Heat capacities of thermally manipulated mechanical oscillator at strong coupling
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-06716S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
GB14-36681G
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
731473
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
PubMed
31350419
PubMed Central
PMC6659702
DOI
10.1038/s41598-019-47288-0
PII: 10.1038/s41598-019-47288-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Coherent quantum oscillators are basic physical systems both in quantum statistical physics and quantum thermodynamics. Their realizations in lab often involve solid-state devices sensitive to changes in ambient temperature. We represent states of the solid-state optomechanical oscillator with temperature-dependent frequency by equivalent states of the mechanical oscillator with temperature-dependent energy levels. We interpret the temperature dependence as a consequence of strong coupling between the oscillator and the heat bath. We explore parameter regimes corresponding to anomalous behavior of mechanical and thermodynamic characteristics as a consequence of the strong coupling: (i) The localization and the purification induced by heating, and (ii) the negativity of two generalized heat capacities. The capacities can be used to witness non-linearity in the temperature dependency of the energy levels. Our phenomenological experimentally-oriented approach can stimulate development of new optomechanical and thermomechanical experiments exploring basic concepts of strong coupling thermodynamics.
Zobrazit více v PubMed
Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev. Mod. Phys. 2014;86:1391–1452. doi: 10.1103/RevModPhys.86.1391. DOI
Zhang K, Bariani F, Meystre P. Quantum optomechanical heat engine. Phys. Rev. Lett. 2014;112:150602. doi: 10.1103/PhysRevLett.112.150602. PubMed DOI
Hossein-Zadeh M, Vahala KJ. An optomechanical oscillator on a silicon chip. IEEE J. Sel. Top. Quantum Electron. 2010;16:276–287. doi: 10.1109/JSTQE.2009.2031066. DOI
Hossein-Zadeh M, Rokhsari H, Hajimiri A, Vahala KJ. Characterization of a radiation-pressure-driven micromechanical oscillator. Phys. Rev. A. 2006;74:023813. doi: 10.1103/PhysRevA.74.023813. DOI
Zaitsev S, Gottlieb O, Buks E. Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity. Nonlinear Dyn. 2012;69:1589–1610. doi: 10.1007/s11071-012-0371-9. DOI
Yuvaraj D, Kadam MB, Shtempluck O, Buks E. Optomechanical cavity with a buckled mirror. J. Microelectromechanical Syst. 2013;22:430–437. doi: 10.1109/JMEMS.2012.2226931. DOI
Khanaliloo B, et al. Single-crystal diamond nanobeam waveguide optomechanics. Phys. Rev. X. 2015;5:041051. doi: 10.1103/PhysRevX.5.041051. DOI
Jungwirth NR, et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 2016;16:6052–6057. doi: 10.1021/acs.nanolett.6b01987. PubMed DOI
Pandey AK, Gottlieb O, Shtempluck O, Buks E. Performance of an aupd micromechanical resonator as a temperature sensor. Appl. Phys. Lett. 2010;96:203105. doi: 10.1063/1.3431614. DOI
Šiler M, et al. Thermally induced micro-motion by inflection in optical potential. Sci. Reports. 2017;7:1697. doi: 10.1038/s41598-017-01848-4. PubMed DOI PMC
Šiler M, et al. Diffusing up the hill: Dynamics and equipartition in highly unstable systems. Phys. Rev. Lett. 2018;121:230601. doi: 10.1103/PhysRevLett.121.230601. PubMed DOI
de Miguel R. Temperature-dependent energy levels and size-independent thermodynamics. Phys. Chem. Chem. Phys. 2015;17:15691–15693. doi: 10.1039/C5CP02332G. PubMed DOI
Jarzynski C. Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. 2004;2004:P09005. doi: 10.1088/1742-5468/2004/09/P09005. DOI
Gelin MF, Thoss M. Thermodynamics of a subensemble of a canonical ensemble. Phys. Rev. E. 2009;79:051121. doi: 10.1103/PhysRevE.79.051121. PubMed DOI
