High-precision multiparameter estimation of mechanical force by quantum optomechanics

. 2022 Sep 26 ; 12 (1) : 16022. [epub] 20220926

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36163483

Grantová podpora
19-22950Y Grantová Agentura České Republiky
19-22950Y Grantová Agentura České Republiky
19-17765S Grantová Agentura České Republiky
951737 (NONGAUSS) European Union's 2020 research and innovation programme (CSA - Coordination and support action, H2020-WIDESPREAD-2020-5)

Odkazy

PubMed 36163483
PubMed Central PMC9512796
DOI 10.1038/s41598-022-20150-6
PII: 10.1038/s41598-022-20150-6
Knihovny.cz E-zdroje

A nanomechanical oscillator can be used as a sensitive probe of a small linearized mechanical force. We propose a simple quantum optomechanical scheme using a coherent light mode in the cavity and weak short-pulsed light-matter interactions. Our main result is that if we transfer some displacement to the mechanical mode in an initialization phase, then a much weaker optomechanical interaction is enough to obtain a high-precision multiparameter estimation of the unknown force. This approach includes not only estimating the displacement caused by the force but also simultaneously observing the phase shift and squeezing of the mechanical mode. We show that the proposed scheme is robust against typical experimental imperfections and demonstrate the feasibility of our scheme using orders of magnitude weaker optomechanical interactions than in previous related works. Thus, we present a simple, robust estimation scheme requiring only very weak light-matter interactions, which could open the way to new nanomechanical sensors.

Zobrazit více v PubMed

Chan J, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature. 2011;478:89–92. doi: 10.1038/nature10461. PubMed DOI

Teufel JD, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature. 2011;475:359–363. doi: 10.1038/nature10261. PubMed DOI

Lei CU, et al. Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit. Phys. Rev. Lett. 2016;117:100801. doi: 10.1103/PhysRevLett.117.100801. PubMed DOI

Rugar D, Budakian R, Mamin HJ, Chui BW. Single spin detection by magnetic resonance force microscopy. Nature. 2004;430:329–332. doi: 10.1038/nature02658. PubMed DOI

Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D. Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. 2009;106:1313–1317. doi: 10.1073/pnas.0812068106. PubMed DOI PMC

Hälg D, et al. Membrane-based scanning force microscopy. Phys. Rev. Appl. 2021;15:L021001. doi: 10.1103/PhysRevApplied.15.L021001. DOI

Munday JN, Capasso F, Parsegian VA. Measured long-range repulsive Casimir-Lifshitz forces. Nature. 2009;457:170–173. doi: 10.1038/nature07610. PubMed DOI PMC

Helden L, Eichhorn R, Bechinger C. Direct measurement of thermophoretic forces. Soft Matter. 2015;11:2379–2386. doi: 10.1039/C4SM02833C. PubMed DOI

Evans E, Ritchie K, Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J . 1995;68:2580–2587. doi: 10.1016/S0006-3495(95)80441-8. PubMed DOI PMC

Dufrêne YF, et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 2017;12:295–307. doi: 10.1038/nnano.2017.45. PubMed DOI

Rashid M, et al. Experimental realization of a thermal squeezed state of levitated optomechanics. Phys. Rev. Lett. 2016;117:273601. doi: 10.1103/PhysRevLett.117.273601. PubMed DOI

Roßnagel J, et al. A single-atom heat engine. Science. 2016;352:325–329. doi: 10.1126/science.aad6320. PubMed DOI

Klaers J, Faelt S, Imamoglu A, Togan E. Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the Carnot limit. Phys. Rev. X. 2017;7:031044.

Kolář M, Ryabov A, Filip R. Heat capacity of a thermally squeezed optomechanical oscillator at strong coupling. Sci. Reop. 2019;9:10855. doi: 10.1038/s41598-019-47288-0. PubMed DOI PMC

Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev. Mod. Phys. 2014;86:1391–1452. doi: 10.1103/RevModPhys.86.1391. DOI

Li B-B, Ou L, Lei Y, Liu Y-C. Cavity optomechanical sensing. Nanophotonics. 2021;10:2799–2832. doi: 10.1515/nanoph-2021-0256. DOI

Abbott BP, et al. LIGO: The laser interferometer gravitational-wave observatory. Rept. Prog. Phys. 2009;72:076901. doi: 10.1088/0034-4885/72/7/076901. DOI

LIGO Scientific Collaboration and Virgo Collaboration Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016;116:061102. doi: 10.1103/PhysRevLett.116.061102. PubMed DOI

Arcizet O, et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 2006;97:133601. doi: 10.1103/PhysRevLett.97.133601. PubMed DOI

Schliesser A, Arcizet O, Rivière R, Anetsberger G, Kippenberg TJ. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 2009;5:509–514. doi: 10.1038/nphys1304. DOI

Kampel NS, et al. Improving broadband displacement detection with quantum correlations. Phys. Rev. X. 2017;7:021008.

