/S0006-3495(95)80441-8. PubMed DOI PMC
Dufrêne YF, et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 2017;12:295–307. doi: 10.1038/nnano.2017.45. PubMed DOI
Rashid M, et al. Experimental realization of a thermal squeezed state of levitated optomechanics. Phys. Rev. Lett. 2016;117:273601. doi: 10.1103/PhysRevLett.117.273601. PubMed DOI
Roßnagel J, et al. A single-atom heat engine. Science. 2016;352:325–329. doi: 10.1126/science.aad6320. PubMed DOI
Klaers J, Faelt S, Imamoglu A, Togan E. Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the Carnot limit. Phys. Rev. X. 2017;7:031044.
Kolář M, Ryabov A, Filip R. Heat capacity of a thermally squeezed optomechanical oscillator at strong coupling. Sci. Reop. 2019;9:10855. doi: 10.1038/s41598-019-47288-0. PubMed DOI PMC
Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev. Mod. Phys. 2014;86:1391–1452. doi: 10.1103/RevModPhys.86.1391. DOI
Li B-B, Ou L, Lei Y, Liu Y-C. Cavity optomechanical sensing. Nanophotonics. 2021;10:2799–2832. doi: 10.1515/nanoph-2021-0256. DOI
Abbott BP, et al. LIGO: The laser interferometer gravitational-wave observatory. Rept. Prog. Phys. 2009;72:076901. doi: 10.1088/0034-4885/72/7/076901. DOI
LIGO Scientific Collaboration and Virgo Collaboration Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016;116:061102. doi: 10.1103/PhysRevLett.116.061102. PubMed DOI
Arcizet O, et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 2006;97:133601. doi: 10.1103/PhysRevLett.97.133601. PubMed DOI
Schliesser A, Arcizet O, Rivière R, Anetsberger G, Kippenberg TJ. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 2009;5:509–514. doi: 10.1038/nphys1304. DOI
Kampel NS, et al. Improving broadband displacement detection with quantum correlations. Phys. Rev. X. 2017;7:021008.
Gavartin E, Verlot P, Kippenberg TJ. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 2012;7:509–514. doi: 10.1038/nnano.2012.97. PubMed DOI
Forstner S, et al. Cavity optomechanical magnetometer. Phys. Rev. Lett. 2012;108:120801. doi: 10.1103/PhysRevLett.108.120801. PubMed DOI
Yu C, et al. Optomechanical Magnetometry with a macroscopic resonator. Phys. Rev. Appl. 2016;5:044007. doi: 10.1103/PhysRevApplied.5.044007. DOI
Li B-B, et al. Quantum enhanced optomechanical magnetometry. Optica. 2018;5:850–856. doi: 10.1364/OPTICA.5.000850. DOI
Santos JT, Li J, Ilves J, Ockeloen-Korppi CF, Sillanpää M. Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state. New J. Phys. 2017;19:103014. doi: 10.1088/1367-2630/aa83a5. DOI
Doolin C, Kim PH, Hauer BD, MacDonald AJR, Davis JP. Multidimensional optomechanical cantilevers for high-frequency force sensing. New J. Phys. 2014;16:035001. doi: 10.1088/1367-2630/16/3/035001. DOI
Ranjit G, Cunningham M, Casey K, Geraci AA. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A. 2016;93:053801. doi: 10.1103/PhysRevA.93.053801. DOI
Vovrosh J, et al. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. JOSA B. 2017;34:1421–1428. doi: 10.1364/JOSAB.34.001421. DOI
Mason D, Chen J, Rossi M, Tsaturyan Y, Schliesser A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 2019;15:745–749. doi: 10.1038/s41567-019-0533-5. DOI
Catalini L, Tsaturyan Y, Schliesser A. Soft-clamped phononic dimers for mechanical sensing and transduction. Phys. Rev. Appl. 2020;14:014041. doi: 10.1103/PhysRevApplied.14.014041. DOI
Pinel O, Jian P, Treps N, Fabre C, Braun D. Quantum parameter estimation using general single-mode Gaussian states. Phys. Rev. A. 2013;88:040102(R). doi: 10.1103/PhysRevA.88.040102. DOI
Genoni MG, et al. Optimal estimation of joint parameters in phase space. Phys. Rev. A. 2013;87:012107. doi: 10.1103/PhysRevA.87.012107. DOI
Demkowicz-Dobrzański R, Jarzyna M, Kołodyński J. Quantum limits in optical interferometry. Prog. Opt. 2015;60:345–435. doi: 10.1016/bs.po.2015.02.003. DOI
Milburn GJ, Chen WY, Jones KR. Hyperbolic phase and squeeze-parameter estimation. Phys. Rev. A. 1994;50:801. doi: 10.1103/PhysRevA.50.801. PubMed DOI
Chiribella G, D’Ariano GM, Sacchi MF. Optimal estimation of squeezing. Phys. Rev. A. 2006;73:062103. doi: 10.1103/PhysRevA.73.062103. DOI
Gaiba R, Paris MG. Squeezed vacuum as a universal quantum probe. Phys. Lett. A. 2009;373:934–939. doi: 10.1016/j.physleta.2009.01.026. DOI
Šafránek D, Fuentes I. Optimal probe states for the estimation of gaussian unitary channels. Phys. Rev. A. 2016;94:062313. doi: 10.1103/PhysRevA.94.062313. DOI
Benatti F, Floreanini R, Marzolino U. Entanglement and squeezing with identical particles: ultracold atom quantum metrology. J. Phys. B. 2011;44:091001. doi: 10.1088/0953-4075/44/9/091001. DOI