Esposito M, Lindenberg K, Van den Broeck C. Entropy production as correlation between system and reservoir. New J. Phys. 2010;12:013013. doi: 10.1088/1367-2630/12/1/013013. DOI
Philbin TG, Anders J. Thermal energies of classical and quantum damped oscillators coupled to reservoirs. J. Phys. A: Math. Theor. 2016;49:215303. doi: 10.1088/1751-8113/49/21/215303. DOI
Jarzynski C. Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X. 2017;7:011008. doi: 10.1103/PhysRevX.7.011008. DOI
Strasberg P, Esposito M. Stochastic thermodynamics in the strong coupling regime: An unambiguous approach based on coarse graining. Phys. Rev. E. 2017;95:062101. doi: 10.1103/PhysRevE.95.062101. PubMed DOI
Seifert U. First and second law of thermodynamics at strong coupling. Phys. Rev. Lett. 2016;116:020601. doi: 10.1103/PhysRevLett.116.020601. PubMed DOI
Talkner P, Hänggi P. Open system trajectories specify fluctuating work but not heat. Phys. Rev. E. 2016;94:022143. doi: 10.1103/PhysRevE.94.022143. PubMed DOI
Rushbrooke GS. On the statistical mechanics of assemblies whose energy-levels depend on the temperature. Trans. Faraday Soc. 1940;36:1055–1062. doi: 10.1039/TF9403601055. DOI
Radkowsky A. Temperature dependence of electron energy levels in solids. Phys. Rev. 1948;73:749–761. doi: 10.1103/PhysRev.73.749. DOI
Fan HY. Temperature dependence of the energy gap in semiconductors. Phys. Rev. 1951;82:900–905. doi: 10.1103/PhysRev.82.900. DOI
Elcock EW, Landsberg PT. Temperature dependent energy levels in statistical mechanics. Proc. Phys. Soc. Sect. B. 1957;70:161. doi: 10.1088/0370-1301/70/2/301. DOI
Emin D. Effect of temperature-dependent energy-level shifts on a semiconductor’s Peltier heat. Phys. Rev. B. 1984;30:5766–5770. doi: 10.1103/PhysRevB.30.5766. DOI
Aldea A. The thermopower of non-localized electrons in amorphous semiconductors. J. Non-Cryst. Solids. 1989;114:375. doi: 10.1016/0022-3093(89)90168-3. DOI
Donnelly RJ, Roberts PH. A theory of temperature-dependent energy levels: Thermodynamic properties of He II. J. Low Temp. Phys. 1977;27:687–736. doi: 10.1007/BF00655704. DOI
Shental O, Kanter I. Shannon meets Carnot: Generalized second thermodynamic law. EPL. 2009;85:10006. doi: 10.1209/0295-5075/85/10006. DOI
Cardona M, Kremer RK. Temperature dependence of the electronic gaps of semiconductors. Thin Solid Films. 2014;571:680–683. doi: 10.1016/j.tsf.2013.10.157. DOI
Takuya Y. Efficiencies of thermodynamics when temperature-dependent energy levels exist. Phys. Chem. Chem. Phys. 2016;18:7011–7014. doi: 10.1039/C5CP07572F. PubMed DOI
Villegas CEP, Rocha AR, Marini A. Anomalous temperature dependence of the band gap in black phosphorus. Nano Lett. 2016;16:5095–5101. doi: 10.1021/acs.nanolett.6b02035. PubMed DOI
de Miguel R, Rubí JM. Thermodynamics far from the thermodynamic limit. J. Phys. Chem. B. 2017;121:10429–10434. doi: 10.1021/acs.jpcb.7b08621. PubMed DOI
Vanner MR, et al. Pulsed quantum optomechanics. Proc. Natl. Acad. Sci. USA. 2011;108:16182–16187. doi: 10.1073/pnas.1105098108. PubMed DOI PMC
Bower, D. I. An Introduction to Polymer Physics (Cambridge University Press, 2002).
Seifert S. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012;75:126001. doi: 10.1088/0034-4885/75/12/126001. PubMed DOI
Ciliberto S. Experiments in stochastic thermodynamics: Short history and perspectives. Phys. Rev. X. 2017;7:021051. doi: 10.1103/PhysRevX.7.021051. DOI
Hofer SG, Wieczorek W, Aspelmeyer M, Hammerer K. Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A. 2011;84:052327. doi: 10.1103/PhysRevA.84.052327. DOI
Vanner MR, Hofer J, Cole JD, Aspelmeyer M. Nonlinear optomechanical measurement of mechanical motion. Nat. Commun. 2013;4:2295. doi: 10.1038/ncomms3295. PubMed DOI
Wieczorek W, et al. Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 2015;114:223601. doi: 10.1103/PhysRevLett.114.223601. PubMed DOI
Mitropolskii, Y. A. & Van Dao, N. Applied Asymptotic Methods in Nonlinear Oscillations (Springer, 1997).