Gavartin E, Verlot P, Kippenberg TJ. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 2012;7:509–514. doi: 10.1038/nnano.2012.97. PubMed DOI

Forstner S, et al. Cavity optomechanical magnetometer. Phys. Rev. Lett. 2012;108:120801. doi: 10.1103/PhysRevLett.108.120801. PubMed DOI

Yu C, et al. Optomechanical Magnetometry with a macroscopic resonator. Phys. Rev. Appl. 2016;5:044007. doi: 10.1103/PhysRevApplied.5.044007. DOI

Li B-B, et al. Quantum enhanced optomechanical magnetometry. Optica. 2018;5:850–856. doi: 10.1364/OPTICA.5.000850. DOI

Santos JT, Li J, Ilves J, Ockeloen-Korppi CF, Sillanpää M. Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state. New J. Phys. 2017;19:103014. doi: 10.1088/1367-2630/aa83a5. DOI

Doolin C, Kim PH, Hauer BD, MacDonald AJR, Davis JP. Multidimensional optomechanical cantilevers for high-frequency force sensing. New J. Phys. 2014;16:035001. doi: 10.1088/1367-2630/16/3/035001. DOI

Ranjit G, Cunningham M, Casey K, Geraci AA. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A. 2016;93:053801. doi: 10.1103/PhysRevA.93.053801. DOI

Vovrosh J, et al. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. JOSA B. 2017;34:1421–1428. doi: 10.1364/JOSAB.34.001421. DOI

Mason D, Chen J, Rossi M, Tsaturyan Y, Schliesser A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 2019;15:745–749. doi: 10.1038/s41567-019-0533-5. DOI

Catalini L, Tsaturyan Y, Schliesser A. Soft-clamped phononic dimers for mechanical sensing and transduction. Phys. Rev. Appl. 2020;14:014041. doi: 10.1103/PhysRevApplied.14.014041. DOI

Pinel O, Jian P, Treps N, Fabre C, Braun D. Quantum parameter estimation using general single-mode Gaussian states. Phys. Rev. A. 2013;88:040102(R). doi: 10.1103/PhysRevA.88.040102. DOI

Genoni MG, et al. Optimal estimation of joint parameters in phase space. Phys. Rev. A. 2013;87:012107. doi: 10.1103/PhysRevA.87.012107. DOI

Demkowicz-Dobrzański R, Jarzyna M, Kołodyński J. Quantum limits in optical interferometry. Prog. Opt. 2015;60:345–435. doi: 10.1016/bs.po.2015.02.003. DOI

Milburn GJ, Chen WY, Jones KR. Hyperbolic phase and squeeze-parameter estimation. Phys. Rev. A. 1994;50:801. doi: 10.1103/PhysRevA.50.801. PubMed DOI

Chiribella G, D’Ariano GM, Sacchi MF. Optimal estimation of squeezing. Phys. Rev. A. 2006;73:062103. doi: 10.1103/PhysRevA.73.062103. DOI

Gaiba R, Paris MG. Squeezed vacuum as a universal quantum probe. Phys. Lett. A. 2009;373:934–939. doi: 10.1016/j.physleta.2009.01.026. DOI

Šafránek D, Fuentes I. Optimal probe states for the estimation of gaussian unitary channels. Phys. Rev. A. 2016;94:062313. doi: 10.1103/PhysRevA.94.062313. DOI

Benatti F, Floreanini R, Marzolino U. Entanglement and squeezing with identical particles: ultracold atom quantum metrology. J. Phys. B. 2011;44:091001. doi: 10.1088/0953-4075/44/9/091001. DOI

Genoni MG. Cramér-Rao bound for time-continuous measurements in linear Gaussian quantum systems. Phys. Rev. A. 2017;95:012116. doi: 10.1103/PhysRevA.95.012116. DOI

Pinel O, et al. Ultimate sensitivity of precision measurements with intense Gaussian quantum light: A multimodal approach. Phys. Rev. A. 2012;85:010101(R). doi: 10.1103/PhysRevA.85.010101. DOI

Šafránek D, Lee AR, Fuentes I. Quantum parameter estimation using multi-mode Gaussian states. New J. Phys. 2015;17:073016. doi: 10.1088/1367-2630/17/7/073016. DOI

Nichols R, Liuzzo-Scorpo P, Knott PA, Adesso G. Multiparameter Gaussian quantum metrology. Phys. Rev. A. 2018;98(1):012114. doi: 10.1103/PhysRevA.98.012114. DOI