Genoni MG. Cramér-Rao bound for time-continuous measurements in linear Gaussian quantum systems. Phys. Rev. A. 2017;95:012116. doi: 10.1103/PhysRevA.95.012116. DOI
Pinel O, et al. Ultimate sensitivity of precision measurements with intense Gaussian quantum light: A multimodal approach. Phys. Rev. A. 2012;85:010101(R). doi: 10.1103/PhysRevA.85.010101. DOI
Šafránek D, Lee AR, Fuentes I. Quantum parameter estimation using multi-mode Gaussian states. New J. Phys. 2015;17:073016. doi: 10.1088/1367-2630/17/7/073016. DOI
Nichols R, Liuzzo-Scorpo P, Knott PA, Adesso G. Multiparameter Gaussian quantum metrology. Phys. Rev. A. 2018;98(1):012114. doi: 10.1103/PhysRevA.98.012114. DOI
Šafránek D. Calculating optimal bounds on the multi-parameter estimation of Gaussian quantum states. J. Phys. A. 2019;52:035304. doi: 10.1088/1751-8121/aaf068. DOI
Ruppert L, Filip R. Estimation of nonclassical independent Gaussian processes by classical interferometry. Sci. Rep. 2017;7:39641. doi: 10.1038/srep39641. PubMed DOI PMC
Bernad JZ, Sanavio C, Xuereb A. Optimal estimation of the optomechanical coupling strength. Phys. Rev. A. 2018;97:063821. doi: 10.1103/PhysRevA.97.063821. DOI
Zheng Q, Yao Y, Li Y. Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Phys. Rev. A. 2016;93:013848. doi: 10.1103/PhysRevA.93.013848. DOI
Zhao W, Zhang S-D, Miranowicz A, Jing H. Weak-force sensing with squeezed optomechanics. Sci. China Phys. Mech. Astron. 2019;63:224211. doi: 10.1007/s11433-019-9451-3. DOI
Peano V, Schwefel HGL, Marquardt C, Marquardt F. Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification. Phys. Rev. Lett. 2015;115:243603. doi: 10.1103/PhysRevLett.115.243603. PubMed DOI
Schneiter F, et al. Optimal estimation with quantum optomechanical systems in the nonlinear regime. Phys. Rev. A. 2020;101:033834. doi: 10.1103/PhysRevA.101.033834. DOI
Ruppert L, Filip R. Light-matter quantum interferometry with homodyne detection. Opt. Express. 2017;25:15456–15467. doi: 10.1364/OE.25.015456. PubMed DOI
Vanner MR, et al. Pulsed quantum optomechanics. Proc. Natl. Acad. Sci. 2011;108:16182–16187. doi: 10.1073/pnas.1105098108. PubMed DOI PMC
Vanner MR, Hofer J, Cole GD, Aspelmeyer M. Cooling-by-measurement and mechanical state tomography via pulsed optomechanics. Nat. Commun. 2013;4:2295. doi: 10.1038/ncomms3295. PubMed DOI
Bennett JS, et al. A quantum optomechanical interface beyond the resolved sideband limit. New J. Phys. 2016;18:053030. doi: 10.1088/1367-2630/18/5/053030. DOI
Bennett JS, Bowen WP. Rapid mechanical squeezing with pulsed optomechanics. New J. Phys. 2018;20:113016. doi: 10.1088/1367-2630/aaea15. DOI
Brunelli M, Malz D, Schliesser A, Nunnenkamp A. Stroboscopic quantum optomechanics. Phys. Rev. Res. 2020;2:023241. doi: 10.1103/PhysRevResearch.2.023241. DOI
Bennett JS, Madsen LS, Rubinsztein-Dunlop H, Bowen WP. A quantum heat machine from fast optomechanics. New J. Phys. 2020;22:103028. doi: 10.1088/1367-2630/abb73f. DOI
Clarke J, et al. Generating mechanical and optomechanical entanglement via pulsed interaction and measurement. New J. Phys. 2020;22:063001. doi: 10.1088/1367-2630/ab7ddd. DOI
Meng C, Brawley GA, Bennett JS, Vanner MR, Bowen WP. Mechanical squeezing via fast continuous measurement. Phys. Rev. Lett. 2020;125:043604. doi: 10.1103/PhysRevLett.125.043604. PubMed DOI
Neveu P, Clarke J, Vanner MR, Verhagen E. Preparation and verification of two-mode mechanical entanglement through pulsed optomechanical measurements. New J. Phys. 2021;23:023026. doi: 10.1088/1367-2630/abe1e4. DOI
Kleckner D, Bouwmeester D. Sub-kelvin optical cooling of a micromechanical resonator. Nature. 2006;444:75–78. doi: 10.1038/nature05231. PubMed DOI
See Supplemental Material at [URL will be inserted by publisher] for the derivation of the optomechanical input-output relations and the details of the estimation method.
Bowen WP, Milburn GJ. Quantum Optomechanics. CRC Press; 2015.
Braginsky VB, Vorontsov YI, Khalili FY. Optimal quantum measurements in detectors of gravitation radiation. JETP Lett. 1978;27:276.
Vostrosablin N, Rakhubovsky AA, Hoff UB, Andersen UL, Filip R. Quantum optomechanical transducer with ultrashort pulses. New J. Phys. 2018;20:083042. doi: 10.1088/1367-2630/aadbb7. DOI
Ringbauer M, Weinhold TJ, Howard LA, White AG, Vanner MR. Generation of mechanical interference fringes by multi-photon counting. New J. Phys. 2018;20:053042. doi: 10.1088/1367-2630/aabb8d. DOI