Giessibl FJ. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B. 1997;56:16010–16015. doi: 10.1103/PhysRevB.56.16010. DOI
Hölscher H, et al. Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. Phys. Rev. B. 2001;64:075402. doi: 10.1103/PhysRevB.64.075402. DOI
Grabert H, Weiss U, Talkner P. Quantum theory of the damped harmonic oscillator. Z. Phys. B-Condens. Matt. 1984;55:87. doi: 10.1007/BF01307505. DOI
Pinard M, Hadjar Y, Heidmann A. Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D. 1999;7:107–116. doi: 10.1007/s100530050354. DOI
Kirkwood JG. Statistical mechanics of fluid mixtures. J. Chem. Phys. 1935;3:300. doi: 10.1063/1.1749657. DOI
Roux B, Simonson T. Implicit solvent models. Biophys. Chem. 1999;78:1–20. doi: 10.1016/S0301-4622(98)00226-9. PubMed DOI
Ford GW, Lewis JT, O’Connell RF. Quantum oscillator in a blackbody radiation field. Phys. Rev. Lett. 1985;55:2273–2276. doi: 10.1103/PhysRevLett.55.2273. PubMed DOI
Ford GW, Lewis JT, O’Connell RF. Quantum oscillator in a blackbody radiation field ii. direct calculation of the energy using the fluctuation-dissipation theorem. Ann. Phys. 1988;185:270–283. doi: 10.1016/0003-4916(88)90047-4. DOI
Ford GW, O’Connell RF. Quantum thermodynamic functions for an oscillator coupled to a heat bath. Phys. Rev. B. 2007;75:134301. doi: 10.1103/PhysRevB.75.134301. DOI
Hänggi P, Ingold G-L, Talkner P. Finite quantum dissipation: the challenge of obtaining specific heat. New. J. Phys. 2008;10:115008. doi: 10.1088/1367-2630/10/11/115008. DOI
Ingold G-L, Hänggi P, Talkner P. Specific heat anomalies of open quantum systems. Phys. Rev. E. 2009;79:061105. doi: 10.1103/PhysRevE.79.061105. PubMed DOI
Cole GD, Wilson-Rae I, Werbach K, Vanner MR, Aspelmeyer M. Phonon-tunnelling dissipation in mechanical resonators. Nat. Commun. 2011;2:231. doi: 10.1038/ncomms1212. PubMed DOI PMC
Aspelmeyer M, Meystre P, Schwab K. Quantum optomechanics. Phys. Today. 2012;65:29. doi: 10.1063/PT.3.1640. DOI
Zurek WHD. einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003;75:715–775. doi: 10.1103/RevModPhys.75.715. DOI
Coles PJ, Berta M, Tomamichel M, Wehner S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017;89:015002. doi: 10.1103/RevModPhys.89.015002. DOI
Brawley GA, et al. Nonlinear optomechanical measurement of mechanical motion. Nat. Commun. 2016;7:10988. doi: 10.1038/ncomms10988. PubMed DOI PMC
Pekola JP, Solinas P, Shnirman A, Averin DV. Calorimetric measurement of work in a quantum system. New J. Phys. 2013;15:115006. doi: 10.1088/1367-2630/15/11/115006. DOI
Gasparinetti S, et al. Fast electron thermometry for ultrasensitive calorimetric detection. Phys. Rev. Appl. 2015;3:014007. doi: 10.1103/PhysRevApplied.3.014007. DOI
Govenius J, Lake RE, Tan KY, Möttönen M. Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced josephson junctions. Phys. Rev. Lett. 2016;117:030802. doi: 10.1103/PhysRevLett.117.030802. PubMed DOI
Kolář M, Ryabov A, Filip R. Optomechanical oscillator controlled by variation in its heat bath temperature. Phys. Rev. A. 2017;95:042105. doi: 10.1103/PhysRevA.95.042105. DOI
Kolář M, Ryabov A, Filip R. Extracting work from quantum states of radiation. Phys. Rev. A. 2016;93:063822. doi: 10.1103/PhysRevA.93.063822. DOI
Rashid M, et al. Experimental realization of a thermal squeezed state of levitated optomechanics. Phys. Rev. Lett. 2016;117:273601. doi: 10.1103/PhysRevLett.117.273601. PubMed DOI
Burd, S. C. et al. Quantum amplification of mechanical oscillator motion. arXiv e-prints arXiv:1812.01812 https://arxiv.org/abs/1812.01812 (2018). PubMed PMC
Miyata K, et al. Experimental realization of a dynamic squeezing gate. Phys. Rev. A. 2014;90:060302. doi: 10.1103/PhysRevA.90.060302. DOI
Gallego R, Riera A, Eisert J. Thermal machines beyond the weak coupling regime. New J. Phys. 2014;16:125009. doi: 10.1088/1367-2630/16/12/125009. DOI
Gelbwaser-Klimovsky D, Aspuru-Guzik A. Strongly coupled quantum heat machines. J. Phys. Chem. Lett. 2015;6:3477–3482. doi: 10.1021/acs.jpclett.5b01404. PubMed DOI
Katz G, Kosloff R. Quantum thermodynamics in strong coupling: Heat transport and refrigeration. Entropy. 2016;18:186. doi: 10.3390/e18050186. DOI
Newman D, Mintert F, Nazir A. Performance of a quantum heat engine at strong reservoir coupling. Phys. Rev. E. 2017;95:032139. doi: 10.1103/PhysRevE.95.032139. PubMed DOI
Perarnau-Llobet M, Wilming H, Riera A, Gallego R, Eisert J. Strong coupling corrections in quantum thermodynamics. Phys. Rev. Lett. 2018;120:120602. doi: 10.1103/PhysRevLett.120.120602. PubMed DOI
Holubec V, Ryabov A. Cycling tames power fluctuations near optimum efficiency. Phys. Rev. Lett. 2018;121:120601. doi: 10.1103/PhysRevLett.121.120601. PubMed DOI
Guarnieri G, Kolář M, Filip R. Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 2018;121:070401. doi: 10.1103/PhysRevLett.121.070401. PubMed DOI