Šafránek D. Calculating optimal bounds on the multi-parameter estimation of Gaussian quantum states. J. Phys. A. 2019;52:035304. doi: 10.1088/1751-8121/aaf068. DOI

Ruppert L, Filip R. Estimation of nonclassical independent Gaussian processes by classical interferometry. Sci. Rep. 2017;7:39641. doi: 10.1038/srep39641. PubMed DOI PMC

Bernad JZ, Sanavio C, Xuereb A. Optimal estimation of the optomechanical coupling strength. Phys. Rev. A. 2018;97:063821. doi: 10.1103/PhysRevA.97.063821. DOI

Zheng Q, Yao Y, Li Y. Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Phys. Rev. A. 2016;93:013848. doi: 10.1103/PhysRevA.93.013848. DOI

Zhao W, Zhang S-D, Miranowicz A, Jing H. Weak-force sensing with squeezed optomechanics. Sci. China Phys. Mech. Astron. 2019;63:224211. doi: 10.1007/s11433-019-9451-3. DOI

Peano V, Schwefel HGL, Marquardt C, Marquardt F. Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification. Phys. Rev. Lett. 2015;115:243603. doi: 10.1103/PhysRevLett.115.243603. PubMed DOI

Schneiter F, et al. Optimal estimation with quantum optomechanical systems in the nonlinear regime. Phys. Rev. A. 2020;101:033834. doi: 10.1103/PhysRevA.101.033834. DOI

Ruppert L, Filip R. Light-matter quantum interferometry with homodyne detection. Opt. Express. 2017;25:15456–15467. doi: 10.1364/OE.25.015456. PubMed DOI

Vanner MR, et al. Pulsed quantum optomechanics. Proc. Natl. Acad. Sci. 2011;108:16182–16187. doi: 10.1073/pnas.1105098108. PubMed DOI PMC

Vanner MR, Hofer J, Cole GD, Aspelmeyer M. Cooling-by-measurement and mechanical state tomography via pulsed optomechanics. Nat. Commun. 2013;4:2295. doi: 10.1038/ncomms3295. PubMed DOI

Bennett JS, et al. A quantum optomechanical interface beyond the resolved sideband limit. New J. Phys. 2016;18:053030. doi: 10.1088/1367-2630/18/5/053030. DOI

Bennett JS, Bowen WP. Rapid mechanical squeezing with pulsed optomechanics. New J. Phys. 2018;20:113016. doi: 10.1088/1367-2630/aaea15. DOI

Brunelli M, Malz D, Schliesser A, Nunnenkamp A. Stroboscopic quantum optomechanics. Phys. Rev. Res. 2020;2:023241. doi: 10.1103/PhysRevResearch.2.023241. DOI

Bennett JS, Madsen LS, Rubinsztein-Dunlop H, Bowen WP. A quantum heat machine from fast optomechanics. New J. Phys. 2020;22:103028. doi: 10.1088/1367-2630/abb73f. DOI

Clarke J, et al. Generating mechanical and optomechanical entanglement via pulsed interaction and measurement. New J. Phys. 2020;22:063001. doi: 10.1088/1367-2630/ab7ddd. DOI

Meng C, Brawley GA, Bennett JS, Vanner MR, Bowen WP. Mechanical squeezing via fast continuous measurement. Phys. Rev. Lett. 2020;125:043604. doi: 10.1103/PhysRevLett.125.043604. PubMed DOI

Neveu P, Clarke J, Vanner MR, Verhagen E. Preparation and verification of two-mode mechanical entanglement through pulsed optomechanical measurements. New J. Phys. 2021;23:023026. doi: 10.1088/1367-2630/abe1e4. DOI

Kleckner D, Bouwmeester D. Sub-kelvin optical cooling of a micromechanical resonator. Nature. 2006;444:75–78. doi: 10.1038/nature05231. PubMed DOI

See Supplemental Material at [URL will be inserted by publisher] for the derivation of the optomechanical input-output relations and the details of the estimation method.

Bowen WP, Milburn GJ. Quantum Optomechanics. CRC Press; 2015.

Braginsky VB, Vorontsov YI, Khalili FY. Optimal quantum measurements in detectors of gravitation radiation. JETP Lett. 1978;27:276.

Vostrosablin N, Rakhubovsky AA, Hoff UB, Andersen UL, Filip R. Quantum optomechanical transducer with ultrashort pulses. New J. Phys. 2018;20:083042. doi: 10.1088/1367-2630/aadbb7. DOI

Ringbauer M, Weinhold TJ, Howard LA, White AG, Vanner MR. Generation of mechanical interference fringes by multi-photon counting. New J. Phys. 2018;20:053042. doi: 10.1088/1367-2630/aabb8d. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...